mirror of
https://github.com/arnaucube/phantom-zone.git
synced 2026-01-09 15:41:30 +01:00
galois auto works
This commit is contained in:
@@ -7,6 +7,7 @@ pub trait VectorOps {
|
||||
fn elwise_mul(&self, out: &mut [Self::Element], a: &[Self::Element], b: &[Self::Element]);
|
||||
|
||||
fn elwise_add_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
|
||||
fn elwise_sub_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
|
||||
fn elwise_mul_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
|
||||
fn elwise_neg_mut(&self, a: &mut [Self::Element]);
|
||||
/// inplace mutates `a`: a = a + b*c
|
||||
@@ -21,6 +22,7 @@ pub trait ArithmeticOps {
|
||||
fn mul(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
|
||||
fn add(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
|
||||
fn sub(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
|
||||
fn neg(&self, a: &Self::Element) -> Self::Element;
|
||||
|
||||
fn modulus(&self) -> Self::Element;
|
||||
}
|
||||
@@ -115,6 +117,10 @@ impl ArithmeticOps for ModularOpsU64 {
|
||||
self.sub_mod_fast(*a, *b)
|
||||
}
|
||||
|
||||
fn neg(&self, a: &Self::Element) -> Self::Element {
|
||||
self.q - *a
|
||||
}
|
||||
|
||||
fn modulus(&self) -> Self::Element {
|
||||
self.q
|
||||
}
|
||||
@@ -129,6 +135,12 @@ impl VectorOps for ModularOpsU64 {
|
||||
});
|
||||
}
|
||||
|
||||
fn elwise_sub_mut(&self, a: &mut [Self::Element], b: &[Self::Element]) {
|
||||
izip!(a.iter_mut(), b.iter()).for_each(|(ai, bi)| {
|
||||
*ai = self.sub_mod_fast(*ai, *bi);
|
||||
});
|
||||
}
|
||||
|
||||
fn elwise_mul_mut(&self, a: &mut [Self::Element], b: &[Self::Element]) {
|
||||
izip!(a.iter_mut(), b.iter()).for_each(|(ai, bi)| {
|
||||
*ai = self.mul_mod_fast(*ai, *bi);
|
||||
|
||||
@@ -45,7 +45,7 @@ impl NumInfo for u128 {
|
||||
|
||||
impl<T: PrimInt + NumInfo + Debug> DefaultDecomposer<T> {
|
||||
pub fn new(q: T, logb: usize, d: usize) -> DefaultDecomposer<T> {
|
||||
// if q is power of 2, then BITS - leading zeros outputs logq + 1.
|
||||
// if q is power of 2, then `BITS - leading_zeros` outputs logq + 1.
|
||||
let logq = if q & (q - T::one()) == T::zero() {
|
||||
(T::BITS - q.leading_zeros() - 1) as usize
|
||||
} else {
|
||||
@@ -71,7 +71,6 @@ impl<T: PrimInt + NumInfo + Debug> DefaultDecomposer<T> {
|
||||
Op: ArithmeticOps<Element = T>,
|
||||
{
|
||||
let mut value = T::zero();
|
||||
dbg!(self.ignore_limbs);
|
||||
for i in 0..self.d {
|
||||
value = modq_op.add(
|
||||
&value,
|
||||
@@ -88,10 +87,15 @@ impl<T: PrimInt + NumInfo + Debug> DefaultDecomposer<T> {
|
||||
impl<T: PrimInt + WrappingSub + Debug> Decomposer for DefaultDecomposer<T> {
|
||||
type Element = T;
|
||||
fn decompose(&self, value: &T) -> Vec<T> {
|
||||
let value = round_value(*value, self.ignore_bits);
|
||||
let mut value = round_value(*value, self.ignore_bits);
|
||||
|
||||
let q = self.q;
|
||||
if value >= (q >> 1) {
|
||||
value = value.wrapping_sub(&q);
|
||||
}
|
||||
|
||||
let logb = self.logb;
|
||||
// let b = T::one() << logb; // base
|
||||
let b = T::one() << logb; // base
|
||||
let b_by2 = T::one() << (logb - 1);
|
||||
// let neg_b_by2_modq = q - b_by2;
|
||||
let full_mask = (T::one() << logb) - T::one();
|
||||
@@ -100,15 +104,22 @@ impl<T: PrimInt + WrappingSub + Debug> Decomposer for DefaultDecomposer<T> {
|
||||
let mut out = Vec::<T>::with_capacity(self.d);
|
||||
for i in 0..self.d {
|
||||
let mut limb = ((value >> (logb * i)) & full_mask) + carry;
|
||||
|
||||
carry = limb & b_by2;
|
||||
limb = (q + limb) - (carry << 1);
|
||||
if limb > q {
|
||||
limb = limb - q;
|
||||
carry = T::zero();
|
||||
if limb > b_by2 {
|
||||
limb = (q + limb) - b;
|
||||
carry = T::one();
|
||||
}
|
||||
|
||||
// carry = ((q + g - limb) % q) >> logb;
|
||||
|
||||
// carry = limb & b_by2;
|
||||
// limb = (q + limb) - (carry << 1);
|
||||
// if limb > q {
|
||||
// limb = limb - q;
|
||||
// }
|
||||
out.push(limb);
|
||||
|
||||
carry = carry >> (logb - 1);
|
||||
// carry = carry >> (logb - 1);
|
||||
}
|
||||
|
||||
return out;
|
||||
@@ -154,13 +165,13 @@ mod tests {
|
||||
};
|
||||
let decomposer = DefaultDecomposer::new(q, logb, d);
|
||||
let modq_op = ModularOpsU64::new(q);
|
||||
for _ in 0..1 {
|
||||
for _ in 0..100 {
|
||||
let value = rng.gen_range(0..q);
|
||||
let limbs = decomposer.decompose(&value);
|
||||
let value_back = decomposer.recompose(&limbs, &modq_op);
|
||||
let rounded_value =
|
||||
round_value(value, decomposer.ignore_bits) << decomposer.ignore_bits;
|
||||
dbg!(value, rounded_value, value_back, &limbs);
|
||||
dbg!(rounded_value, value, value_back);
|
||||
assert_eq!(
|
||||
rounded_value, value_back,
|
||||
"Expected {rounded_value} got {value_back} for q={q}"
|
||||
|
||||
395
src/rgsw.rs
395
src/rgsw.rs
@@ -1,9 +1,15 @@
|
||||
use itertools::izip;
|
||||
use std::{
|
||||
fmt::Debug,
|
||||
ops::{Neg, Sub},
|
||||
};
|
||||
|
||||
use itertools::{izip, Itertools};
|
||||
use num_traits::{PrimInt, ToPrimitive};
|
||||
|
||||
use crate::{
|
||||
backend::VectorOps,
|
||||
backend::{ArithmeticOps, VectorOps},
|
||||
decomposer::{self, Decomposer},
|
||||
ntt::Ntt,
|
||||
ntt::{self, Ntt},
|
||||
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
|
||||
utils::{fill_random_ternary_secret_with_hamming_weight, TryConvertFrom, WithLocal},
|
||||
Matrix, MatrixEntity, MatrixMut, RowMut, Secret,
|
||||
@@ -31,6 +37,219 @@ impl RlweSecret {
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_auto_map(ring_size: usize, k: usize) -> (Vec<usize>, Vec<bool>) {
|
||||
assert!(k & 1 == 1, "Auto {k} must be odd");
|
||||
let (auto_map_index, auto_sign_index): (Vec<usize>, Vec<bool>) = (0..ring_size)
|
||||
.into_iter()
|
||||
.map(|i| {
|
||||
let mut to_index = (i * k) % (2 * ring_size);
|
||||
let mut sign = true;
|
||||
|
||||
// wrap around. false implies negative
|
||||
if to_index >= ring_size {
|
||||
to_index = to_index - ring_size;
|
||||
sign = false;
|
||||
}
|
||||
|
||||
(to_index, sign)
|
||||
})
|
||||
.unzip();
|
||||
(auto_map_index, auto_sign_index)
|
||||
}
|
||||
|
||||
/// Generates RLWE Key switching key to key switch ciphertext RLWE_{from_s}(m)
|
||||
/// to RLWE_{to_s}(m).
|
||||
///
|
||||
/// Key switching equals
|
||||
/// \sum decompose(c_1)_i * RLWE_{to_s}(\beta^i -from_s)
|
||||
/// Hence, key switchin key equals RLWE'(-from_s) = RLWE(-from_s), RLWE(beta^1
|
||||
/// -from_s), ..., RLWE(beta^{d-1} -from_s).
|
||||
///
|
||||
/// - ksk_out: Output Key switching key. Key switching key stores RLWE
|
||||
/// ciphertexts as [RLWE'_A(-from_s) || RLWE'_B(-from_s)]
|
||||
/// - neg_from_s_eval: Negative of secret polynomial to key switch from in
|
||||
/// evaluation domain
|
||||
/// - to_s_eval: secret polynomial to key switch to in evalution domain.
|
||||
fn rlwe_ksk_gen<
|
||||
Mmut: MatrixMut + MatrixEntity,
|
||||
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
|
||||
NttOp: Ntt<Element = Mmut::MatElement>,
|
||||
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
|
||||
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
||||
>(
|
||||
ksk_out: &mut Mmut,
|
||||
neg_from_s_eval: &Mmut,
|
||||
to_s_eval: &Mmut,
|
||||
gadget_vector: &[Mmut::MatElement],
|
||||
mod_op: &ModOp,
|
||||
ntt_op: &NttOp,
|
||||
rng: &mut R,
|
||||
) where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
{
|
||||
let ring_size = neg_from_s_eval.dimension().1;
|
||||
let d = gadget_vector.len();
|
||||
assert!(neg_from_s_eval.dimension().0 == 1);
|
||||
assert!(ksk_out.dimension() == (d * 2, ring_size));
|
||||
assert!(to_s_eval.dimension() == (1, ring_size));
|
||||
|
||||
let q = ArithmeticOps::modulus(mod_op);
|
||||
|
||||
let mut scratch_space = Mmut::zeros(1, ring_size);
|
||||
|
||||
// RLWE'_{to_s}(-from_s)
|
||||
let (part_a, part_b) = ksk_out.split_at_row(d);
|
||||
izip!(part_a.iter_mut(), part_b.iter_mut(), gadget_vector.iter()).for_each(
|
||||
|(ai, bi, beta_i)| {
|
||||
// sample ai and transform to evaluation
|
||||
RandomUniformDist::random_fill(rng, &q, ai.as_mut());
|
||||
ntt_op.forward(ai.as_mut());
|
||||
|
||||
// to_s * ai
|
||||
mod_op.elwise_mul(
|
||||
scratch_space.get_row_mut(0),
|
||||
ai.as_ref(),
|
||||
to_s_eval.get_row_slice(0),
|
||||
);
|
||||
|
||||
// ei + to_s*ai
|
||||
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
|
||||
ntt_op.forward(bi.as_mut());
|
||||
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.get_row_slice(0));
|
||||
|
||||
// beta_i * -from_s
|
||||
mod_op.elwise_scalar_mul(
|
||||
scratch_space.get_row_mut(0),
|
||||
neg_from_s_eval.get_row_slice(0),
|
||||
beta_i,
|
||||
);
|
||||
|
||||
// bi = ei + to_s*ai + beta_i*-from_s
|
||||
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.get_row_slice(0));
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
fn galois_key_gen<
|
||||
Mmut: MatrixMut + MatrixEntity,
|
||||
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
|
||||
NttOp: Ntt<Element = Mmut::MatElement>,
|
||||
S: Secret,
|
||||
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
|
||||
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
||||
>(
|
||||
ksk_out: &mut Mmut,
|
||||
s: &S,
|
||||
auto_k: usize,
|
||||
gadget_vector: &[Mmut::MatElement],
|
||||
mod_op: &ModOp,
|
||||
ntt_op: &NttOp,
|
||||
rng: &mut R,
|
||||
) where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
||||
Mmut::MatElement: Copy + Sub<Output = Mmut::MatElement>,
|
||||
{
|
||||
let ring_size = s.values().len();
|
||||
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size, auto_k);
|
||||
|
||||
let q = ArithmeticOps::modulus(mod_op);
|
||||
|
||||
// s(X) -> -s(X^k)
|
||||
let mut s = Mmut::try_convert_from(s.values(), &q);
|
||||
let mut neg_s_auto = Mmut::zeros(1, s.dimension().1);
|
||||
izip!(s.get_row(0), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|
||||
|(el, to_index, sign)| {
|
||||
// if sign is +ve (true), then negate because we need -s(X) (i.e. do the
|
||||
// opposite than the usual case)
|
||||
if *sign {
|
||||
neg_s_auto.set(0, *to_index, q - *el)
|
||||
} else {
|
||||
neg_s_auto.set(0, *to_index, *el)
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
// send both s(X) and -s(X^k) to evaluation domain
|
||||
ntt_op.forward(s.get_row_mut(0));
|
||||
ntt_op.forward(neg_s_auto.get_row_mut(0));
|
||||
|
||||
// Ksk from -s(X^k) to s(X)
|
||||
rlwe_ksk_gen(ksk_out, &neg_s_auto, &s, gadget_vector, mod_op, ntt_op, rng);
|
||||
}
|
||||
|
||||
/// Sends RLWE_{s}(X) -> RLWE_{s}(X^k) where k is some galois element
|
||||
fn galois_auto<
|
||||
M: Matrix,
|
||||
Mmut: MatrixMut<MatElement = M::MatElement>,
|
||||
ModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
||||
NttOp: Ntt<Element = M::MatElement>,
|
||||
D: Decomposer<Element = M::MatElement>,
|
||||
>(
|
||||
rlwe_in: &M,
|
||||
ksk: &M,
|
||||
rlwe_out: &mut Mmut,
|
||||
a_rlwe_decomposed: &mut Mmut,
|
||||
auto_map_index: &[usize],
|
||||
auto_map_sign: &[bool],
|
||||
mod_op: &ModOp,
|
||||
ntt_op: &NttOp,
|
||||
decomposer: &D,
|
||||
) where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
M::MatElement: Copy,
|
||||
{
|
||||
let d = decomposer.d();
|
||||
|
||||
// send b(X) -> b(X^k)
|
||||
izip!(
|
||||
rlwe_in.get_row(1),
|
||||
auto_map_index.iter(),
|
||||
auto_map_sign.iter()
|
||||
)
|
||||
.for_each(|(el_in, to_index, sign)| {
|
||||
if !*sign {
|
||||
rlwe_out.set(1, *to_index, mod_op.neg(el_in));
|
||||
} else {
|
||||
rlwe_out.set(1, *to_index, *el_in);
|
||||
}
|
||||
});
|
||||
|
||||
// send a(X) -> a(X^k) and decompose a(X^k)
|
||||
izip!(
|
||||
rlwe_in.get_row(0),
|
||||
auto_map_index.iter(),
|
||||
auto_map_sign.iter()
|
||||
)
|
||||
.for_each(|(el_in, to_index, sign)| {
|
||||
let el_out = if !*sign { mod_op.neg(el_in) } else { *el_in };
|
||||
|
||||
let el_out_decomposed = decomposer.decompose(&el_out);
|
||||
for j in 0..d {
|
||||
a_rlwe_decomposed.set(j, *to_index, el_out_decomposed[j]);
|
||||
}
|
||||
});
|
||||
|
||||
// transform decomposed a(X^k) to evaluation domain
|
||||
a_rlwe_decomposed.iter_rows_mut().for_each(|r| {
|
||||
ntt_op.forward(r.as_mut());
|
||||
});
|
||||
|
||||
// key switch (a(X^k) * RLWE'(s(X^k)))
|
||||
izip!(a_rlwe_decomposed.iter_rows(), ksk.iter_rows().take(d)).for_each(|(a, b)| {
|
||||
mod_op.elwise_fma_mut(rlwe_out.get_row_mut(0), a.as_ref(), b.as_ref());
|
||||
});
|
||||
ntt_op.forward(rlwe_out.get_row_mut(1));
|
||||
izip!(a_rlwe_decomposed.iter_rows(), ksk.iter_rows().skip(d)).for_each(|(a, b)| {
|
||||
mod_op.elwise_fma_mut(rlwe_out.get_row_mut(1), a.as_ref(), b.as_ref());
|
||||
});
|
||||
|
||||
// transform RLWE(-s(X^k) * a(X^k)) to coefficient domain
|
||||
rlwe_out
|
||||
.iter_rows_mut()
|
||||
.for_each(|r| ntt_op.backward(r.as_mut()));
|
||||
}
|
||||
|
||||
/// Encrypts message m as a RGSW ciphertext.
|
||||
///
|
||||
/// - m_eval: is `m` is evaluation domain
|
||||
@@ -366,11 +585,71 @@ fn decrypt_rlwe<
|
||||
mod_op.elwise_add_mut(m_out.get_row_mut(0), rlwe_ct.get_row_slice(1));
|
||||
}
|
||||
|
||||
// Measures noise in degree 1 RLWE ciphertext against encoded ideal message
|
||||
// encoded_m
|
||||
fn measure_noise<
|
||||
Mmut: MatrixMut + Matrix + MatrixEntity,
|
||||
ModOp: VectorOps<Element = Mmut::MatElement>,
|
||||
NttOp: Ntt<Element = Mmut::MatElement>,
|
||||
S: Secret,
|
||||
>(
|
||||
rlwe_ct: &Mmut,
|
||||
encoded_m_ideal: &Mmut,
|
||||
ntt_op: &NttOp,
|
||||
mod_op: &ModOp,
|
||||
s: &S,
|
||||
) -> f64
|
||||
where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
||||
Mmut::MatElement: PrimInt + ToPrimitive + Debug,
|
||||
{
|
||||
let ring_size = s.values().len();
|
||||
assert!(rlwe_ct.dimension() == (2, ring_size));
|
||||
assert!(encoded_m_ideal.dimension() == (1, ring_size));
|
||||
|
||||
// -(s * a)
|
||||
let q = VectorOps::modulus(mod_op);
|
||||
let mut s = Mmut::try_convert_from(s.values(), &q);
|
||||
ntt_op.forward(s.get_row_mut(0));
|
||||
let mut a = Mmut::zeros(1, ring_size);
|
||||
a.get_row_mut(0).copy_from_slice(rlwe_ct.get_row_slice(0));
|
||||
ntt_op.forward(a.get_row_mut(0));
|
||||
mod_op.elwise_mul_mut(s.get_row_mut(0), a.get_row_slice(0));
|
||||
mod_op.elwise_neg_mut(s.get_row_mut(0));
|
||||
ntt_op.backward(s.get_row_mut(0));
|
||||
|
||||
// m+e = b - s*a
|
||||
let mut m_plus_e = s;
|
||||
mod_op.elwise_add_mut(m_plus_e.get_row_mut(0), rlwe_ct.get_row_slice(1));
|
||||
|
||||
// difference
|
||||
mod_op.elwise_sub_mut(m_plus_e.get_row_mut(0), encoded_m_ideal.get_row_slice(0));
|
||||
|
||||
let mut max_diff_bits = f64::MIN;
|
||||
m_plus_e.get_row_slice(0).iter().for_each(|v| {
|
||||
let mut v = *v;
|
||||
|
||||
if v >= (q >> 1) {
|
||||
// v is -ve
|
||||
v = q - v;
|
||||
}
|
||||
|
||||
let bits = (v.to_f64().unwrap()).log2();
|
||||
|
||||
if max_diff_bits < bits {
|
||||
max_diff_bits = bits;
|
||||
}
|
||||
});
|
||||
|
||||
return max_diff_bits;
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::vec;
|
||||
|
||||
use itertools::Itertools;
|
||||
use itertools::{izip, Itertools};
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use crate::{
|
||||
@@ -378,10 +657,14 @@ mod tests {
|
||||
decomposer::{gadget_vector, DefaultDecomposer},
|
||||
ntt::{self, Ntt, NttBackendU64},
|
||||
random::{DefaultSecureRng, RandomUniformDist},
|
||||
rgsw::measure_noise,
|
||||
utils::{generate_prime, negacyclic_mul},
|
||||
};
|
||||
|
||||
use super::{decrypt_rlwe, encrypt_rgsw, encrypt_rlwe, rlwe_by_rgsw, RlweSecret};
|
||||
use super::{
|
||||
decrypt_rlwe, encrypt_rgsw, encrypt_rlwe, galois_auto, galois_key_gen, generate_auto_map,
|
||||
rlwe_by_rgsw, RlweSecret,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn rlwe_by_rgsw_works() {
|
||||
@@ -463,4 +746,106 @@ mod tests {
|
||||
assert_eq!(m0m1, m0m1_back, "Expected {:?} got {:?}", m0m1, m0m1_back);
|
||||
// dbg!(&m0m1_back, m0m1, q);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn galois_auto_works() {
|
||||
let logq = 50;
|
||||
let ring_size = 1 << 5;
|
||||
let q = generate_prime(logq, 2 * ring_size, 1u64 << logq).unwrap();
|
||||
let logp = 3;
|
||||
let p = 1u64 << logp;
|
||||
let d_rgsw = 10;
|
||||
let logb = 5;
|
||||
|
||||
let mut rng = DefaultSecureRng::new();
|
||||
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
|
||||
|
||||
let mut m = vec![0u64; ring_size as usize];
|
||||
RandomUniformDist::random_fill(&mut rng, &p, m.as_mut_slice());
|
||||
let encoded_m = m
|
||||
.iter()
|
||||
.map(|v| (((*v as f64 * q as f64) / (p as f64)).round() as u64))
|
||||
.collect_vec();
|
||||
|
||||
let ntt_op = NttBackendU64::new(q, ring_size as usize);
|
||||
let mod_op = ModularOpsU64::new(q);
|
||||
|
||||
// RLWE_{s}(m)
|
||||
let mut rlwe_m = vec![vec![0u64; ring_size as usize]; 2];
|
||||
encrypt_rlwe(
|
||||
&vec![encoded_m.clone()],
|
||||
&mut rlwe_m,
|
||||
&s,
|
||||
&mod_op,
|
||||
&ntt_op,
|
||||
&mut rng,
|
||||
);
|
||||
|
||||
let auto_k = 25;
|
||||
|
||||
// Generate galois key to key switch from s^k to s
|
||||
let mut ksk_out = vec![vec![0u64; ring_size as usize]; d_rgsw * 2];
|
||||
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
|
||||
galois_key_gen(
|
||||
&mut ksk_out,
|
||||
&s,
|
||||
auto_k,
|
||||
&gadget_vector,
|
||||
&mod_op,
|
||||
&ntt_op,
|
||||
&mut rng,
|
||||
);
|
||||
|
||||
// Send RLWE_{s}(m) -> RLWE_{s}(m^k)
|
||||
let mut rlwe_m_k = vec![vec![0u64; ring_size as usize]; 2];
|
||||
let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw];
|
||||
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size as usize, auto_k);
|
||||
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
|
||||
galois_auto(
|
||||
&rlwe_m,
|
||||
&ksk_out,
|
||||
&mut rlwe_m_k,
|
||||
&mut scratch_space,
|
||||
&auto_map_index,
|
||||
&auto_map_sign,
|
||||
&mod_op,
|
||||
&ntt_op,
|
||||
&decomposer,
|
||||
);
|
||||
|
||||
// Decrypt RLWE_{s}(m^k) and check
|
||||
let mut encoded_m_k_back = vec![vec![0u64; ring_size as usize]];
|
||||
decrypt_rlwe(&rlwe_m_k, &s, &mut encoded_m_k_back, &ntt_op, &mod_op);
|
||||
let m_k_back = encoded_m_k_back[0]
|
||||
.iter()
|
||||
.map(|v| (((*v as f64 * p as f64) / q as f64).round() as u64) % p)
|
||||
.collect_vec();
|
||||
|
||||
let mut m_k = vec![0u64; ring_size as usize];
|
||||
// Send \delta m -> \delta m^k
|
||||
izip!(m.iter(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|
||||
|(v, to_index, sign)| {
|
||||
if !*sign {
|
||||
m_k[*to_index] = (p - *v) % p;
|
||||
} else {
|
||||
m_k[*to_index] = *v;
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
{
|
||||
let encoded_m_k = m_k
|
||||
.iter()
|
||||
.map(|v| ((*v as f64 * q as f64) / p as f64).round() as u64)
|
||||
.collect_vec();
|
||||
|
||||
let noise = measure_noise(&rlwe_m_k, &vec![encoded_m_k], &ntt_op, &mod_op, &s);
|
||||
println!("Ksk noise: {noise}");
|
||||
}
|
||||
|
||||
// FIXME(Jay): Galios autormophism will incur high error unless we fix in
|
||||
// accurate decomoposition of Decomposer when q is prime
|
||||
assert_eq!(m_k_back, m_k);
|
||||
// dbg!(m_k_back, m_k, q);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user