Added grlwe ops + tests

This commit is contained in:
Jean-Philippe Bossuat
2025-05-09 10:39:00 +02:00
parent de3b34477d
commit 9913040aa1
16 changed files with 1435 additions and 385 deletions

View File

@@ -1,5 +1,7 @@
use crate::znx_base::ZnxInfos;
use crate::{alloc_aligned, Backend, DataView, DataViewMut, Module, VecZnx, VecZnxToMut, VecZnxToRef, ZnxSliceSize, ZnxView, ZnxViewMut};
use crate::{
Backend, DataView, DataViewMut, Module, VecZnx, VecZnxToMut, VecZnxToRef, ZnxSliceSize, ZnxView, ZnxViewMut, alloc_aligned,
};
use rand::seq::SliceRandom;
use rand_core::RngCore;
use rand_distr::{Distribution, weighted::WeightedIndex};
@@ -144,7 +146,7 @@ impl ScalarZnxToMut for ScalarZnx<Vec<u8>> {
}
}
impl VecZnxToMut for ScalarZnx<Vec<u8>>{
impl VecZnxToMut for ScalarZnx<Vec<u8>> {
fn to_mut(&mut self) -> VecZnx<&mut [u8]> {
VecZnx {
data: self.data.as_mut_slice(),
@@ -165,7 +167,7 @@ impl ScalarZnxToRef for ScalarZnx<Vec<u8>> {
}
}
impl VecZnxToRef for ScalarZnx<Vec<u8>>{
impl VecZnxToRef for ScalarZnx<Vec<u8>> {
fn to_ref(&self) -> VecZnx<&[u8]> {
VecZnx {
data: self.data.as_slice(),

View File

@@ -1,6 +1,7 @@
use crate::DataView;
use crate::DataViewMut;
use crate::ZnxSliceSize;
use crate::ZnxZero;
use crate::alloc_aligned;
use crate::assert_alignement;
use crate::cast_mut;
@@ -182,6 +183,39 @@ fn normalize<D: AsMut<[u8]> + AsRef<[u8]>>(log_base2k: usize, a: &mut VecZnx<D>,
}
}
impl<D> VecZnx<D>
where
VecZnx<D>: VecZnxToMut + ZnxInfos,
{
/// Extracts the a_col-th column of 'a' and stores it on the self_col-th column [Self].
pub fn extract_column<C>(&mut self, self_col: usize, a: &VecZnx<C>, a_col: usize)
where
VecZnx<C>: VecZnxToRef + ZnxInfos,
{
#[cfg(debug_assertions)]
{
assert!(self_col < self.cols());
assert!(a_col < a.cols());
}
let min_size: usize = self.size.min(a.size());
let max_size: usize = self.size;
let mut self_mut: VecZnx<&mut [u8]> = self.to_mut();
let a_ref: VecZnx<&[u8]> = a.to_ref();
(0..min_size).for_each(|i: usize| {
self_mut
.at_mut(self_col, i)
.copy_from_slice(a_ref.at(a_col, i));
});
(min_size..max_size).for_each(|i| {
self_mut.zero_at(self_col, i);
});
}
}
impl<D: AsRef<[u8]>> fmt::Display for VecZnx<D> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(

View File

@@ -1,6 +1,6 @@
use crate::ffi::vec_znx_big;
use crate::znx_base::{ZnxInfos, ZnxView};
use crate::{Backend, DataView, DataViewMut, FFT64, Module, ZnxSliceSize, alloc_aligned};
use crate::{Backend, DataView, DataViewMut, FFT64, Module, ZnxSliceSize, ZnxViewMut, ZnxZero, alloc_aligned};
use std::fmt;
use std::marker::PhantomData;
@@ -94,6 +94,39 @@ impl<D, B: Backend> VecZnxBig<D, B> {
}
}
impl<D> VecZnxBig<D, FFT64>
where
VecZnxBig<D, FFT64>: VecZnxBigToMut<FFT64> + ZnxInfos,
{
/// Extracts the a_col-th column of 'a' and stores it on the self_col-th column [Self].
pub fn extract_column<C>(&mut self, self_col: usize, a: &VecZnxBig<C, FFT64>, a_col: usize)
where
VecZnxBig<C, FFT64>: VecZnxBigToRef<FFT64> + ZnxInfos,
{
#[cfg(debug_assertions)]
{
assert!(self_col < self.cols());
assert!(a_col < a.cols());
}
let min_size: usize = self.size.min(a.size());
let max_size: usize = self.size;
let mut self_mut: VecZnxBig<&mut [u8], FFT64> = self.to_mut();
let a_ref: VecZnxBig<&[u8], FFT64> = a.to_ref();
(0..min_size).for_each(|i: usize| {
self_mut
.at_mut(self_col, i)
.copy_from_slice(a_ref.at(a_col, i));
});
(min_size..max_size).for_each(|i| {
self_mut.zero_at(self_col, i);
});
}
}
pub type VecZnxBigOwned<B> = VecZnxBig<Vec<u8>, B>;
pub trait VecZnxBigToRef<B: Backend> {

View File

@@ -115,7 +115,9 @@ pub trait VecZnxBigOps<BACKEND: Backend> {
A: VecZnxToRef;
/// Negates `a` inplace.
fn vec_znx_big_negate_inplace<A>(&self, a: &mut A, a_col: usize) where A: VecZnxBigToMut<BACKEND>;
fn vec_znx_big_negate_inplace<A>(&self, a: &mut A, a_col: usize)
where
A: VecZnxBigToMut<BACKEND>;
/// Normalizes `a` and stores the result on `b`.
///
@@ -506,7 +508,10 @@ impl VecZnxBigOps<FFT64> for Module<FFT64> {
}
}
fn vec_znx_big_negate_inplace<A>(&self, a: &mut A, res_col: usize) where A: VecZnxBigToMut<FFT64> {
fn vec_znx_big_negate_inplace<A>(&self, a: &mut A, res_col: usize)
where
A: VecZnxBigToMut<FFT64>,
{
let mut a: VecZnxBig<&mut [u8], FFT64> = a.to_mut();
#[cfg(debug_assertions)]
{

View File

@@ -2,7 +2,9 @@ use std::marker::PhantomData;
use crate::ffi::vec_znx_dft;
use crate::znx_base::ZnxInfos;
use crate::{Backend, DataView, DataViewMut, FFT64, Module, VecZnxBig, ZnxSliceSize, ZnxView, alloc_aligned};
use crate::{
Backend, DataView, DataViewMut, FFT64, Module, VecZnxBig, ZnxSliceSize, ZnxView, ZnxViewMut, ZnxZero, alloc_aligned,
};
use std::fmt;
pub struct VecZnxDft<D, B: Backend> {
@@ -89,6 +91,39 @@ impl<D: From<Vec<u8>>, B: Backend> VecZnxDft<D, B> {
}
}
impl<D> VecZnxDft<D, FFT64>
where
VecZnxDft<D, FFT64>: VecZnxDftToMut<FFT64> + ZnxInfos,
{
/// Extracts the a_col-th column of 'a' and stores it on the self_col-th column [Self].
pub fn extract_column<C>(&mut self, self_col: usize, a: &VecZnxDft<C, FFT64>, a_col: usize)
where
VecZnxDft<C, FFT64>: VecZnxDftToRef<FFT64> + ZnxInfos,
{
#[cfg(debug_assertions)]
{
assert!(self_col < self.cols());
assert!(a_col < a.cols());
}
let min_size: usize = self.size.min(a.size());
let max_size: usize = self.size;
let mut self_mut: VecZnxDft<&mut [u8], FFT64> = self.to_mut();
let a_ref: VecZnxDft<&[u8], FFT64> = a.to_ref();
(0..min_size).for_each(|i: usize| {
self_mut
.at_mut(self_col, i)
.copy_from_slice(a_ref.at(a_col, i));
});
(min_size..max_size).for_each(|i| {
self_mut.zero_at(self_col, i);
});
}
}
pub type VecZnxDftOwned<B> = VecZnxDft<Vec<u8>, B>;
impl<D, B: Backend> VecZnxDft<D, B> {

View File

@@ -47,7 +47,9 @@ pub trait VecZnxDftOps<B: Backend> {
where
R: VecZnxBigToMut<B>,
A: VecZnxDftToMut<B>;
fn vec_znx_idft_consume<D>(&self, a: VecZnxDft<D, B>, a_cols: usize) -> VecZnxBig<D, FFT64>
/// Consumes a to return IDFT(a) in big coeff space.
fn vec_znx_idft_consume<D>(&self, a: VecZnxDft<D, B>) -> VecZnxBig<D, FFT64>
where
VecZnxDft<D, FFT64>: VecZnxDftToMut<FFT64>;
@@ -103,25 +105,28 @@ impl VecZnxDftOps<FFT64> for Module<FFT64> {
}
}
fn vec_znx_idft_consume<D>(&self, mut a: VecZnxDft<D, FFT64>, a_col: usize) -> VecZnxBig<D, FFT64>
fn vec_znx_idft_consume<D>(&self, mut a: VecZnxDft<D, FFT64>) -> VecZnxBig<D, FFT64>
where
VecZnxDft<D, FFT64>: VecZnxDftToMut<FFT64>,
{
let mut a_mut: VecZnxDft<&mut [u8], FFT64> = a.to_mut();
unsafe {
// Rev col and rows because ZnxDft.sl() >= ZnxBig.sl()
(0..a_mut.size()).for_each(|j| {
vec_znx_dft::vec_znx_idft_tmp_a(
self.ptr,
a_mut.at_mut_ptr(a_col, j) as *mut vec_znx_big::vec_znx_big_t,
1 as u64,
a_mut.at_mut_ptr(a_col, j) as *mut vec_znx_dft::vec_znx_dft_t,
1 as u64,
)
(0..a_mut.cols()).for_each(|i| {
vec_znx_dft::vec_znx_idft_tmp_a(
self.ptr,
a_mut.at_mut_ptr(i, j) as *mut vec_znx_big::vec_znx_big_t,
1 as u64,
a_mut.at_mut_ptr(i, j) as *mut vec_znx_dft::vec_znx_dft_t,
1 as u64,
)
});
});
a.into_big()
}
a.into_big()
}
fn vec_znx_idft_tmp_bytes(&self) -> usize {

View File

@@ -101,25 +101,25 @@ pub trait ZnxViewMut: ZnxView + DataViewMut<D: AsMut<[u8]>> {
//(Jay)Note: Can't provide blanket impl. of ZnxView because Scalar is not known
impl<T> ZnxViewMut for T where T: ZnxView + DataViewMut<D: AsMut<[u8]>> {}
pub trait ZnxZero: ZnxViewMut
pub trait ZnxZero: ZnxViewMut + ZnxSliceSize
where
Self: Sized,
{
fn zero(&mut self) {
unsafe {
std::ptr::write_bytes(self.as_mut_ptr(), 0, self.n() * self.poly_count());
std::ptr::write_bytes(self.as_mut_ptr(), 0, self.sl() * self.poly_count());
}
}
fn zero_at(&mut self, i: usize, j: usize) {
unsafe {
std::ptr::write_bytes(self.at_mut_ptr(i, j), 0, self.n());
std::ptr::write_bytes(self.at_mut_ptr(i, j), 0, self.sl());
}
}
}
// Blanket implementations
impl<T> ZnxZero for T where T: ZnxViewMut {}
impl<T> ZnxZero for T where T: ZnxViewMut + ZnxSliceSize {} // WARNING should not work for mat_znx_dft but it does
use std::ops::{Add, AddAssign, Div, Mul, Neg, Shl, Shr, Sub};

View File

@@ -1,6 +1,7 @@
use base2k::{
Backend, FFT64, MatZnxDft, MatZnxDftAlloc, MatZnxDftOps, MatZnxDftToMut, MatZnxDftToRef, Module, ScalarZnx, ScalarZnxDft,
ScalarZnxDftToRef, ScalarZnxToRef, Scratch, VecZnxAlloc, VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxDftToMut, VecZnxOps,
Backend, FFT64, MatZnxDft, MatZnxDftAlloc, MatZnxDftOps, MatZnxDftScratch, MatZnxDftToMut, MatZnxDftToRef, Module, ScalarZnx,
ScalarZnxDft, ScalarZnxDftToRef, ScalarZnxToRef, Scratch, VecZnx, VecZnxAlloc, VecZnxBig, VecZnxBigOps, VecZnxBigScratch,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxDftToMut, VecZnxDftToRef, VecZnxOps, VecZnxToMut, VecZnxToRef, ZnxInfos,
ZnxZero,
};
use sampling::source::Source;
@@ -32,11 +33,23 @@ impl<C> GRLWECt<C, FFT64>
where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64>,
{
pub fn get_row(&self, module: &Module<FFT64>, i: usize, res: &mut RLWECtDft<C, FFT64>)
pub fn get_row<R>(&self, module: &Module<FFT64>, row_i: usize, res: &mut RLWECtDft<R, FFT64>)
where
VecZnxDft<C, FFT64>: VecZnxDftToMut<FFT64>,
VecZnxDft<R, FFT64>: VecZnxDftToMut<FFT64>,
{
module.vmp_extract_row(res, self, i, 0);
module.vmp_extract_row(res, self, row_i, 0);
}
}
impl<C> GRLWECt<C, FFT64>
where
MatZnxDft<C, FFT64>: MatZnxDftToMut<FFT64>,
{
pub fn set_row<R>(&mut self, module: &Module<FFT64>, row_i: usize, a: &RLWECtDft<R, FFT64>)
where
VecZnxDft<R, FFT64>: VecZnxDftToRef<FFT64>,
{
module.vmp_prepare_row(self, row_i, 0, a);
}
}
@@ -75,16 +88,42 @@ where
}
impl GRLWECt<Vec<u8>, FFT64> {
pub fn encrypt_sk_scratch_bytes(module: &Module<FFT64>, size: usize) -> usize {
RLWECt::encrypt_sk_scratch_bytes(module, size)
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, size: usize) -> usize {
RLWECt::encrypt_sk_scratch_space(module, size)
+ module.bytes_of_vec_znx(2, size)
+ module.bytes_of_vec_znx(1, size)
+ module.bytes_of_vec_znx_dft(2, size)
}
// pub fn encrypt_pk_scratch_bytes(module: &Module<FFT64>, pk_size: usize) -> usize {
// RLWECt::encrypt_pk_scratch_bytes(module, pk_size)
// }
pub fn mul_rlwe_scratch_space(module: &Module<FFT64>, res_size: usize, a_size: usize, grlwe_size: usize) -> usize {
module.bytes_of_vec_znx_dft(2, grlwe_size)
+ (module.vec_znx_big_normalize_tmp_bytes()
| (module.vmp_apply_tmp_bytes(res_size, a_size, a_size, 1, 2, grlwe_size)
+ module.bytes_of_vec_znx_dft(1, a_size)))
}
pub fn mul_rlwe_inplace_scratch_space(module: &Module<FFT64>, res_size: usize, grlwe_size: usize) -> usize {
Self::mul_rlwe_scratch_space(module, res_size, res_size, grlwe_size)
}
pub fn mul_rlwe_dft_scratch_space(module: &Module<FFT64>, res_size: usize, a_size: usize, grlwe_size: usize) -> usize {
(Self::mul_rlwe_scratch_space(module, res_size, a_size, grlwe_size) | module.vec_znx_idft_tmp_bytes())
+ module.bytes_of_vec_znx(2, a_size)
+ module.bytes_of_vec_znx(2, res_size)
}
pub fn mul_rlwe_dft_inplace_scratch_space(module: &Module<FFT64>, res_size: usize, grlwe_size: usize) -> usize {
(Self::mul_rlwe_inplace_scratch_space(module, res_size, grlwe_size) | module.vec_znx_idft_tmp_bytes())
+ module.bytes_of_vec_znx(2, res_size)
}
pub fn mul_grlwe_scratch_space(module: &Module<FFT64>, res_size: usize, a_size: usize, grlwe_size: usize) -> usize {
Self::mul_rlwe_dft_inplace_scratch_space(module, res_size, grlwe_size) + module.bytes_of_vec_znx_dft(2, a_size)
}
pub fn mul_grlwe_inplace_scratch_space(module: &Module<FFT64>, res_size: usize, a_size: usize, grlwe_size: usize) -> usize {
Self::mul_rlwe_dft_inplace_scratch_space(module, res_size, grlwe_size) + module.bytes_of_vec_znx_dft(2, a_size)
}
}
pub fn encrypt_grlwe_sk<C, P, S>(
@@ -170,72 +209,176 @@ impl<C> GRLWECt<C, FFT64> {
module, self, pt, sk_dft, source_xa, source_xe, sigma, bound, scratch,
)
}
}
#[cfg(test)]
mod tests {
use base2k::{FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps};
use sampling::source::Source;
pub fn mul_rlwe<R, A>(&self, module: &Module<FFT64>, res: &mut RLWECt<R>, a: &RLWECt<A>, scratch: &mut Scratch)
where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
VecZnx<R>: VecZnxToMut,
VecZnx<A>: VecZnxToRef,
{
let log_base2k: usize = self.log_base2k();
use crate::{
elem::Infos,
elem_rlwe::{RLWECtDft, RLWEPt},
keys::{SecretKey, SecretKeyDft},
};
#[cfg(debug_assertions)]
{
assert_eq!(res.log_base2k(), log_base2k);
assert_eq!(a.log_base2k(), log_base2k);
assert_eq!(self.n(), module.n());
assert_eq!(res.n(), module.n());
assert_eq!(a.n(), module.n());
}
use super::GRLWECt;
let (mut res_dft, scratch1) = scratch.tmp_vec_znx_dft(module, 2, self.size()); // Todo optimise
#[test]
fn encrypt_sk_fft64() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
{
let (mut a1_dft, scratch2) = scratch1.tmp_vec_znx_dft(module, 1, a.size());
module.vec_znx_dft(&mut a1_dft, 0, a, 1);
module.vmp_apply(&mut res_dft, &a1_dft, self, scratch2);
}
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut res_big: VecZnxBig<&mut [u8], FFT64> = module.vec_znx_idft_consume(res_dft);
let mut ct: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_ct, rows);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
module.vec_znx_big_add_small_inplace(&mut res_big, 0, a, 0);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
module.vec_znx_big_normalize(log_base2k, res, 0, &res_big, 0, scratch1);
module.vec_znx_big_normalize(log_base2k, res, 1, &res_big, 1, scratch1);
}
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
pub fn mul_rlwe_inplace<R>(&self, module: &Module<FFT64>, res: &mut RLWECt<R>, scratch: &mut Scratch)
where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
VecZnx<R>: VecZnxToMut + VecZnxToRef,
{
unsafe {
let res_ptr: *mut RLWECt<R> = res as *mut RLWECt<R>; // This is ok because [Self::mul_rlwe] only updates res at the end.
self.mul_rlwe(&module, &mut *res_ptr, &*res_ptr, scratch);
}
}
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_bytes(&module, ct.size()) | RLWECtDft::decrypt_scratch_bytes(&module, ct.size()),
);
pub fn mul_rlwe_dft<R, A>(
&self,
module: &Module<FFT64>,
res: &mut RLWECtDft<R, FFT64>,
a: &RLWECtDft<A, FFT64>,
scratch: &mut Scratch,
) where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
VecZnxDft<R, FFT64>: VecZnxDftToMut<FFT64> + VecZnxDftToRef<FFT64> + ZnxInfos,
VecZnxDft<A, FFT64>: VecZnxDftToRef<FFT64> + ZnxInfos,
{
let log_base2k: usize = self.log_base2k();
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
#[cfg(debug_assertions)]
{
assert_eq!(res.log_base2k(), log_base2k);
assert_eq!(self.n(), module.n());
assert_eq!(res.n(), module.n());
}
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let (a_data, scratch_1) = scratch.tmp_vec_znx(module, 2, a.size());
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut a_idft: RLWECt<&mut [u8]> = RLWECt::<&mut [u8]> {
data: a_data,
log_base2k: a.log_base2k(),
log_k: a.log_k(),
};
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct, 2);
a.idft(module, &mut a_idft, scratch_1);
(0..ct.rows()).for_each(|row_i| {
ct.get_row(&module, row_i, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_scalar, 0);
let std_pt: f64 = pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
let (res_data, scratch_2) = scratch_1.tmp_vec_znx(module, 2, res.size());
let mut res_idft: RLWECt<&mut [u8]> = RLWECt::<&mut [u8]> {
data: res_data,
log_base2k: res.log_base2k(),
log_k: res.log_k(),
};
self.mul_rlwe(module, &mut res_idft, &a_idft, scratch_2);
module.vec_znx_dft(res, 0, &res_idft, 0);
module.vec_znx_dft(res, 1, &res_idft, 1);
}
pub fn mul_rlwe_dft_inplace<R>(&self, module: &Module<FFT64>, res: &mut RLWECtDft<R, FFT64>, scratch: &mut Scratch)
where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
VecZnxDft<R, FFT64>: VecZnxDftToMut<FFT64> + VecZnxDftToRef<FFT64> + ZnxInfos,
{
let log_base2k: usize = self.log_base2k();
#[cfg(debug_assertions)]
{
assert_eq!(res.log_base2k(), log_base2k);
assert_eq!(self.n(), module.n());
assert_eq!(res.n(), module.n());
}
let (res_data, scratch_1) = scratch.tmp_vec_znx(module, 2, res.size());
let mut res_idft: RLWECt<&mut [u8]> = RLWECt::<&mut [u8]> {
data: res_data,
log_base2k: res.log_base2k(),
log_k: res.log_k(),
};
res.idft(module, &mut res_idft, scratch_1);
self.mul_rlwe_inplace(module, &mut res_idft, scratch_1);
module.vec_znx_dft(res, 0, &res_idft, 0);
module.vec_znx_dft(res, 1, &res_idft, 1);
}
pub fn mul_grlwe<R, A>(
&self,
module: &Module<FFT64>,
res: &mut GRLWECt<R, FFT64>,
a: &GRLWECt<A, FFT64>,
scratch: &mut Scratch,
) where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
MatZnxDft<R, FFT64>: MatZnxDftToMut<FFT64> + MatZnxDftToRef<FFT64> + ZnxInfos,
MatZnxDft<A, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
{
let (tmp_row_data, scratch1) = scratch.tmp_vec_znx_dft(module, 2, a.size());
let mut tmp_row: RLWECtDft<&mut [u8], FFT64> = RLWECtDft::<&mut [u8], FFT64> {
data: tmp_row_data,
log_base2k: a.log_base2k(),
log_k: a.log_k(),
};
let min_rows: usize = res.rows().min(a.rows());
(0..min_rows).for_each(|row_i| {
a.get_row(module, row_i, &mut tmp_row);
self.mul_rlwe_dft_inplace(module, &mut tmp_row, scratch1);
res.set_row(module, row_i, &tmp_row);
});
module.free();
tmp_row.data.zero();
(min_rows..res.rows()).for_each(|row_i| {
res.set_row(module, row_i, &tmp_row);
})
}
pub fn mul_grlwe_inplace<R>(&self, module: &Module<FFT64>, res: &mut GRLWECt<R, FFT64>, scratch: &mut Scratch)
where
MatZnxDft<C, FFT64>: MatZnxDftToRef<FFT64> + ZnxInfos,
MatZnxDft<R, FFT64>: MatZnxDftToMut<FFT64> + MatZnxDftToRef<FFT64> + ZnxInfos,
{
let (tmp_row_data, scratch1) = scratch.tmp_vec_znx_dft(module, 2, res.size());
let mut tmp_row: RLWECtDft<&mut [u8], FFT64> = RLWECtDft::<&mut [u8], FFT64> {
data: tmp_row_data,
log_base2k: res.log_base2k(),
log_k: res.log_k(),
};
(0..res.rows()).for_each(|row_i| {
res.get_row(module, row_i, &mut tmp_row);
self.mul_rlwe_dft_inplace(module, &mut tmp_row, scratch1);
res.set_row(module, row_i, &tmp_row);
});
}
}

View File

@@ -63,8 +63,8 @@ where
}
impl RGSWCt<Vec<u8>, FFT64> {
pub fn encrypt_sk_scratch_bytes(module: &Module<FFT64>, size: usize) -> usize {
RLWECt::encrypt_sk_scratch_bytes(module, size)
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, size: usize) -> usize {
RLWECt::encrypt_sk_scratch_space(module, size)
+ module.bytes_of_vec_znx(2, size)
+ module.bytes_of_vec_znx(1, size)
+ module.bytes_of_vec_znx_dft(2, size)
@@ -169,93 +169,3 @@ impl<C> RGSWCt<C, FFT64> {
)
}
}
#[cfg(test)]
mod tests {
use base2k::{
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScratchOwned, Stats, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, ZnxZero,
};
use sampling::source::Source;
use crate::{
elem::Infos,
elem_rlwe::{RLWECtDft, RLWEPt},
keys::{SecretKey, SecretKeyDft},
};
use super::RGSWCt;
#[test]
fn encrypt_rgsw_sk_fft64() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_ct, rows);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_bytes(&module, ct.size()) | RLWECtDft::decrypt_scratch_bytes(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct, 2);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct.size());
(0..ct.cols()).for_each(|col_j| {
(0..ct.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_scalar, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let std_pt: f64 = pt_have.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
pt_want.data.zero();
});
});
module.free();
}
}

View File

@@ -1,12 +1,13 @@
use base2k::{
AddNormal, Backend, FFT64, FillUniform, Module, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc, ScalarZnxDftOps,
ScalarZnxDftToRef, Scratch, VecZnx, VecZnxAlloc, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDft, VecZnxDftAlloc,
VecZnxDftOps, VecZnxDftToMut, VecZnxDftToRef, VecZnxOps, VecZnxToMut, VecZnxToRef,
AddNormal, Backend, FFT64, FillUniform, MatZnxDft, MatZnxDftToRef, Module, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc,
ScalarZnxDftOps, ScalarZnxDftToRef, Scratch, VecZnx, VecZnxAlloc, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDft,
VecZnxDftAlloc, VecZnxDftOps, VecZnxDftToMut, VecZnxDftToRef, VecZnxOps, VecZnxToMut, VecZnxToRef, ZnxInfos,
};
use sampling::source::Source;
use crate::{
elem::Infos,
elem_grlwe::GRLWECt,
keys::{PublicKey, SecretDistribution, SecretKeyDft},
utils::derive_size,
};
@@ -18,9 +19,9 @@ pub struct RLWECt<C> {
}
impl RLWECt<Vec<u8>> {
pub fn new<B: Backend>(module: &Module<B>, log_base2k: usize, log_k: usize, cols: usize) -> Self {
pub fn new<B: Backend>(module: &Module<B>, log_base2k: usize, log_k: usize) -> Self {
Self {
data: module.new_vec_znx(cols, derive_size(log_base2k, log_k)),
data: module.new_vec_znx(2, derive_size(log_base2k, log_k)),
log_base2k: log_base2k,
log_k: log_k,
}
@@ -61,6 +62,27 @@ where
}
}
impl<C> RLWECt<C>
where
VecZnx<C>: VecZnxToRef,
{
#[allow(dead_code)]
pub(crate) fn dft<R>(&self, module: &Module<FFT64>, res: &mut RLWECtDft<R, FFT64>)
where
VecZnxDft<R, FFT64>: VecZnxDftToMut<FFT64> + ZnxInfos,
{
#[cfg(debug_assertions)]
{
assert_eq!(self.cols(), 2);
assert_eq!(res.cols(), 2);
assert_eq!(self.log_base2k(), res.log_base2k())
}
module.vec_znx_dft(res, 0, self, 0);
module.vec_znx_dft(res, 1, self, 1);
}
}
pub struct RLWEPt<C> {
pub data: VecZnx<C>,
pub log_base2k: usize,
@@ -118,9 +140,9 @@ pub struct RLWECtDft<C, B: Backend> {
}
impl<B: Backend> RLWECtDft<Vec<u8>, B> {
pub fn new(module: &Module<B>, log_base2k: usize, log_k: usize, cols: usize) -> Self {
pub fn new(module: &Module<B>, log_base2k: usize, log_k: usize) -> Self {
Self {
data: module.new_vec_znx_dft(cols, derive_size(log_base2k, log_k)),
data: module.new_vec_znx_dft(2, derive_size(log_base2k, log_k)),
log_base2k: log_base2k,
log_k: log_k,
}
@@ -161,18 +183,49 @@ where
}
}
impl<C> RLWECtDft<C, FFT64>
where
VecZnxDft<C, FFT64>: VecZnxDftToRef<FFT64>,
{
#[allow(dead_code)]
pub(crate) fn idft_scratch_space(module: &Module<FFT64>, size: usize) -> usize {
module.bytes_of_vec_znx(2, size) + (module.vec_znx_big_normalize_tmp_bytes() | module.vec_znx_idft_tmp_bytes())
}
pub(crate) fn idft<R>(&self, module: &Module<FFT64>, res: &mut RLWECt<R>, scratch: &mut Scratch)
where
VecZnx<R>: VecZnxToMut + ZnxInfos,
{
#[cfg(debug_assertions)]
{
assert_eq!(self.cols(), 2);
assert_eq!(res.cols(), 2);
assert_eq!(self.log_base2k(), res.log_base2k())
}
let min_size: usize = self.size().min(res.size());
let (mut res_big, scratch1) = scratch.tmp_vec_znx_big(module, 2, min_size);
module.vec_znx_idft(&mut res_big, 0, &self.data, 0, scratch1);
module.vec_znx_idft(&mut res_big, 1, &self.data, 1, scratch1);
module.vec_znx_big_normalize(self.log_base2k(), res, 0, &res_big, 0, scratch1);
module.vec_znx_big_normalize(self.log_base2k(), res, 1, &res_big, 1, scratch1);
}
}
impl RLWECt<Vec<u8>> {
pub fn encrypt_sk_scratch_bytes<B: Backend>(module: &Module<B>, size: usize) -> usize {
pub fn encrypt_sk_scratch_space<B: Backend>(module: &Module<B>, size: usize) -> usize {
(module.vec_znx_big_normalize_tmp_bytes() | module.bytes_of_vec_znx_dft(1, size)) + module.bytes_of_vec_znx_big(1, size)
}
pub fn encrypt_pk_scratch_bytes<B: Backend>(module: &Module<B>, pk_size: usize) -> usize {
pub fn encrypt_pk_scratch_space<B: Backend>(module: &Module<B>, pk_size: usize) -> usize {
((module.bytes_of_vec_znx_dft(1, pk_size) + module.bytes_of_vec_znx_big(1, pk_size)) | module.bytes_of_scalar_znx(1))
+ module.bytes_of_scalar_znx_dft(1)
+ module.vec_znx_big_normalize_tmp_bytes()
}
pub fn decrypt_scratch_bytes<B: Backend>(module: &Module<B>, size: usize) -> usize {
pub fn decrypt_scratch_space<B: Backend>(module: &Module<B>, size: usize) -> usize {
(module.vec_znx_big_normalize_tmp_bytes() | module.bytes_of_vec_znx_dft(1, size)) + module.bytes_of_vec_znx_big(1, size)
}
}
@@ -393,14 +446,14 @@ pub(crate) fn encrypt_zero_rlwe_dft_sk<C, S>(
}
impl RLWECtDft<Vec<u8>, FFT64> {
pub fn encrypt_zero_sk_scratch_bytes(module: &Module<FFT64>, size: usize) -> usize {
pub fn encrypt_zero_sk_scratch_space(module: &Module<FFT64>, size: usize) -> usize {
(module.bytes_of_vec_znx(1, size) | module.bytes_of_vec_znx_dft(1, size))
+ module.bytes_of_vec_znx_big(1, size)
+ module.bytes_of_vec_znx(1, size)
+ module.vec_znx_big_normalize_tmp_bytes()
}
pub fn decrypt_scratch_bytes(module: &Module<FFT64>, size: usize) -> usize {
pub fn decrypt_scratch_space(module: &Module<FFT64>, size: usize) -> usize {
(module.vec_znx_big_normalize_tmp_bytes()
| module.bytes_of_vec_znx_dft(1, size)
| (module.bytes_of_vec_znx_big(1, size) + module.vec_znx_idft_tmp_bytes()))
@@ -475,6 +528,14 @@ impl<C> RLWECtDft<C, FFT64> {
{
decrypt_rlwe_dft(module, pt, self, sk_dft, scratch);
}
pub fn mul_grlwe_assign<A>(&mut self, module: &Module<FFT64>, a: &GRLWECt<A, FFT64>, scratch: &mut Scratch)
where
VecZnxDft<C, FFT64>: VecZnxDftToMut<FFT64> + VecZnxDftToRef<FFT64>,
MatZnxDft<A, FFT64>: MatZnxDftToRef<FFT64>,
{
a.mul_rlwe_dft_inplace(module, self, scratch);
}
}
pub(crate) fn encrypt_rlwe_pk<C, P, S>(
@@ -517,6 +578,7 @@ pub(crate) fn encrypt_rlwe_pk<C, P, S>(
),
SecretDistribution::TernaryFixed(hw) => u.fill_ternary_hw(0, hw, source_xu),
SecretDistribution::TernaryProb(prob) => u.fill_ternary_prob(0, prob, source_xu),
SecretDistribution::ZERO => {}
}
module.svp_prepare(&mut u_dft, 0, &u, 0);
@@ -542,199 +604,3 @@ pub(crate) fn encrypt_rlwe_pk<C, P, S>(
tmp_big.add_normal(log_base2k, 0, pk.log_k(), source_xe, sigma, bound);
module.vec_znx_big_normalize(log_base2k, ct, 1, &tmp_big, 0, scratch_3);
}
#[cfg(test)]
mod tests {
use base2k::{Decoding, Encoding, FFT64, Module, ScratchOwned, Stats, VecZnxOps, ZnxZero};
use itertools::izip;
use sampling::source::Source;
use crate::{
elem_rlwe::{Infos, RLWECt, RLWECtDft, RLWEPt},
keys::{PublicKey, SecretKey, SecretKeyDft},
};
#[test]
fn encrypt_sk_fft64() {
let module: Module<FFT64> = Module::<FFT64>::new(32);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let log_k_pt: usize = 30;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_ct, 2);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_pt);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECt::encrypt_sk_scratch_bytes(&module, ct.size()) | RLWECt::decrypt_scratch_bytes(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt.data
.encode_vec_i64(0, log_base2k, log_k_pt, &data_want, 10);
ct.encrypt_sk(
&module,
Some(&pt),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
pt.data.zero();
ct.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
let mut data_have: Vec<i64> = vec![0i64; module.n()];
pt.data
.decode_vec_i64(0, log_base2k, pt.size() * log_base2k, &mut data_have);
// TODO: properly assert the decryption noise through std(dec(ct) - pt)
let scale: f64 = (1 << (pt.size() * log_base2k - log_k_pt)) as f64;
izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| {
let b_scaled = (*b as f64) / scale;
assert!(
(*a as f64 - b_scaled).abs() < 0.1,
"{} {}",
*a as f64,
b_scaled
)
});
module.free();
}
#[test]
fn encrypt_zero_sk_fft64() {
let module: Module<FFT64> = Module::<FFT64>::new(1024);
let log_base2k: usize = 8;
let log_k_ct: usize = 55;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut ct_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct, 2);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECtDft::decrypt_scratch_bytes(&module, ct_dft.size())
| RLWECtDft::encrypt_zero_sk_scratch_bytes(&module, ct_dft.size()),
);
ct_dft.encrypt_zero_sk(
&module,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
assert!((sigma - pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2()) <= 0.2);
module.free();
}
#[test]
fn encrypt_pk_fft64() {
let module: Module<FFT64> = Module::<FFT64>::new(32);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let log_k_pk: usize = 64;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_ct, 2);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xu: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut pk: PublicKey<Vec<u8>, FFT64> = PublicKey::new(&module, log_base2k, log_k_pk);
pk.generate(
&module,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECt::encrypt_sk_scratch_bytes(&module, ct.size())
| RLWECt::decrypt_scratch_bytes(&module, ct.size())
| RLWECt::encrypt_pk_scratch_bytes(&module, pk.size()),
);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0);
pt_want
.data
.encode_vec_i64(0, log_base2k, log_k_ct, &data_want, 10);
ct.encrypt_pk(
&module,
Some(&pt_want),
&pk,
&mut source_xu,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want, 0, &pt_have, 0);
assert!(((1.0f64 / 12.0).sqrt() - pt_want.data.std(0, log_base2k) * (log_k_ct as f64).exp2()).abs() < 0.2);
module.free();
}
}

View File

@@ -1,6 +1,7 @@
use base2k::{
Backend, FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc, ScalarZnxDftOps, ScalarZnxDftToMut,
ScalarZnxDftToRef, ScalarZnxToMut, ScalarZnxToRef, ScratchOwned, VecZnxDft, VecZnxDftToMut, VecZnxDftToRef, ZnxInfos,
ZnxZero,
};
use sampling::source::Source;
@@ -10,6 +11,7 @@ use crate::{elem::Infos, elem_rlwe::RLWECtDft};
pub enum SecretDistribution {
TernaryFixed(usize), // Ternary with fixed Hamming weight
TernaryProb(f64), // Ternary with probabilistic Hamming weight
ZERO, // Debug mod
NONE,
}
@@ -40,6 +42,11 @@ where
self.data.fill_ternary_hw(0, hw, source);
self.dist = SecretDistribution::TernaryFixed(hw);
}
pub fn fill_zero(&mut self) {
self.data.zero();
self.dist = SecretDistribution::ZERO;
}
}
impl<C> ScalarZnxToMut for SecretKey<C>
@@ -117,7 +124,7 @@ pub struct PublicKey<D, B: Backend> {
impl<B: Backend> PublicKey<Vec<u8>, B> {
pub fn new(module: &Module<B>, log_base2k: usize, log_k: usize) -> Self {
Self {
data: RLWECtDft::new(module, log_base2k, log_k, 2),
data: RLWECtDft::new(module, log_base2k, log_k),
dist: SecretDistribution::NONE,
}
}
@@ -179,7 +186,7 @@ impl<C> PublicKey<C, FFT64> {
}
// Its ok to allocate scratch space here since pk is usually generated only once.
let mut scratch: ScratchOwned = ScratchOwned::new(RLWECtDft::encrypt_zero_sk_scratch_bytes(
let mut scratch: ScratchOwned = ScratchOwned::new(RLWECtDft::encrypt_zero_sk_scratch_space(
module,
self.size(),
));

View File

@@ -3,4 +3,5 @@ pub mod elem_grlwe;
pub mod elem_rgsw;
pub mod elem_rlwe;
pub mod keys;
mod test_fft64;
mod utils;

View File

@@ -0,0 +1,722 @@
#[cfg(test)]
mod test {
use base2k::{FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps};
use sampling::source::Source;
use crate::{
elem::Infos,
elem_grlwe::GRLWECt,
elem_rlwe::{RLWECt, RLWECtDft, RLWEPt},
keys::{SecretKey, SecretKeyDft},
test_fft64::elem_grlwe::noise_grlwe_rlwe_product,
};
#[test]
fn encrypt_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_ct, rows);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
(0..ct.rows()).for_each(|row_i| {
ct.get_row(&module, row_i, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &pt_scalar, 0);
let std_pt: f64 = pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
});
module.free();
}
#[test]
fn mul_rlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| GRLWECt::mul_rlwe_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_grlwe.mul_rlwe(&module, &mut ct_rlwe_out, &ct_rlwe_in, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn mul_rlwe_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe: usize = 45;
let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GRLWECt::mul_rlwe_scratch_space(&module, ct_rlwe.size(), ct_rlwe.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_grlwe.mul_rlwe_inplace(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn mul_rlwe_dft() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe_in: usize = 45;
let log_k_rlwe_out: usize = 60;
let rows: usize = (log_k_rlwe_in + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe_in: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_in_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_in);
let mut ct_rlwe_out: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe_out);
let mut ct_rlwe_out_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe_out);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_in);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe_out.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| GRLWECt::mul_rlwe_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_grlwe.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe_in.dft(&module, &mut ct_rlwe_in_dft);
ct_grlwe.mul_rlwe_dft(
&module,
&mut ct_rlwe_out_dft,
&ct_rlwe_in_dft,
scratch.borrow(),
);
ct_rlwe_out_dft.idft(&module, &mut ct_rlwe_out, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe_in,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn mul_rlwe_dft_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let log_k_rlwe: usize = 45;
let rows: usize = (log_k_rlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_rlwe: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_rlwe);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_rlwe);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_rlwe);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(log_base2k, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe.size())
| RLWECt::decrypt_scratch_space(&module, ct_rlwe.size())
| RLWECt::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GRLWECt::mul_rlwe_scratch_space(&module, ct_rlwe.size(), ct_rlwe.size(), ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
ct_grlwe.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
Some(&pt_want),
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_rlwe.dft(&module, &mut ct_rlwe_dft);
ct_grlwe.mul_rlwe_dft_inplace(&module, &mut ct_rlwe_dft, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_rlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let noise_have: f64 = pt_have.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_rlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
module.free();
}
#[test]
fn mul_grlwe() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s2.size())
| GRLWECt::mul_grlwe_scratch_space(
&module,
ct_grlwe_s0s2.size(),
ct_grlwe_s0s1.size(),
ct_grlwe_s1s2.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s1s2.mul_grlwe(
&module,
&mut ct_grlwe_s0s2,
&ct_grlwe_s0s1,
scratch.borrow(),
);
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
#[test]
fn mul_grlwe_inplace() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 12;
let log_k_grlwe: usize = 60;
let rows: usize = (log_k_grlwe + log_base2k - 1) / log_base2k;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct_grlwe_s0s1: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut ct_grlwe_s1s2: GRLWECt<Vec<u8>, FFT64> = GRLWECt::new(&module, log_base2k, log_k_grlwe, rows);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GRLWECt::encrypt_sk_scratch_space(&module, ct_grlwe_s0s1.size())
| RLWECtDft::decrypt_scratch_space(&module, ct_grlwe_s0s1.size())
| GRLWECt::mul_grlwe_scratch_space(
&module,
ct_grlwe_s0s1.size(),
ct_grlwe_s0s1.size(),
ct_grlwe_s1s2.size(),
),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk1_dft.dft(&module, &sk1);
let mut sk2: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk2.fill_ternary_prob(0.5, &mut source_xs);
let mut sk2_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk2_dft.dft(&module, &sk2);
// GRLWE_{s1}(s0) = s0 -> s1
ct_grlwe_s0s1.encrypt_sk(
&module,
&sk0.data,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s2}(s1) -> s1 -> s2
ct_grlwe_s1s2.encrypt_sk(
&module,
&sk1.data,
&sk2_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
// GRLWE_{s1}(s0) (x) GRLWE_{s2}(s1) = GRLWE_{s2}(s0)
ct_grlwe_s1s2.mul_grlwe_inplace(&module, &mut ct_grlwe_s0s1, scratch.borrow());
let ct_grlwe_s0s2: GRLWECt<Vec<u8>, FFT64> = ct_grlwe_s0s1;
let mut ct_rlwe_dft_s0s2: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_grlwe);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_grlwe);
(0..ct_grlwe_s0s2.rows()).for_each(|row_i| {
ct_grlwe_s0s2.get_row(&module, row_i, &mut ct_rlwe_dft_s0s2);
ct_rlwe_dft_s0s2.decrypt(&module, &mut pt, &sk2_dft, scratch.borrow());
module.vec_znx_sub_scalar_inplace(&mut pt, 0, row_i, &sk0, 0);
let noise_have: f64 = pt.data.std(0, log_base2k).log2();
let noise_want: f64 = noise_grlwe_rlwe_product(
module.n() as f64,
log_base2k,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
log_k_grlwe,
log_k_grlwe,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
});
module.free();
}
}
#[allow(dead_code)]
pub(crate) fn noise_grlwe_rlwe_product(
n: f64,
log_base2k: usize,
var_xs: f64,
var_msg: f64,
var_a_err: f64,
var_gct_err_lhs: f64,
var_gct_err_rhs: f64,
a_logq: usize,
b_logq: usize,
) -> f64 {
let a_logq: usize = a_logq.min(b_logq);
let a_cols: usize = (a_logq + log_base2k - 1) / log_base2k;
let b_scale = 2.0f64.powi(b_logq as i32);
let a_scale: f64 = 2.0f64.powi((b_logq - a_logq) as i32);
let base: f64 = (1 << (log_base2k)) as f64;
let var_base: f64 = base * base / 12f64;
// lhs = a_cols * n * (var_base * var_gct_err_lhs + var_e_a * var_msg * p^2)
// rhs = a_cols * n * var_base * var_gct_err_rhs * var_xs
let mut noise: f64 = (a_cols as f64) * n * var_base * (var_gct_err_lhs + var_xs * var_gct_err_rhs);
noise += var_msg * var_a_err * a_scale * a_scale * n;
noise = noise.sqrt();
noise /= b_scale;
noise.log2().min(-1.0) // max noise is [-2^{-1}, 2^{-1}]
}

View File

@@ -0,0 +1,88 @@
#[cfg(test)]
mod tests {
use base2k::{
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScratchOwned, Stats, VecZnxBig, VecZnxBigAlloc, VecZnxBigOps,
VecZnxDft, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, ZnxZero,
};
use sampling::source::Source;
use crate::{
elem::Infos,
elem_rgsw::RGSWCt,
elem_rlwe::{RLWECtDft, RLWEPt},
keys::{SecretKey, SecretKeyDft},
};
#[test]
fn encrypt_rgsw_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let rows: usize = 4;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RGSWCt<Vec<u8>, FFT64> = RGSWCt::new(&module, log_base2k, log_k_ct, rows);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut pt_scalar: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_scalar.fill_ternary_hw(0, module.n(), &mut source_xs);
let mut scratch: ScratchOwned = ScratchOwned::new(
RGSWCt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECtDft::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
ct.encrypt_sk(
&module,
&pt_scalar,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut ct_rlwe_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
let mut pt_dft: VecZnxDft<Vec<u8>, FFT64> = module.new_vec_znx_dft(1, ct.size());
let mut pt_big: VecZnxBig<Vec<u8>, FFT64> = module.new_vec_znx_big(1, ct.size());
(0..ct.cols()).for_each(|col_j| {
(0..ct.rows()).for_each(|row_i| {
module.vec_znx_add_scalar_inplace(&mut pt_want, 0, row_i, &pt_scalar, 0);
if col_j == 1 {
module.vec_znx_dft(&mut pt_dft, 0, &pt_want, 0);
module.svp_apply_inplace(&mut pt_dft, 0, &sk_dft, 0);
module.vec_znx_idft_tmp_a(&mut pt_big, 0, &mut pt_dft, 0);
module.vec_znx_big_normalize(log_base2k, &mut pt_want, 0, &pt_big, 0, scratch.borrow());
}
ct.get_row(&module, row_i, col_j, &mut ct_rlwe_dft);
ct_rlwe_dft.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have, 0, &pt_want, 0);
let std_pt: f64 = pt_have.data.std(0, log_base2k) * (log_k_ct as f64).exp2();
assert!((sigma - std_pt).abs() <= 0.2, "{} {}", sigma, std_pt);
pt_want.data.zero();
});
});
module.free();
}
}

View File

@@ -0,0 +1,196 @@
#[cfg(test)]
mod tests {
use base2k::{Decoding, Encoding, FFT64, Module, ScratchOwned, Stats, VecZnxOps, ZnxZero};
use itertools::izip;
use sampling::source::Source;
use crate::{
elem::Infos,
elem_rlwe::{RLWECt, RLWECtDft, RLWEPt},
keys::{PublicKey, SecretKey, SecretKeyDft},
};
#[test]
fn encrypt_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(32);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let log_k_pt: usize = 30;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_ct);
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_pt);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECt::encrypt_sk_scratch_space(&module, ct.size()) | RLWECt::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt.data
.encode_vec_i64(0, log_base2k, log_k_pt, &data_want, 10);
ct.encrypt_sk(
&module,
Some(&pt),
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
pt.data.zero();
ct.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
let mut data_have: Vec<i64> = vec![0i64; module.n()];
pt.data
.decode_vec_i64(0, log_base2k, pt.size() * log_base2k, &mut data_have);
// TODO: properly assert the decryption noise through std(dec(ct) - pt)
let scale: f64 = (1 << (pt.size() * log_base2k - log_k_pt)) as f64;
izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| {
let b_scaled = (*b as f64) / scale;
assert!(
(*a as f64 - b_scaled).abs() < 0.1,
"{} {}",
*a as f64,
b_scaled
)
});
module.free();
}
#[test]
fn encrypt_zero_sk() {
let module: Module<FFT64> = Module::<FFT64>::new(1024);
let log_base2k: usize = 8;
let log_k_ct: usize = 55;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut pt: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut ct_dft: RLWECtDft<Vec<u8>, FFT64> = RLWECtDft::new(&module, log_base2k, log_k_ct);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECtDft::decrypt_scratch_space(&module, ct_dft.size())
| RLWECtDft::encrypt_zero_sk_scratch_space(&module, ct_dft.size()),
);
ct_dft.encrypt_zero_sk(
&module,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
ct_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
assert!((sigma - pt.data.std(0, log_base2k) * (log_k_ct as f64).exp2()) <= 0.2);
module.free();
}
#[test]
fn encrypt_pk() {
let module: Module<FFT64> = Module::<FFT64>::new(32);
let log_base2k: usize = 8;
let log_k_ct: usize = 54;
let log_k_pk: usize = 64;
let sigma: f64 = 3.2;
let bound: f64 = sigma * 6.0;
let mut ct: RLWECt<Vec<u8>> = RLWECt::new(&module, log_base2k, log_k_ct);
let mut pt_want: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xu: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::new(&module);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyDft<Vec<u8>, FFT64> = SecretKeyDft::new(&module);
sk_dft.dft(&module, &sk);
let mut pk: PublicKey<Vec<u8>, FFT64> = PublicKey::new(&module, log_base2k, log_k_pk);
pk.generate(
&module,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
bound,
);
let mut scratch: ScratchOwned = ScratchOwned::new(
RLWECt::encrypt_sk_scratch_space(&module, ct.size())
| RLWECt::decrypt_scratch_space(&module, ct.size())
| RLWECt::encrypt_pk_scratch_space(&module, pk.size()),
);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0);
pt_want
.data
.encode_vec_i64(0, log_base2k, log_k_ct, &data_want, 10);
ct.encrypt_pk(
&module,
Some(&pt_want),
&pk,
&mut source_xu,
&mut source_xe,
sigma,
bound,
scratch.borrow(),
);
let mut pt_have: RLWEPt<Vec<u8>> = RLWEPt::new(&module, log_base2k, log_k_ct);
ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want, 0, &pt_have, 0);
assert!(((1.0f64 / 12.0).sqrt() - pt_want.data.std(0, log_base2k) * (log_k_ct as f64).exp2()).abs() < 0.2);
module.free();
}
}

View File

@@ -0,0 +1,3 @@
mod elem_grlwe;
mod elem_rgsw;
mod elem_rlwe;