|
|
@ -1,9 +1,15 @@ |
|
|
|
use itertools::izip;
|
|
|
|
use std::{
|
|
|
|
fmt::Debug,
|
|
|
|
ops::{Neg, Sub},
|
|
|
|
};
|
|
|
|
|
|
|
|
use itertools::{izip, Itertools};
|
|
|
|
use num_traits::{PrimInt, ToPrimitive};
|
|
|
|
|
|
|
|
use crate::{
|
|
|
|
backend::VectorOps,
|
|
|
|
backend::{ArithmeticOps, VectorOps},
|
|
|
|
decomposer::{self, Decomposer},
|
|
|
|
ntt::Ntt,
|
|
|
|
ntt::{self, Ntt},
|
|
|
|
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
|
|
|
|
utils::{fill_random_ternary_secret_with_hamming_weight, TryConvertFrom, WithLocal},
|
|
|
|
Matrix, MatrixEntity, MatrixMut, RowMut, Secret,
|
|
|
@ -31,6 +37,219 @@ impl RlweSecret { |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn generate_auto_map(ring_size: usize, k: usize) -> (Vec<usize>, Vec<bool>) {
|
|
|
|
assert!(k & 1 == 1, "Auto {k} must be odd");
|
|
|
|
let (auto_map_index, auto_sign_index): (Vec<usize>, Vec<bool>) = (0..ring_size)
|
|
|
|
.into_iter()
|
|
|
|
.map(|i| {
|
|
|
|
let mut to_index = (i * k) % (2 * ring_size);
|
|
|
|
let mut sign = true;
|
|
|
|
|
|
|
|
// wrap around. false implies negative
|
|
|
|
if to_index >= ring_size {
|
|
|
|
to_index = to_index - ring_size;
|
|
|
|
sign = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
(to_index, sign)
|
|
|
|
})
|
|
|
|
.unzip();
|
|
|
|
(auto_map_index, auto_sign_index)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates RLWE Key switching key to key switch ciphertext RLWE_{from_s}(m)
|
|
|
|
/// to RLWE_{to_s}(m).
|
|
|
|
///
|
|
|
|
/// Key switching equals
|
|
|
|
/// \sum decompose(c_1)_i * RLWE_{to_s}(\beta^i -from_s)
|
|
|
|
/// Hence, key switchin key equals RLWE'(-from_s) = RLWE(-from_s), RLWE(beta^1
|
|
|
|
/// -from_s), ..., RLWE(beta^{d-1} -from_s).
|
|
|
|
///
|
|
|
|
/// - ksk_out: Output Key switching key. Key switching key stores RLWE
|
|
|
|
/// ciphertexts as [RLWE'_A(-from_s) || RLWE'_B(-from_s)]
|
|
|
|
/// - neg_from_s_eval: Negative of secret polynomial to key switch from in
|
|
|
|
/// evaluation domain
|
|
|
|
/// - to_s_eval: secret polynomial to key switch to in evalution domain.
|
|
|
|
fn rlwe_ksk_gen<
|
|
|
|
Mmut: MatrixMut + MatrixEntity,
|
|
|
|
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
|
|
|
|
NttOp: Ntt<Element = Mmut::MatElement>,
|
|
|
|
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
|
|
|
|
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
|
|
|
>(
|
|
|
|
ksk_out: &mut Mmut,
|
|
|
|
neg_from_s_eval: &Mmut,
|
|
|
|
to_s_eval: &Mmut,
|
|
|
|
gadget_vector: &[Mmut::MatElement],
|
|
|
|
mod_op: &ModOp,
|
|
|
|
ntt_op: &NttOp,
|
|
|
|
rng: &mut R,
|
|
|
|
) where
|
|
|
|
<Mmut as Matrix>::R: RowMut,
|
|
|
|
{
|
|
|
|
let ring_size = neg_from_s_eval.dimension().1;
|
|
|
|
let d = gadget_vector.len();
|
|
|
|
assert!(neg_from_s_eval.dimension().0 == 1);
|
|
|
|
assert!(ksk_out.dimension() == (d * 2, ring_size));
|
|
|
|
assert!(to_s_eval.dimension() == (1, ring_size));
|
|
|
|
|
|
|
|
let q = ArithmeticOps::modulus(mod_op);
|
|
|
|
|
|
|
|
let mut scratch_space = Mmut::zeros(1, ring_size);
|
|
|
|
|
|
|
|
// RLWE'_{to_s}(-from_s)
|
|
|
|
let (part_a, part_b) = ksk_out.split_at_row(d);
|
|
|
|
izip!(part_a.iter_mut(), part_b.iter_mut(), gadget_vector.iter()).for_each(
|
|
|
|
|(ai, bi, beta_i)| {
|
|
|
|
// sample ai and transform to evaluation
|
|
|
|
RandomUniformDist::random_fill(rng, &q, ai.as_mut());
|
|
|
|
ntt_op.forward(ai.as_mut());
|
|
|
|
|
|
|
|
// to_s * ai
|
|
|
|
mod_op.elwise_mul(
|
|
|
|
scratch_space.get_row_mut(0),
|
|
|
|
ai.as_ref(),
|
|
|
|
to_s_eval.get_row_slice(0),
|
|
|
|
);
|
|
|
|
|
|
|
|
// ei + to_s*ai
|
|
|
|
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
|
|
|
|
ntt_op.forward(bi.as_mut());
|
|
|
|
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.get_row_slice(0));
|
|
|
|
|
|
|
|
// beta_i * -from_s
|
|
|
|
mod_op.elwise_scalar_mul(
|
|
|
|
scratch_space.get_row_mut(0),
|
|
|
|
neg_from_s_eval.get_row_slice(0),
|
|
|
|
beta_i,
|
|
|
|
);
|
|
|
|
|
|
|
|
// bi = ei + to_s*ai + beta_i*-from_s
|
|
|
|
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.get_row_slice(0));
|
|
|
|
},
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn galois_key_gen<
|
|
|
|
Mmut: MatrixMut + MatrixEntity,
|
|
|
|
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
|
|
|
|
NttOp: Ntt<Element = Mmut::MatElement>,
|
|
|
|
S: Secret,
|
|
|
|
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
|
|
|
|
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
|
|
|
>(
|
|
|
|
ksk_out: &mut Mmut,
|
|
|
|
s: &S,
|
|
|
|
auto_k: usize,
|
|
|
|
gadget_vector: &[Mmut::MatElement],
|
|
|
|
mod_op: &ModOp,
|
|
|
|
ntt_op: &NttOp,
|
|
|
|
rng: &mut R,
|
|
|
|
) where
|
|
|
|
<Mmut as Matrix>::R: RowMut,
|
|
|
|
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
|
|
|
Mmut::MatElement: Copy + Sub<Output = Mmut::MatElement>,
|
|
|
|
{
|
|
|
|
let ring_size = s.values().len();
|
|
|
|
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size, auto_k);
|
|
|
|
|
|
|
|
let q = ArithmeticOps::modulus(mod_op);
|
|
|
|
|
|
|
|
// s(X) -> -s(X^k)
|
|
|
|
let mut s = Mmut::try_convert_from(s.values(), &q);
|
|
|
|
let mut neg_s_auto = Mmut::zeros(1, s.dimension().1);
|
|
|
|
izip!(s.get_row(0), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|
|
|
|
|(el, to_index, sign)| {
|
|
|
|
// if sign is +ve (true), then negate because we need -s(X) (i.e. do the
|
|
|
|
// opposite than the usual case)
|
|
|
|
if *sign {
|
|
|
|
neg_s_auto.set(0, *to_index, q - *el)
|
|
|
|
} else {
|
|
|
|
neg_s_auto.set(0, *to_index, *el)
|
|
|
|
}
|
|
|
|
},
|
|
|
|
);
|
|
|
|
|
|
|
|
// send both s(X) and -s(X^k) to evaluation domain
|
|
|
|
ntt_op.forward(s.get_row_mut(0));
|
|
|
|
ntt_op.forward(neg_s_auto.get_row_mut(0));
|
|
|
|
|
|
|
|
// Ksk from -s(X^k) to s(X)
|
|
|
|
rlwe_ksk_gen(ksk_out, &neg_s_auto, &s, gadget_vector, mod_op, ntt_op, rng);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Sends RLWE_{s}(X) -> RLWE_{s}(X^k) where k is some galois element
|
|
|
|
fn galois_auto<
|
|
|
|
M: Matrix,
|
|
|
|
Mmut: MatrixMut<MatElement = M::MatElement>,
|
|
|
|
ModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
|
|
|
NttOp: Ntt<Element = M::MatElement>,
|
|
|
|
D: Decomposer<Element = M::MatElement>,
|
|
|
|
>(
|
|
|
|
rlwe_in: &M,
|
|
|
|
ksk: &M,
|
|
|
|
rlwe_out: &mut Mmut,
|
|
|
|
a_rlwe_decomposed: &mut Mmut,
|
|
|
|
auto_map_index: &[usize],
|
|
|
|
auto_map_sign: &[bool],
|
|
|
|
mod_op: &ModOp,
|
|
|
|
ntt_op: &NttOp,
|
|
|
|
decomposer: &D,
|
|
|
|
) where
|
|
|
|
<Mmut as Matrix>::R: RowMut,
|
|
|
|
M::MatElement: Copy,
|
|
|
|
{
|
|
|
|
let d = decomposer.d();
|
|
|
|
|
|
|
|
// send b(X) -> b(X^k)
|
|
|
|
izip!(
|
|
|
|
rlwe_in.get_row(1),
|
|
|
|
auto_map_index.iter(),
|
|
|
|
auto_map_sign.iter()
|
|
|
|
)
|
|
|
|
.for_each(|(el_in, to_index, sign)| {
|
|
|
|
if !*sign {
|
|
|
|
rlwe_out.set(1, *to_index, mod_op.neg(el_in));
|
|
|
|
} else {
|
|
|
|
rlwe_out.set(1, *to_index, *el_in);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
// send a(X) -> a(X^k) and decompose a(X^k)
|
|
|
|
izip!(
|
|
|
|
rlwe_in.get_row(0),
|
|
|
|
auto_map_index.iter(),
|
|
|
|
auto_map_sign.iter()
|
|
|
|
)
|
|
|
|
.for_each(|(el_in, to_index, sign)| {
|
|
|
|
let el_out = if !*sign { mod_op.neg(el_in) } else { *el_in };
|
|
|
|
|
|
|
|
let el_out_decomposed = decomposer.decompose(&el_out);
|
|
|
|
for j in 0..d {
|
|
|
|
a_rlwe_decomposed.set(j, *to_index, el_out_decomposed[j]);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
// transform decomposed a(X^k) to evaluation domain
|
|
|
|
a_rlwe_decomposed.iter_rows_mut().for_each(|r| {
|
|
|
|
ntt_op.forward(r.as_mut());
|
|
|
|
});
|
|
|
|
|
|
|
|
// key switch (a(X^k) * RLWE'(s(X^k)))
|
|
|
|
izip!(a_rlwe_decomposed.iter_rows(), ksk.iter_rows().take(d)).for_each(|(a, b)| {
|
|
|
|
mod_op.elwise_fma_mut(rlwe_out.get_row_mut(0), a.as_ref(), b.as_ref());
|
|
|
|
});
|
|
|
|
ntt_op.forward(rlwe_out.get_row_mut(1));
|
|
|
|
izip!(a_rlwe_decomposed.iter_rows(), ksk.iter_rows().skip(d)).for_each(|(a, b)| {
|
|
|
|
mod_op.elwise_fma_mut(rlwe_out.get_row_mut(1), a.as_ref(), b.as_ref());
|
|
|
|
});
|
|
|
|
|
|
|
|
// transform RLWE(-s(X^k) * a(X^k)) to coefficient domain
|
|
|
|
rlwe_out
|
|
|
|
.iter_rows_mut()
|
|
|
|
.for_each(|r| ntt_op.backward(r.as_mut()));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Encrypts message m as a RGSW ciphertext.
|
|
|
|
///
|
|
|
|
/// - m_eval: is `m` is evaluation domain
|
|
|
@ -366,11 +585,71 @@ fn decrypt_rlwe< |
|
|
|
mod_op.elwise_add_mut(m_out.get_row_mut(0), rlwe_ct.get_row_slice(1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Measures noise in degree 1 RLWE ciphertext against encoded ideal message
|
|
|
|
// encoded_m
|
|
|
|
fn measure_noise<
|
|
|
|
Mmut: MatrixMut + Matrix + MatrixEntity,
|
|
|
|
ModOp: VectorOps<Element = Mmut::MatElement>,
|
|
|
|
NttOp: Ntt<Element = Mmut::MatElement>,
|
|
|
|
S: Secret,
|
|
|
|
>(
|
|
|
|
rlwe_ct: &Mmut,
|
|
|
|
encoded_m_ideal: &Mmut,
|
|
|
|
ntt_op: &NttOp,
|
|
|
|
mod_op: &ModOp,
|
|
|
|
s: &S,
|
|
|
|
) -> f64 |
|
|
|
where
|
|
|
|
<Mmut as Matrix>::R: RowMut,
|
|
|
|
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
|
|
|
Mmut::MatElement: PrimInt + ToPrimitive + Debug,
|
|
|
|
{
|
|
|
|
let ring_size = s.values().len();
|
|
|
|
assert!(rlwe_ct.dimension() == (2, ring_size));
|
|
|
|
assert!(encoded_m_ideal.dimension() == (1, ring_size));
|
|
|
|
|
|
|
|
// -(s * a)
|
|
|
|
let q = VectorOps::modulus(mod_op);
|
|
|
|
let mut s = Mmut::try_convert_from(s.values(), &q);
|
|
|
|
ntt_op.forward(s.get_row_mut(0));
|
|
|
|
let mut a = Mmut::zeros(1, ring_size);
|
|
|
|
a.get_row_mut(0).copy_from_slice(rlwe_ct.get_row_slice(0));
|
|
|
|
ntt_op.forward(a.get_row_mut(0));
|
|
|
|
mod_op.elwise_mul_mut(s.get_row_mut(0), a.get_row_slice(0));
|
|
|
|
mod_op.elwise_neg_mut(s.get_row_mut(0));
|
|
|
|
ntt_op.backward(s.get_row_mut(0));
|
|
|
|
|
|
|
|
// m+e = b - s*a
|
|
|
|
let mut m_plus_e = s;
|
|
|
|
mod_op.elwise_add_mut(m_plus_e.get_row_mut(0), rlwe_ct.get_row_slice(1));
|
|
|
|
|
|
|
|
// difference
|
|
|
|
mod_op.elwise_sub_mut(m_plus_e.get_row_mut(0), encoded_m_ideal.get_row_slice(0));
|
|
|
|
|
|
|
|
let mut max_diff_bits = f64::MIN;
|
|
|
|
m_plus_e.get_row_slice(0).iter().for_each(|v| {
|
|
|
|
let mut v = *v;
|
|
|
|
|
|
|
|
if v >= (q >> 1) {
|
|
|
|
// v is -ve
|
|
|
|
v = q - v;
|
|
|
|
}
|
|
|
|
|
|
|
|
let bits = (v.to_f64().unwrap()).log2();
|
|
|
|
|
|
|
|
if max_diff_bits < bits {
|
|
|
|
max_diff_bits = bits;
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
return max_diff_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use std::vec;
|
|
|
|
|
|
|
|
use itertools::Itertools;
|
|
|
|
use itertools::{izip, Itertools};
|
|
|
|
use rand::{thread_rng, Rng};
|
|
|
|
|
|
|
|
use crate::{
|
|
|
@ -378,10 +657,14 @@ mod tests { |
|
|
|
decomposer::{gadget_vector, DefaultDecomposer},
|
|
|
|
ntt::{self, Ntt, NttBackendU64},
|
|
|
|
random::{DefaultSecureRng, RandomUniformDist},
|
|
|
|
rgsw::measure_noise,
|
|
|
|
utils::{generate_prime, negacyclic_mul},
|
|
|
|
};
|
|
|
|
|
|
|
|
use super::{decrypt_rlwe, encrypt_rgsw, encrypt_rlwe, rlwe_by_rgsw, RlweSecret};
|
|
|
|
use super::{
|
|
|
|
decrypt_rlwe, encrypt_rgsw, encrypt_rlwe, galois_auto, galois_key_gen, generate_auto_map,
|
|
|
|
rlwe_by_rgsw, RlweSecret,
|
|
|
|
};
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn rlwe_by_rgsw_works() {
|
|
|
@ -463,4 +746,106 @@ mod tests { |
|
|
|
assert_eq!(m0m1, m0m1_back, "Expected {:?} got {:?}", m0m1, m0m1_back);
|
|
|
|
// dbg!(&m0m1_back, m0m1, q);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn galois_auto_works() {
|
|
|
|
let logq = 50;
|
|
|
|
let ring_size = 1 << 5;
|
|
|
|
let q = generate_prime(logq, 2 * ring_size, 1u64 << logq).unwrap();
|
|
|
|
let logp = 3;
|
|
|
|
let p = 1u64 << logp;
|
|
|
|
let d_rgsw = 10;
|
|
|
|
let logb = 5;
|
|
|
|
|
|
|
|
let mut rng = DefaultSecureRng::new();
|
|
|
|
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
|
|
|
|
|
|
|
|
let mut m = vec![0u64; ring_size as usize];
|
|
|
|
RandomUniformDist::random_fill(&mut rng, &p, m.as_mut_slice());
|
|
|
|
let encoded_m = m
|
|
|
|
.iter()
|
|
|
|
.map(|v| (((*v as f64 * q as f64) / (p as f64)).round() as u64))
|
|
|
|
.collect_vec();
|
|
|
|
|
|
|
|
let ntt_op = NttBackendU64::new(q, ring_size as usize);
|
|
|
|
let mod_op = ModularOpsU64::new(q);
|
|
|
|
|
|
|
|
// RLWE_{s}(m)
|
|
|
|
let mut rlwe_m = vec![vec![0u64; ring_size as usize]; 2];
|
|
|
|
encrypt_rlwe(
|
|
|
|
&vec![encoded_m.clone()],
|
|
|
|
&mut rlwe_m,
|
|
|
|
&s,
|
|
|
|
&mod_op,
|
|
|
|
&ntt_op,
|
|
|
|
&mut rng,
|
|
|
|
);
|
|
|
|
|
|
|
|
let auto_k = 25;
|
|
|
|
|
|
|
|
// Generate galois key to key switch from s^k to s
|
|
|
|
let mut ksk_out = vec![vec![0u64; ring_size as usize]; d_rgsw * 2];
|
|
|
|
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
|
|
|
|
galois_key_gen(
|
|
|
|
&mut ksk_out,
|
|
|
|
&s,
|
|
|
|
auto_k,
|
|
|
|
&gadget_vector,
|
|
|
|
&mod_op,
|
|
|
|
&ntt_op,
|
|
|
|
&mut rng,
|
|
|
|
);
|
|
|
|
|
|
|
|
// Send RLWE_{s}(m) -> RLWE_{s}(m^k)
|
|
|
|
let mut rlwe_m_k = vec![vec![0u64; ring_size as usize]; 2];
|
|
|
|
let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw];
|
|
|
|
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size as usize, auto_k);
|
|
|
|
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
|
|
|
|
galois_auto(
|
|
|
|
&rlwe_m,
|
|
|
|
&ksk_out,
|
|
|
|
&mut rlwe_m_k,
|
|
|
|
&mut scratch_space,
|
|
|
|
&auto_map_index,
|
|
|
|
&auto_map_sign,
|
|
|
|
&mod_op,
|
|
|
|
&ntt_op,
|
|
|
|
&decomposer,
|
|
|
|
);
|
|
|
|
|
|
|
|
// Decrypt RLWE_{s}(m^k) and check
|
|
|
|
let mut encoded_m_k_back = vec![vec![0u64; ring_size as usize]];
|
|
|
|
decrypt_rlwe(&rlwe_m_k, &s, &mut encoded_m_k_back, &ntt_op, &mod_op);
|
|
|
|
let m_k_back = encoded_m_k_back[0]
|
|
|
|
.iter()
|
|
|
|
.map(|v| (((*v as f64 * p as f64) / q as f64).round() as u64) % p)
|
|
|
|
.collect_vec();
|
|
|
|
|
|
|
|
let mut m_k = vec![0u64; ring_size as usize];
|
|
|
|
// Send \delta m -> \delta m^k
|
|
|
|
izip!(m.iter(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|
|
|
|
|(v, to_index, sign)| {
|
|
|
|
if !*sign {
|
|
|
|
m_k[*to_index] = (p - *v) % p;
|
|
|
|
} else {
|
|
|
|
m_k[*to_index] = *v;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
);
|
|
|
|
|
|
|
|
{
|
|
|
|
let encoded_m_k = m_k
|
|
|
|
.iter()
|
|
|
|
.map(|v| ((*v as f64 * q as f64) / p as f64).round() as u64)
|
|
|
|
.collect_vec();
|
|
|
|
|
|
|
|
let noise = measure_noise(&rlwe_m_k, &vec![encoded_m_k], &ntt_op, &mod_op, &s);
|
|
|
|
println!("Ksk noise: {noise}");
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME(Jay): Galios autormophism will incur high error unless we fix in
|
|
|
|
// accurate decomoposition of Decomposer when q is prime
|
|
|
|
assert_eq!(m_k_back, m_k);
|
|
|
|
// dbg!(m_k_back, m_k, q);
|
|
|
|
}
|
|
|
|
}
|