working rlwe encryption example with interleaved polynomial

This commit is contained in:
Jean-Philippe Bossuat
2025-04-29 21:53:27 +02:00
parent 06d0c5e832
commit 2cc51eee18
3 changed files with 371 additions and 203 deletions

View File

@@ -13,7 +13,7 @@ fn main() {
let log_scale: usize = msg_size * log_base2k - 5; let log_scale: usize = msg_size * log_base2k - 5;
let module: Module<FFT64> = Module::<FFT64>::new(n); let module: Module<FFT64> = Module::<FFT64>::new(n);
let mut carry: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes(2)); let mut carry: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes());
let seed: [u8; 32] = [0; 32]; let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed); let mut source: Source = Source::new(seed);
@@ -28,69 +28,95 @@ fn main() {
// s_ppol <- DFT(s) // s_ppol <- DFT(s)
module.svp_prepare(&mut s_ppol, &s); module.svp_prepare(&mut s_ppol, &s);
// ct = (c0, c1) // Allocates a VecZnx with two columns: ct=(0, 0)
let mut ct: VecZnx = module.new_vec_znx(2, ct_size); let mut ct: VecZnx = module.new_vec_znx(
2, // Number of columns
ct_size, // Number of small poly per column
);
// Fill c1 with random values // Fill the second column with random values: ct = (0, a)
module.fill_uniform(log_base2k, &mut ct, 1, ct_size, &mut source); module.fill_uniform(log_base2k, &mut ct, 1, ct_size, &mut source);
// Scratch space for DFT values // Scratch space for DFT values
let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, ct.size()); let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(
1, // Number of columns
// Applies buf_dft <- s * c1 ct.size(), // Number of polynomials per column
module.svp_apply_dft(
&mut buf_dft, // DFT(c1 * s)
&s_ppol,
&ct,
1, // c1
); );
// Alias scratch space (VecZnxDftis always at least as big as VecZnxBig) // Applies DFT(ct[1]) * DFT(s)
module.svp_apply_dft(
&mut buf_dft, // DFT(ct[1] * s)
&s_ppol, // DFT(s)
&ct,
1, // Selects the second column of ct
);
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
let mut buf_big: VecZnxBig<FFT64> = buf_dft.as_vec_znx_big(); let mut buf_big: VecZnxBig<FFT64> = buf_dft.as_vec_znx_big();
// BIG(c1 * s) <- IDFT(DFT(c1 * s)) (not normalized) // BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft); module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
// m <- (0) // Creates a plaintext: VecZnx with 1 column
let mut m: VecZnx = module.new_vec_znx(1, msg_size); let mut m: VecZnx = module.new_vec_znx(
1, // Number of columns
msg_size, // Number of small polynomials
);
let mut want: Vec<i64> = vec![0; n]; let mut want: Vec<i64> = vec![0; n];
want.iter_mut() want.iter_mut()
.for_each(|x| *x = source.next_u64n(16, 15) as i64); .for_each(|x| *x = source.next_u64n(16, 15) as i64);
m.encode_vec_i64(0, log_base2k, log_scale, &want, 4); m.encode_vec_i64(0, log_base2k, log_scale, &want, 4);
m.normalize(log_base2k, &mut carry); m.normalize(log_base2k, &mut carry);
// m - BIG(c1 * s) // m - BIG(ct[1] * s)
module.vec_znx_big_sub_small_ab_inplace(&mut buf_big, &m); module.vec_znx_big_sub_small_a_inplace(
&mut buf_big,
0, // Selects the first column of the receiver
&m,
0, // Selects the first column of the message
);
// c0 <- m - BIG(c1 * s) // Normalizes back to VecZnx
module.vec_znx_big_normalize(log_base2k, &mut ct, &buf_big, &mut carry); // ct[0] <- m - BIG(c1 * s)
module.vec_znx_big_normalize(
log_base2k, &mut ct, 0, // Selects the first column of ct (ct[0])
&buf_big, 0, // Selects the first column of buf_big
&mut carry,
);
ct.print(ct.sl()); // Add noise to ct[0]
// ct[0] <- ct[0] + e
// (c0 + e, c1)
module.add_normal( module.add_normal(
log_base2k, log_base2k,
&mut ct, &mut ct,
0, // c0 0, // Selects the first column of ct (ct[0])
log_base2k * ct_size, log_base2k * ct_size, // Scaling of the noise: 2^{-log_base2k * limbs}
&mut source, &mut source,
3.2, 3.2, // Standard deviation
19.0, 19.0, // Truncatation bound
); );
// Decrypt // Final ciphertext: ct = (-a * s + m + e, a)
// Decryption
// DFT(ct[1] * s)
module.svp_apply_dft(
&mut buf_dft,
&s_ppol,
&ct,
1, // Selects the second column of ct (ct[1])
);
// DFT(c1 * s)
module.svp_apply_dft(&mut buf_dft, &s_ppol, &ct, 1);
// BIG(c1 * s) = IDFT(DFT(c1 * s)) // BIG(c1 * s) = IDFT(DFT(c1 * s))
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft); module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft);
// BIG(c1 * s) + c0 // BIG(c1 * s) + ct[0]
module.vec_znx_big_add_small_inplace(&mut buf_big, &ct); module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
// m + e <- BIG(c1 * s + c0) // m + e <- BIG(ct[1] * s + ct[0])
let mut res: VecZnx = module.new_vec_znx(1, ct_size); let mut res: VecZnx = module.new_vec_znx(1, ct_size);
module.vec_znx_big_normalize(log_base2k, &mut res, &buf_big, &mut carry); module.vec_znx_big_normalize(log_base2k, &mut res, 0, &buf_big, 0, &mut carry);
// have = m * 2^{log_scale} + e // have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n]; let mut have: Vec<i64> = vec![i64::default(); n];

View File

@@ -46,7 +46,7 @@ fn main() {
module.vec_znx_idft_tmp_a(&mut c_big, &mut c_dft); module.vec_znx_idft_tmp_a(&mut c_big, &mut c_dft);
let mut res: VecZnx = module.new_vec_znx(1, limbs_vec); let mut res: VecZnx = module.new_vec_znx(1, limbs_vec);
module.vec_znx_big_normalize(log_base2k, &mut res, &c_big, &mut buf); module.vec_znx_big_normalize(log_base2k, &mut res, 0, &c_big, 0, &mut buf);
let mut values_res: Vec<i64> = vec![i64::default(); n]; let mut values_res: Vec<i64> = vec![i64::default(); n];
res.decode_vec_i64(0, log_base2k, log_k, &mut values_res); res.decode_vec_i64(0, log_base2k, log_k, &mut values_res);

View File

@@ -1,8 +1,5 @@
use std::cmp::min;
use crate::ffi::vec_znx; use crate::ffi::vec_znx;
use crate::internals::{apply_binary_op, apply_unary_op, ffi_binary_op_factory_type_1, ffi_ternary_op_factory}; use crate::{Backend, FFT64, Module, VecZnx, VecZnxBig, VecZnxOps, ZnxBase, ZnxInfos, ZnxLayout, assert_alignement};
use crate::{Backend, FFT64, Module, VecZnx, VecZnxBig, VecZnxOps, ZnxBase, ZnxBasics, ZnxInfos, ZnxLayout, assert_alignement};
pub trait VecZnxBigOps<B: Backend> { pub trait VecZnxBigOps<B: Backend> {
/// Allocates a vector Z[X]/(X^N+1) that stores not normalized values. /// Allocates a vector Z[X]/(X^N+1) that stores not normalized values.
@@ -41,40 +38,80 @@ pub trait VecZnxBigOps<B: Backend> {
fn bytes_of_vec_znx_big(&self, cols: usize, size: usize) -> usize; fn bytes_of_vec_znx_big(&self, cols: usize, size: usize) -> usize;
/// Adds `a` to `b` and stores the result on `c`. /// Adds `a` to `b` and stores the result on `c`.
fn vec_znx_big_add(&self, c: &mut VecZnxBig<B>, a: &VecZnxBig<B>, b: &VecZnxBig<B>); fn vec_znx_big_add(
&self,
res: &mut VecZnxBig<B>,
col_res: usize,
a: &VecZnxBig<B>,
col_a: usize,
b: &VecZnxBig<B>,
col_b: usize,
);
/// Adds `a` to `b` and stores the result on `b`. /// Adds `a` to `b` and stores the result on `b`.
fn vec_znx_big_add_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnxBig<B>); fn vec_znx_big_add_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnxBig<B>, col_a: usize);
/// Adds `a` to `b` and stores the result on `c`. /// Adds `a` to `b` and stores the result on `c`.
fn vec_znx_big_add_small(&self, c: &mut VecZnxBig<B>, a: &VecZnx, b: &VecZnxBig<B>); fn vec_znx_big_add_small(
&self,
res: &mut VecZnxBig<B>,
col_res: usize,
a: &VecZnx,
col_a: usize,
b: &VecZnxBig<B>,
col_b: usize,
);
/// Adds `a` to `b` and stores the result on `b`. /// Adds `a` to `b` and stores the result on `b`.
fn vec_znx_big_add_small_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnx); fn vec_znx_big_add_small_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnx, col_a: usize);
/// Subtracts `a` to `b` and stores the result on `c`. /// Subtracts `a` to `b` and stores the result on `c`.
fn vec_znx_big_sub(&self, c: &mut VecZnxBig<B>, a: &VecZnxBig<B>, b: &VecZnxBig<B>); fn vec_znx_big_sub(
&self,
res: &mut VecZnxBig<B>,
col_res: usize,
a: &VecZnxBig<B>,
col_a: usize,
b: &VecZnxBig<B>,
col_b: usize,
);
/// Subtracts `a` to `b` and stores the result on `b`. /// Subtracts `a` to `b` and stores the result on `b`.
fn vec_znx_big_sub_ab_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnxBig<B>); fn vec_znx_big_sub_ab_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnxBig<B>, col_a: usize);
/// Subtracts `b` to `a` and stores the result on `b`. /// Subtracts `b` to `a` and stores the result on `b`.
fn vec_znx_big_sub_ba_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnxBig<B>); fn vec_znx_big_sub_ba_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnxBig<B>, col_a: usize);
/// Subtracts `b` to `a` and stores the result on `c`. /// Subtracts `b` to `a` and stores the result on `c`.
fn vec_znx_big_sub_small_ab(&self, c: &mut VecZnxBig<B>, a: &VecZnx, b: &VecZnxBig<B>); fn vec_znx_big_sub_small_a(
&self,
res: &mut VecZnxBig<B>,
col_res: usize,
a: &VecZnx,
col_a: usize,
b: &VecZnxBig<B>,
col_b: usize,
);
/// Subtracts `a` to `b` and stores the result on `b`. /// Subtracts `a` to `b` and stores the result on `b`.
fn vec_znx_big_sub_small_ab_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnx); fn vec_znx_big_sub_small_a_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnx, col_a: usize);
/// Subtracts `b` to `a` and stores the result on `c`. /// Subtracts `b` to `a` and stores the result on `c`.
fn vec_znx_big_sub_small_ba(&self, c: &mut VecZnxBig<B>, a: &VecZnxBig<B>, b: &VecZnx); fn vec_znx_big_sub_small_b(
&self,
res: &mut VecZnxBig<B>,
col_res: usize,
a: &VecZnxBig<B>,
col_a: usize,
b: &VecZnx,
col_b: usize,
);
/// Subtracts `b` to `a` and stores the result on `b`. /// Subtracts `b` to `a` and stores the result on `b`.
fn vec_znx_big_sub_small_ba_inplace(&self, b: &mut VecZnxBig<B>, a: &VecZnx); fn vec_znx_big_sub_small_b_inplace(&self, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnx, col_a: usize);
/// Returns the minimum number of bytes to apply [VecZnxBigOps::vec_znx_big_normalize]. /// Returns the minimum number of bytes to apply [VecZnxBigOps::vec_znx_big_normalize].
fn vec_znx_big_normalize_tmp_bytes(&self, cols: usize) -> usize; fn vec_znx_big_normalize_tmp_bytes(&self) -> usize;
/// Normalizes `a` and stores the result on `b`. /// Normalizes `a` and stores the result on `b`.
/// ///
@@ -82,13 +119,21 @@ pub trait VecZnxBigOps<B: Backend> {
/// ///
/// * `log_base2k`: normalization basis. /// * `log_base2k`: normalization basis.
/// * `tmp_bytes`: scratch space of size at least [VecZnxBigOps::vec_znx_big_normalize]. /// * `tmp_bytes`: scratch space of size at least [VecZnxBigOps::vec_znx_big_normalize].
fn vec_znx_big_normalize(&self, log_base2k: usize, b: &mut VecZnx, a: &VecZnxBig<B>, tmp_bytes: &mut [u8]); fn vec_znx_big_normalize(
&self,
log_base2k: usize,
res: &mut VecZnx,
col_res: usize,
a: &VecZnxBig<B>,
col_a: usize,
tmp_bytes: &mut [u8],
);
/// Applies the automorphism X^i -> X^ik on `a` and stores the result on `b`. /// Applies the automorphism X^i -> X^ik on `a` and stores the result on `b`.
fn vec_znx_big_automorphism(&self, k: i64, b: &mut VecZnxBig<B>, a: &VecZnxBig<B>); fn vec_znx_big_automorphism(&self, k: i64, res: &mut VecZnxBig<B>, col_res: usize, a: &VecZnxBig<B>, col_a: usize);
/// Applies the automorphism X^i -> X^ik on `a` and stores the result on `a`. /// Applies the automorphism X^i -> X^ik on `a` and stores the result on `a`.
fn vec_znx_big_automorphism_inplace(&self, k: i64, a: &mut VecZnxBig<B>); fn vec_znx_big_automorphism_inplace(&self, k: i64, a: &mut VecZnxBig<B>, col_a: usize);
} }
impl VecZnxBigOps<FFT64> for Module<FFT64> { impl VecZnxBigOps<FFT64> for Module<FFT64> {
@@ -108,170 +153,267 @@ impl VecZnxBigOps<FFT64> for Module<FFT64> {
VecZnxBig::bytes_of(self, cols, size) VecZnxBig::bytes_of(self, cols, size)
} }
fn vec_znx_big_add(&self, c: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>, b: &VecZnxBig<FFT64>) { fn vec_znx_big_add(
let op = ffi_ternary_op_factory( &self,
self.ptr, res: &mut VecZnxBig<FFT64>,
c.size(), col_res: usize,
c.sl(), a: &VecZnxBig<FFT64>,
a.size(), col_a: usize,
a.sl(), b: &VecZnxBig<FFT64>,
b.size(), col_b: usize,
b.sl(), ) {
vec_znx::vec_znx_add,
);
apply_binary_op::<FFT64, VecZnxBig<FFT64>, VecZnxBig<FFT64>, VecZnxBig<FFT64>, false>(self, c, a, b, op);
}
fn vec_znx_big_add_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_add(self, &mut *b_ptr, a, &*b_ptr);
}
}
fn vec_znx_big_sub(&self, c: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>, b: &VecZnxBig<FFT64>) {
let op = ffi_ternary_op_factory(
self.ptr,
c.size(),
c.sl(),
a.size(),
a.sl(),
b.size(),
b.sl(),
vec_znx::vec_znx_sub,
);
apply_binary_op::<FFT64, VecZnxBig<FFT64>, VecZnxBig<FFT64>, VecZnxBig<FFT64>, true>(self, c, a, b, op);
}
fn vec_znx_big_sub_ab_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub(self, &mut *b_ptr, a, &*b_ptr);
}
}
fn vec_znx_big_sub_ba_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub(self, &mut *b_ptr, &*b_ptr, a);
}
}
fn vec_znx_big_sub_small_ba(&self, c: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>, b: &VecZnx) {
let op = ffi_ternary_op_factory(
self.ptr,
c.size(),
c.sl(),
a.size(),
a.sl(),
b.size(),
b.sl(),
vec_znx::vec_znx_sub,
);
apply_binary_op::<FFT64, VecZnxBig<FFT64>, VecZnxBig<FFT64>, VecZnx, true>(self, c, a, b, op);
}
fn vec_znx_big_sub_small_ba_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnx) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub_small_ba(self, &mut *b_ptr, &*b_ptr, a);
}
}
fn vec_znx_big_sub_small_ab(&self, c: &mut VecZnxBig<FFT64>, a: &VecZnx, b: &VecZnxBig<FFT64>) {
let op = ffi_ternary_op_factory(
self.ptr,
c.size(),
c.sl(),
a.size(),
a.sl(),
b.size(),
b.sl(),
vec_znx::vec_znx_sub,
);
apply_binary_op::<FFT64, VecZnxBig<FFT64>, VecZnx, VecZnxBig<FFT64>, true>(self, c, a, b, op);
}
fn vec_znx_big_sub_small_ab_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnx) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub_small_ab(self, &mut *b_ptr, a, &*b_ptr);
}
}
fn vec_znx_big_add_small(&self, c: &mut VecZnxBig<FFT64>, a: &VecZnx, b: &VecZnxBig<FFT64>) {
let op = ffi_ternary_op_factory(
self.ptr,
c.size(),
c.sl(),
a.size(),
a.sl(),
b.size(),
b.sl(),
vec_znx::vec_znx_add,
);
apply_binary_op::<FFT64, VecZnxBig<FFT64>, VecZnx, VecZnxBig<FFT64>, false>(self, c, a, b, op);
}
fn vec_znx_big_add_small_inplace(&self, b: &mut VecZnxBig<FFT64>, a: &VecZnx) {
unsafe {
let b_ptr: *mut VecZnxBig<FFT64> = b as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_add_small(self, &mut *b_ptr, a, &*b_ptr);
}
}
fn vec_znx_big_normalize_tmp_bytes(&self, cols: usize) -> usize {
Self::vec_znx_normalize_tmp_bytes(self, cols)
}
fn vec_znx_big_normalize(&self, log_base2k: usize, b: &mut VecZnx, a: &VecZnxBig<FFT64>, tmp_bytes: &mut [u8]) {
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
{ {
assert!(tmp_bytes.len() >= Self::vec_znx_big_normalize_tmp_bytes(&self, a.cols())); assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(res.n(), self.n());
assert_ne!(a.as_ptr(), b.as_ptr());
}
unsafe {
vec_znx::vec_znx_add(
self.ptr,
res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
b.at_ptr(col_b, 0),
b.size() as u64,
b.sl() as u64,
)
}
}
fn vec_znx_big_add_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnxBig<FFT64>, col_a: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_add(self, &mut *res_ptr, col_res, a, col_a, &*res_ptr, col_res);
}
}
fn vec_znx_big_sub(
&self,
res: &mut VecZnxBig<FFT64>,
col_res: usize,
a: &VecZnxBig<FFT64>,
col_a: usize,
b: &VecZnxBig<FFT64>,
col_b: usize,
) {
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(res.n(), self.n());
assert_ne!(a.as_ptr(), b.as_ptr());
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
b.at_ptr(col_b, 0),
b.size() as u64,
b.sl() as u64,
)
}
}
fn vec_znx_big_sub_ab_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnxBig<FFT64>, col_a: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub(self, &mut *res_ptr, col_res, a, col_a, &*res_ptr, col_res);
}
}
fn vec_znx_big_sub_ba_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnxBig<FFT64>, col_a: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub(self, &mut *res_ptr, col_res, &*res_ptr, col_res, a, col_a);
}
}
fn vec_znx_big_sub_small_b(
&self,
res: &mut VecZnxBig<FFT64>,
col_res: usize,
a: &VecZnxBig<FFT64>,
col_a: usize,
b: &VecZnx,
col_b: usize,
) {
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(res.n(), self.n());
assert_ne!(a.as_ptr(), b.as_ptr());
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
b.at_ptr(col_b, 0),
b.size() as u64,
b.sl() as u64,
)
}
}
fn vec_znx_big_sub_small_b_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnx, col_a: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub_small_b(self, &mut *res_ptr, col_res, &*res_ptr, col_res, a, col_a);
}
}
fn vec_znx_big_sub_small_a(
&self,
res: &mut VecZnxBig<FFT64>,
col_res: usize,
a: &VecZnx,
col_a: usize,
b: &VecZnxBig<FFT64>,
col_b: usize,
) {
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(res.n(), self.n());
assert_ne!(a.as_ptr(), b.as_ptr());
}
unsafe {
vec_znx::vec_znx_sub(
self.ptr,
res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
b.at_ptr(col_b, 0),
b.size() as u64,
b.sl() as u64,
)
}
}
fn vec_znx_big_sub_small_a_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnx, col_a: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_sub_small_a(self, &mut *res_ptr, col_res, a, col_a, &*res_ptr, col_res);
}
}
fn vec_znx_big_add_small(
&self,
res: &mut VecZnxBig<FFT64>,
col_res: usize,
a: &VecZnx,
col_a: usize,
b: &VecZnxBig<FFT64>,
col_b: usize,
) {
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert_eq!(res.n(), self.n());
assert_ne!(a.as_ptr(), b.as_ptr());
}
unsafe {
vec_znx::vec_znx_add(
self.ptr,
res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
b.at_ptr(col_b, 0),
b.size() as u64,
b.sl() as u64,
)
}
}
fn vec_znx_big_add_small_inplace(&self, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnx, a_col: usize) {
unsafe {
let res_ptr: *mut VecZnxBig<FFT64> = res as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_add_small(self, &mut *res_ptr, col_res, a, a_col, &*res_ptr, col_res);
}
}
fn vec_znx_big_normalize_tmp_bytes(&self) -> usize {
Self::vec_znx_normalize_tmp_bytes(self)
}
fn vec_znx_big_normalize(
&self,
log_base2k: usize,
res: &mut VecZnx,
col_res: usize,
a: &VecZnxBig<FFT64>,
col_a: usize,
tmp_bytes: &mut [u8],
) {
#[cfg(debug_assertions)]
{
assert_eq!(a.n(), self.n());
assert_eq!(res.n(), self.n());
assert!(tmp_bytes.len() >= Self::vec_znx_normalize_tmp_bytes(&self));
assert_alignement(tmp_bytes.as_ptr()); assert_alignement(tmp_bytes.as_ptr());
} }
unsafe {
let a_size: usize = a.size();
let b_size: usize = b.size();
let a_sl: usize = a.sl();
let b_sl: usize = b.sl();
let a_cols: usize = a.cols();
let b_cols: usize = b.cols();
let min_cols: usize = min(a_cols, b_cols);
(0..min_cols).for_each(|i| unsafe {
vec_znx::vec_znx_normalize_base2k( vec_znx::vec_znx_normalize_base2k(
self.ptr, self.ptr,
log_base2k as u64, log_base2k as u64,
b.at_mut_ptr(i, 0), res.at_mut_ptr(col_res, 0),
b_size as u64, res.size() as u64,
b_sl as u64, res.sl() as u64,
a.at_ptr(i, 0), a.at_ptr(col_a, 0),
a_size as u64, a.size() as u64,
a_sl as u64, a.sl() as u64,
tmp_bytes.as_mut_ptr(), tmp_bytes.as_mut_ptr(),
); );
}); }
(min_cols..b_cols).for_each(|i| (0..b_size).for_each(|j| b.zero_at(i, j)));
} }
fn vec_znx_big_automorphism(&self, k: i64, b: &mut VecZnxBig<FFT64>, a: &VecZnxBig<FFT64>) { fn vec_znx_big_automorphism(&self, k: i64, res: &mut VecZnxBig<FFT64>, col_res: usize, a: &VecZnxBig<FFT64>, col_a: usize) {
let op = ffi_binary_op_factory_type_1( #[cfg(debug_assertions)]
self.ptr, {
k, assert_eq!(a.n(), self.n());
b.size(), assert_eq!(res.n(), self.n());
b.sl(), }
a.size(), unsafe {
a.sl(), vec_znx::vec_znx_automorphism(
vec_znx::vec_znx_automorphism, self.ptr,
); k,
apply_unary_op::<FFT64, VecZnxBig<FFT64>>(self, b, a, op); res.at_mut_ptr(col_res, 0),
res.size() as u64,
res.sl() as u64,
a.at_ptr(col_a, 0),
a.size() as u64,
a.sl() as u64,
)
}
} }
fn vec_znx_big_automorphism_inplace(&self, k: i64, a: &mut VecZnxBig<FFT64>) { fn vec_znx_big_automorphism_inplace(&self, k: i64, a: &mut VecZnxBig<FFT64>, col_a: usize) {
unsafe { unsafe {
let a_ptr: *mut VecZnxBig<FFT64> = a as *mut VecZnxBig<FFT64>; let a_ptr: *mut VecZnxBig<FFT64> = a as *mut VecZnxBig<FFT64>;
Self::vec_znx_big_automorphism(self, k, &mut *a_ptr, &*a_ptr); Self::vec_znx_big_automorphism(self, k, &mut *a_ptr, col_a, &*a_ptr, col_a);
} }
} }
} }