mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 13:16:44 +01:00
more refactoring
This commit is contained in:
644
base2k/src/mat_znx_dft.rs
Normal file
644
base2k/src/mat_znx_dft.rs
Normal file
@@ -0,0 +1,644 @@
|
||||
use crate::ffi::vec_znx_big::vec_znx_big_t;
|
||||
use crate::ffi::vec_znx_dft::vec_znx_dft_t;
|
||||
use crate::ffi::vmp::{self, vmp_pmat_t};
|
||||
use crate::{Backend, FFT64, Module, VecZnx, VecZnxBig, VecZnxDft, ZnxInfos, ZnxLayout, alloc_aligned, assert_alignement};
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
|
||||
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
|
||||
/// Each col of the [VmpPMat] can be seen as a collection of [VecZnxDft].
|
||||
///
|
||||
/// [VmpPMat] is used to permform a vector matrix product between a [VecZnx]/[VecZnxDft] and a [VmpPMat].
|
||||
/// See the trait [VmpPMatOps] for additional information.
|
||||
pub struct MatZnxDft<B: Backend> {
|
||||
/// Raw data, is empty if borrowing scratch space.
|
||||
data: Vec<u8>,
|
||||
/// Pointer to data. Can point to scratch space.
|
||||
ptr: *mut u8,
|
||||
/// The ring degree of each polynomial.
|
||||
n: usize,
|
||||
/// Number of rows
|
||||
rows: usize,
|
||||
/// Number of cols
|
||||
cols: usize,
|
||||
/// The number of small polynomials
|
||||
limbs: usize,
|
||||
_marker: PhantomData<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> ZnxInfos for MatZnxDft<B> {
|
||||
fn n(&self) -> usize {
|
||||
self.n
|
||||
}
|
||||
|
||||
fn log_n(&self) -> usize {
|
||||
(usize::BITS - (self.n() - 1).leading_zeros()) as _
|
||||
}
|
||||
|
||||
fn rows(&self) -> usize {
|
||||
self.rows
|
||||
}
|
||||
|
||||
fn cols(&self) -> usize {
|
||||
self.cols
|
||||
}
|
||||
|
||||
fn limbs(&self) -> usize {
|
||||
self.limbs
|
||||
}
|
||||
|
||||
fn poly_count(&self) -> usize {
|
||||
self.rows * self.cols * self.limbs
|
||||
}
|
||||
}
|
||||
|
||||
impl MatZnxDft<FFT64> {
|
||||
fn new(module: &Module<FFT64>, rows: usize, cols: usize, limbs: usize) -> MatZnxDft<FFT64> {
|
||||
let mut data: Vec<u8> = alloc_aligned::<u8>(module.bytes_of_mat_znx_dft(rows, cols, limbs));
|
||||
let ptr: *mut u8 = data.as_mut_ptr();
|
||||
MatZnxDft::<FFT64> {
|
||||
data: data,
|
||||
ptr: ptr,
|
||||
n: module.n(),
|
||||
rows: rows,
|
||||
cols: cols,
|
||||
limbs: limbs,
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn as_ptr(&self) -> *const u8 {
|
||||
self.ptr
|
||||
}
|
||||
|
||||
pub fn as_mut_ptr(&self) -> *mut u8 {
|
||||
self.ptr
|
||||
}
|
||||
|
||||
pub fn borrowed(&self) -> bool {
|
||||
self.data.len() == 0
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference to the entire contiguous array of the [VmpPMat].
|
||||
pub fn raw(&self) -> &[f64] {
|
||||
let ptr: *const f64 = self.ptr as *const f64;
|
||||
let size: usize = self.n() * self.poly_count();
|
||||
unsafe { &std::slice::from_raw_parts(ptr, size) }
|
||||
}
|
||||
|
||||
/// Returns a mutable reference of to the entire contiguous array of the [VmpPMat].
|
||||
pub fn raw_mut(&self) -> &mut [f64] {
|
||||
let ptr: *mut f64 = self.ptr as *mut f64;
|
||||
let size: usize = self.n() * self.poly_count();
|
||||
unsafe { std::slice::from_raw_parts_mut(ptr, size) }
|
||||
}
|
||||
|
||||
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `row`: row index (i).
|
||||
/// * `col`: col index (j).
|
||||
pub fn at(&self, row: usize, col: usize) -> Vec<f64> {
|
||||
let mut res: Vec<f64> = alloc_aligned(self.n);
|
||||
|
||||
if self.n < 8 {
|
||||
res.copy_from_slice(&self.raw()[(row + col * self.rows()) * self.n()..(row + col * self.rows()) * (self.n() + 1)]);
|
||||
} else {
|
||||
(0..self.n >> 3).for_each(|blk| {
|
||||
res[blk * 8..(blk + 1) * 8].copy_from_slice(&self.at_block(row, col, blk)[..8]);
|
||||
});
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn at_block(&self, row: usize, col: usize, blk: usize) -> &[f64] {
|
||||
let nrows: usize = self.rows();
|
||||
let nsize: usize = self.limbs();
|
||||
if col == (nsize - 1) && (nsize & 1 == 1) {
|
||||
&self.raw()[blk * nrows * nsize * 8 + col * nrows * 8 + row * 8..]
|
||||
} else {
|
||||
&self.raw()[blk * nrows * nsize * 8 + (col / 2) * (2 * nrows) * 8 + row * 2 * 8 + (col % 2) * 8..]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait implements methods for vector matrix product,
|
||||
/// that is, multiplying a [VecZnx] with a [VmpPMat].
|
||||
pub trait MatZnxDftOps<B: Backend> {
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, limbs: usize) -> usize;
|
||||
|
||||
/// Allocates a new [VmpPMat] with the given number of rows and columns.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows (number of [VecZnxDft]).
|
||||
/// * `size`: number of size (number of size of each [VecZnxDft]).
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, limbs: usize) -> MatZnxDft<B>;
|
||||
|
||||
/// Returns the number of bytes needed as scratch space for [VmpPMatOps::vmp_prepare_contiguous].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous].
|
||||
/// * `size`: number of size of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous].
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize;
|
||||
|
||||
/// Prepares a [VmpPMat] from a contiguous array of [i64].
|
||||
/// The helper struct [Matrix3D] can be used to contruct and populate
|
||||
/// the appropriate contiguous array.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [VmpPMat] on which the values are encoded.
|
||||
/// * `a`: the contiguous array of [i64] of the 3D matrix to encode on the [VmpPMat].
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<B>, a: &[i64], buf: &mut [u8]);
|
||||
|
||||
/// Prepares the ith-row of [VmpPMat] from a [VecZnx].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [VmpPMat] on which the values are encoded.
|
||||
/// * `a`: the vector of [VecZnx] to encode on the [VmpPMat].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes].
|
||||
///
|
||||
/// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<B>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]);
|
||||
|
||||
/// Extracts the ith-row of [VmpPMat] into a [VecZnxBig].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxBig] to on which to extract the row of the [VmpPMat].
|
||||
/// * `a`: [VmpPMat] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<B>, a: &MatZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Prepares the ith-row of [VmpPMat] from a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [VmpPMat] on which the values are encoded.
|
||||
/// * `a`: the [VecZnxDft] to encode on the [VmpPMat].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
///
|
||||
/// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<B>, a: &VecZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Extracts the ith-row of [VmpPMat] into a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxDft] to on which to extract the row of the [VmpPMat].
|
||||
/// * `a`: [VmpPMat] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<B>, a: &MatZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnx].
|
||||
/// * `rows`: number of rows of the input [VmpPMat].
|
||||
/// * `size`: number of size of the input [VmpPMat].
|
||||
fn vmp_apply_dft_tmp_bytes(&self, c_size: usize, a_size: usize, rows: usize, size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [VmpPMat] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] and adds on the receiver.
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [VmpPMat] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft_to_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnxDft].
|
||||
/// * `rows`: number of rows of the input [VmpPMat].
|
||||
/// * `size`: number of size of the input [VmpPMat].
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, c_size: usize, a_size: usize, rows: usize, size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
|
||||
/// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [VmpPMat] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] and adds on top of the receiver instead of overwritting it.
|
||||
/// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [VmpPMat] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] in place.
|
||||
/// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [VmpPMat] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the input and output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the right operand [VmpPMat] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<B>, a: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
}
|
||||
|
||||
impl MatZnxDftOps<FFT64> for Module<FFT64> {
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, limbs: usize) -> MatZnxDft<FFT64> {
|
||||
MatZnxDft::<FFT64>::new(self, rows, cols, limbs)
|
||||
}
|
||||
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, limbs: usize) -> usize {
|
||||
unsafe { vmp::bytes_of_vmp_pmat(self.ptr, rows as u64, (limbs * cols) as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize {
|
||||
unsafe { vmp::vmp_prepare_tmp_bytes(self.ptr, rows as u64, (size * cols) as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.n() * b.poly_count());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.limbs()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_contiguous(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
b.rows() as u64,
|
||||
(b.limbs() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.limbs() * self.n() * b.cols());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.limbs()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
(b.limbs() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<FFT64>, a: &MatZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.limbs(), b.limbs());
|
||||
assert_eq!(a.cols(), b.cols());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row(
|
||||
self.ptr,
|
||||
b.ptr as *mut vec_znx_big_t,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
(a.limbs() * a.cols()) as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<FFT64>, a: &VecZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.limbs(), b.limbs());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.ptr as *const vec_znx_dft_t,
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
b.limbs() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<FFT64>, a: &MatZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.limbs(), b.limbs());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row_dft(
|
||||
self.ptr,
|
||||
b.ptr as *mut vec_znx_dft_t,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
a.limbs() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_tmp_bytes(&self, res_size: usize, a_size: usize, gct_rows: usize, gct_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
gct_rows as u64,
|
||||
gct_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.limbs(), a.limbs(), b.rows(), b.limbs()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft(
|
||||
self.ptr,
|
||||
c.ptr as *mut vec_znx_dft_t,
|
||||
c.limbs() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
(a.n() * a.cols()) as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.limbs() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.limbs(), a.limbs(), b.rows(), b.limbs()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_add(
|
||||
self.ptr,
|
||||
c.ptr as *mut vec_znx_dft_t,
|
||||
c.limbs() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
(a.n() * a.limbs()) as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.limbs() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, res_size: usize, a_size: usize, gct_rows: usize, gct_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
gct_rows as u64,
|
||||
gct_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnxDft<FFT64>, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.limbs(), a.limbs(), b.rows(), b.limbs()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
c.ptr as *mut vec_znx_dft_t,
|
||||
c.limbs() as u64,
|
||||
a.ptr as *const vec_znx_dft_t,
|
||||
a.limbs() as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.limbs() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_add(
|
||||
&self,
|
||||
c: &mut VecZnxDft<FFT64>,
|
||||
a: &VecZnxDft<FFT64>,
|
||||
b: &MatZnxDft<FFT64>,
|
||||
tmp_bytes: &mut [u8],
|
||||
) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.limbs(), a.limbs(), b.rows(), b.limbs()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_add(
|
||||
self.ptr,
|
||||
c.ptr as *mut vec_znx_dft_t,
|
||||
c.limbs() as u64,
|
||||
a.ptr as *const vec_znx_dft_t,
|
||||
a.limbs() as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.limbs() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<FFT64>, a: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(b.limbs(), b.limbs(), a.rows(), a.limbs()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
b.ptr as *mut vec_znx_dft_t,
|
||||
b.limbs() as u64,
|
||||
b.ptr as *mut vec_znx_dft_t,
|
||||
b.limbs() as u64,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
a.rows() as u64,
|
||||
a.limbs() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{
|
||||
FFT64, MatZnxDft, MatZnxDftOps, Module, Sampling, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, VecZnxOps,
|
||||
ZnxLayout, alloc_aligned,
|
||||
};
|
||||
use sampling::source::Source;
|
||||
|
||||
#[test]
|
||||
fn vmp_prepare_row_dft() {
|
||||
let module: Module<FFT64> = Module::<FFT64>::new(32);
|
||||
let vpmat_rows: usize = 4;
|
||||
let vpmat_size: usize = 5;
|
||||
let log_base2k: usize = 8;
|
||||
let mut a: VecZnx = module.new_vec_znx(1, vpmat_size);
|
||||
let mut a_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut a_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut vmpmat_0: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
let mut vmpmat_1: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
|
||||
let mut tmp_bytes: Vec<u8> = alloc_aligned(module.vmp_prepare_tmp_bytes(vpmat_rows, 1, vpmat_size));
|
||||
|
||||
for row_i in 0..vpmat_rows {
|
||||
let mut source: Source = Source::new([0u8; 32]);
|
||||
module.fill_uniform(log_base2k, &mut a, 0, vpmat_size, &mut source);
|
||||
module.vec_znx_dft(&mut a_dft, &a);
|
||||
module.vmp_prepare_row(&mut vmpmat_0, &a.raw(), row_i, &mut tmp_bytes);
|
||||
|
||||
// Checks that prepare(mat_znx_dft, a) = prepare_dft(mat_znx_dft, a_dft)
|
||||
module.vmp_prepare_row_dft(&mut vmpmat_1, &a_dft, row_i);
|
||||
assert_eq!(vmpmat_0.raw(), vmpmat_1.raw());
|
||||
|
||||
// Checks that a_dft = extract_dft(prepare(mat_znx_dft, a), b_dft)
|
||||
module.vmp_extract_row_dft(&mut b_dft, &vmpmat_0, row_i);
|
||||
assert_eq!(a_dft.raw(), b_dft.raw());
|
||||
|
||||
// Checks that a_big = extract(prepare_dft(mat_znx_dft, a_dft), b_big)
|
||||
module.vmp_extract_row(&mut b_big, &vmpmat_0, row_i);
|
||||
module.vec_znx_idft(&mut a_big, &a_dft, &mut tmp_bytes);
|
||||
assert_eq!(a_big.raw(), b_big.raw());
|
||||
}
|
||||
|
||||
module.free();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user