working rlwe encryption example with interleaved polynomial

This commit is contained in:
Jean-Philippe Bossuat
2025-04-29 21:53:27 +02:00
parent 06d0c5e832
commit 2cc51eee18
3 changed files with 371 additions and 203 deletions

View File

@@ -13,7 +13,7 @@ fn main() {
let log_scale: usize = msg_size * log_base2k - 5;
let module: Module<FFT64> = Module::<FFT64>::new(n);
let mut carry: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes(2));
let mut carry: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes());
let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed);
@@ -28,69 +28,95 @@ fn main() {
// s_ppol <- DFT(s)
module.svp_prepare(&mut s_ppol, &s);
// ct = (c0, c1)
let mut ct: VecZnx = module.new_vec_znx(2, ct_size);
// Allocates a VecZnx with two columns: ct=(0, 0)
let mut ct: VecZnx = module.new_vec_znx(
2, // Number of columns
ct_size, // Number of small poly per column
);
// Fill c1 with random values
// Fill the second column with random values: ct = (0, a)
module.fill_uniform(log_base2k, &mut ct, 1, ct_size, &mut source);
// Scratch space for DFT values
let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, ct.size());
// Applies buf_dft <- s * c1
module.svp_apply_dft(
&mut buf_dft, // DFT(c1 * s)
&s_ppol,
&ct,
1, // c1
let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(
1, // Number of columns
ct.size(), // Number of polynomials per column
);
// Alias scratch space (VecZnxDftis always at least as big as VecZnxBig)
// Applies DFT(ct[1]) * DFT(s)
module.svp_apply_dft(
&mut buf_dft, // DFT(ct[1] * s)
&s_ppol, // DFT(s)
&ct,
1, // Selects the second column of ct
);
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
let mut buf_big: VecZnxBig<FFT64> = buf_dft.as_vec_znx_big();
// BIG(c1 * s) <- IDFT(DFT(c1 * s)) (not normalized)
// BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
// m <- (0)
let mut m: VecZnx = module.new_vec_znx(1, msg_size);
// Creates a plaintext: VecZnx with 1 column
let mut m: VecZnx = module.new_vec_znx(
1, // Number of columns
msg_size, // Number of small polynomials
);
let mut want: Vec<i64> = vec![0; n];
want.iter_mut()
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
m.encode_vec_i64(0, log_base2k, log_scale, &want, 4);
m.normalize(log_base2k, &mut carry);
// m - BIG(c1 * s)
module.vec_znx_big_sub_small_ab_inplace(&mut buf_big, &m);
// m - BIG(ct[1] * s)
module.vec_znx_big_sub_small_a_inplace(
&mut buf_big,
0, // Selects the first column of the receiver
&m,
0, // Selects the first column of the message
);
// c0 <- m - BIG(c1 * s)
module.vec_znx_big_normalize(log_base2k, &mut ct, &buf_big, &mut carry);
// Normalizes back to VecZnx
// ct[0] <- m - BIG(c1 * s)
module.vec_znx_big_normalize(
log_base2k, &mut ct, 0, // Selects the first column of ct (ct[0])
&buf_big, 0, // Selects the first column of buf_big
&mut carry,
);
ct.print(ct.sl());
// (c0 + e, c1)
// Add noise to ct[0]
// ct[0] <- ct[0] + e
module.add_normal(
log_base2k,
&mut ct,
0, // c0
log_base2k * ct_size,
0, // Selects the first column of ct (ct[0])
log_base2k * ct_size, // Scaling of the noise: 2^{-log_base2k * limbs}
&mut source,
3.2,
19.0,
3.2, // Standard deviation
19.0, // Truncatation bound
);
// Decrypt
// Final ciphertext: ct = (-a * s + m + e, a)
// Decryption
// DFT(ct[1] * s)
module.svp_apply_dft(
&mut buf_dft,
&s_ppol,
&ct,
1, // Selects the second column of ct (ct[1])
);
// DFT(c1 * s)
module.svp_apply_dft(&mut buf_dft, &s_ppol, &ct, 1);
// BIG(c1 * s) = IDFT(DFT(c1 * s))
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
// BIG(c1 * s) + c0
module.vec_znx_big_add_small_inplace(&mut buf_big, &ct);
// BIG(c1 * s) + ct[0]
module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
// m + e <- BIG(c1 * s + c0)
// m + e <- BIG(ct[1] * s + ct[0])
let mut res: VecZnx = module.new_vec_znx(1, ct_size);
module.vec_znx_big_normalize(log_base2k, &mut res, &buf_big, &mut carry);
module.vec_znx_big_normalize(log_base2k, &mut res, 0, &buf_big, 0, &mut carry);
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];