This commit is contained in:
Jean-Philippe Bossuat
2025-02-04 17:13:46 +01:00
parent e4a976ec9e
commit a790ff37cc
14 changed files with 1097 additions and 683 deletions

View File

@@ -1,4 +1,7 @@
use base2k::{Module, Scalar, SvpPPol, VecZnx, VecZnxBig, VecZnxDft, FFT64};
use base2k::{
Encoding, Infos, Module, Sampling, Scalar, SvpPPol, SvpPPolOps, VecZnx, VecZnxBig, VecZnxDft,
VecZnxOps, FFT64,
};
use itertools::izip;
use sampling::source::Source;
@@ -29,7 +32,7 @@ fn main() {
// a <- Z_{2^prec}[X]/(X^{N}+1)
let mut a: VecZnx = module.new_vec_znx(limbs);
a.fill_uniform(log_base2k, &mut source, limbs);
a.fill_uniform(log_base2k, limbs, &mut source);
// Scratch space for DFT values
let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.limbs());
@@ -50,7 +53,7 @@ fn main() {
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
// m
m.from_i64(log_base2k, &want, 4, log_scale);
m.encode_i64_vec(log_base2k, log_scale, &want, 4);
m.normalize(log_base2k, &mut carry);
// buf_big <- m - buf_big
@@ -59,7 +62,7 @@ fn main() {
// b <- normalize(buf_big) + e
let mut b: VecZnx = module.new_vec_znx(limbs);
module.vec_znx_big_normalize(log_base2k, &mut b, &buf_big, &mut carry);
b.add_normal(log_base2k, &mut source, 3.2, 19.0, log_base2k * limbs);
b.add_normal(log_base2k, log_base2k * limbs, &mut source, 3.2, 19.0);
//Decrypt
@@ -75,7 +78,7 @@ fn main() {
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];
res.to_i64(log_base2k, &mut have, res.limbs() * log_base2k);
res.decode_i64_vec(log_base2k, res.limbs() * log_base2k, &mut have);
let scale: f64 = (1 << (res.limbs() * log_base2k - log_scale)) as f64;
izip!(want.iter(), have.iter())

View File

@@ -1,5 +1,7 @@
use base2k::vmp::VectorMatrixProduct;
use base2k::{Free, Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, FFT64};
use base2k::{
Encoding, Free, Infos, Matrix3D, Module, VecZnx, VecZnxBig, VecZnxDft, VecZnxOps, VmpPMat,
VmpPMatOps, FFT64,
};
use std::cmp::min;
fn main() {
@@ -24,7 +26,7 @@ fn main() {
a_values[1] = (1 << log_base2k) + 1;
let mut a: VecZnx = module.new_vec_znx(limbs);
a.from_i64(log_base2k, &a_values, 32, log_k);
a.encode_i64_vec(log_base2k, log_k, &a_values, 32);
a.normalize(log_base2k, &mut buf);
(0..a.limbs()).for_each(|i| println!("{}: {:?}", i, a.at(i)));
@@ -48,7 +50,7 @@ fn main() {
module.vec_znx_big_normalize(log_base2k, &mut res, &c_big, &mut buf);
let mut values_res: Vec<i64> = vec![i64::default(); n];
res.to_i64(log_base2k, &mut values_res, log_k);
res.decode_i64_vec(log_base2k, log_k, &mut values_res);
(0..res.limbs()).for_each(|i| println!("{}: {:?}", i, res.at(i)));

236
base2k/src/encoding.rs Normal file
View File

@@ -0,0 +1,236 @@
use crate::ffi::znx::znx_zero_i64_ref;
use crate::{Infos, VecZnx};
use itertools::izip;
use std::cmp::min;
pub trait Encoding {
/// encode a vector of i64 on the receiver.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `data`: data to encode on the receiver.
/// * `log_max`: base two logarithm of the infinity norm of the input data.
fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize);
/// decode a vector of i64 from the receiver.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `data`: data to decode from the receiver.
fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]);
/// encodes a single i64 on the receiver at the given index.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `i`: index of the coefficient on which to encode the data.
/// * `data`: data to encode on the receiver.
/// * `log_max`: base two logarithm of the infinity norm of the input data.
fn encode_i64_coeff(
&mut self,
log_base2k: usize,
log_k: usize,
i: usize,
data: i64,
log_max: usize,
);
/// decode a single of i64 from the receiver at the given index.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `i`: index of the coefficient to decode.
/// * `data`: data to decode from the receiver.
fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64;
}
impl Encoding for VecZnx {
fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
}
fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n
);
data.copy_from_slice(self.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << log_base2k) + x;
});
}
})
}
fn encode_i64_coeff(
&mut self,
log_base2k: usize,
log_k: usize,
i: usize,
value: i64,
log_max: usize,
) {
assert!(i < self.n());
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let limbs = self.limbs();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
}
fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
let x = self.data[i * self.n];
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << log_base2k) + x;
}
});
res
}
}
#[cfg(test)]
mod tests {
use crate::{Encoding, VecZnx};
use itertools::izip;
use sampling::source::Source;
#[test]
fn test_set_get_i64_lo_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
a.encode_i64_vec(log_base2k, log_k, &have, 10);
let mut want = vec![i64::default(); n];
a.decode_i64_vec(log_base2k, log_k, &mut want);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
}
#[test]
fn test_set_get_i64_hi_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.encode_i64_vec(log_base2k, log_k, &have, 63);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.decode_i64_vec(log_base2k, log_k, &mut want);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
}
#[test]
fn test_normalize() {}
}

43
base2k/src/free.rs Normal file
View File

@@ -0,0 +1,43 @@
use crate::ffi::svp;
use crate::ffi::vec_znx_big;
use crate::ffi::vec_znx_dft;
use crate::ffi::vmp;
use crate::{SvpPPol, VecZnxBig, VecZnxDft, VmpPMat};
/// This trait should be implemented by structs that point to
/// memory allocated through C.
pub trait Free {
// Frees the memory and self destructs.
fn free(self);
}
impl Free for VmpPMat {
/// Frees the C allocated memory of the [VmpPMat] and self destructs the struct.
fn free(self) {
unsafe { vmp::delete_vmp_pmat(self.data) };
drop(self);
}
}
impl Free for VecZnxDft {
fn free(self) {
unsafe { vec_znx_dft::delete_vec_znx_dft(self.0) };
drop(self);
}
}
impl Free for VecZnxBig {
fn free(self) {
unsafe {
vec_znx_big::delete_vec_znx_big(self.0);
}
drop(self);
}
}
impl Free for SvpPPol {
fn free(self) {
unsafe { svp::delete_svp_ppol(self.0) };
let _ = drop(self);
}
}

77
base2k/src/infos.rs Normal file
View File

@@ -0,0 +1,77 @@
use crate::{VecZnx, VmpPMat};
pub trait Infos {
/// Returns the ring degree of the receiver.
fn n(&self) -> usize;
/// Returns the base two logarithm of the ring dimension of the receiver.
fn log_n(&self) -> usize;
/// Returns the number of limbs of the receiver.
/// This method is equivalent to [Infos::cols].
fn limbs(&self) -> usize;
/// Returns the number of columns of the receiver.
/// This method is equivalent to [Infos::limbs].
fn cols(&self) -> usize;
/// Returns the number of rows of the receiver.
fn rows(&self) -> usize;
}
impl Infos for VecZnx {
/// Returns the base 2 logarithm of the [VecZnx] degree.
fn log_n(&self) -> usize {
(usize::BITS - (self.n - 1).leading_zeros()) as _
}
/// Returns the [VecZnx] degree.
fn n(&self) -> usize {
self.n
}
/// Returns the number of limbs of the [VecZnx].
fn limbs(&self) -> usize {
self.data.len() / self.n
}
/// Returns the number of limbs of the [VecZnx].
fn cols(&self) -> usize {
self.data.len() / self.n
}
/// Returns the number of limbs of the [VecZnx].
fn rows(&self) -> usize {
1
}
}
impl Infos for VmpPMat {
/// Returns the ring dimension of the [VmpPMat].
fn n(&self) -> usize {
self.n
}
fn log_n(&self) -> usize {
(usize::BITS - (self.n() - 1).leading_zeros()) as _
}
/// Returns the number of limbs of each [VecZnxDft].
/// This method is equivalent to [Self::cols].
fn limbs(&self) -> usize {
self.cols
}
/// Returns the number of rows (i.e. of [VecZnxDft]) of the [VmpPMat]
fn rows(&self) -> usize {
self.rows
}
/// Returns the number of cols of the [VmpPMat].
/// The number of cols refers to the number of limbs
/// of each [VecZnxDft].
/// This method is equivalent to [Self::limbs].
fn cols(&self) -> usize {
self.cols
}
}

View File

@@ -11,21 +11,13 @@ pub mod module;
#[allow(unused_imports)]
pub use module::*;
pub mod scalar;
#[allow(unused_imports)]
pub use scalar::*;
pub mod vec_znx;
#[allow(unused_imports)]
pub use vec_znx::*;
pub mod vec_znx_arithmetic;
pub mod vec_znx_big;
#[allow(unused_imports)]
pub use vec_znx_arithmetic::*;
pub mod vec_znx_big_arithmetic;
#[allow(unused_imports)]
pub use vec_znx_big_arithmetic::*;
pub use vec_znx_big::*;
pub mod vec_znx_dft;
#[allow(unused_imports)]
@@ -39,6 +31,22 @@ pub mod vmp;
#[allow(unused_imports)]
pub use vmp::*;
pub mod sampling;
#[allow(unused_imports)]
pub use sampling::*;
pub mod encoding;
#[allow(unused_imports)]
pub use encoding::*;
pub mod infos;
#[allow(unused_imports)]
pub use infos::*;
pub mod free;
#[allow(unused_imports)]
pub use free::*;
pub const GALOISGENERATOR: u64 = 5;
#[allow(dead_code)]
@@ -65,10 +73,3 @@ pub fn cast_u8_to_f64_slice(data: &mut [u8]) -> &[f64] {
let len: usize = data.len() / std::mem::size_of::<f64>();
unsafe { std::slice::from_raw_parts(ptr, len) }
}
/// This trait should be implemented by structs that point to
/// memory allocated through C.
pub trait Free {
// Frees the memory and self destructs.
fn free(self);
}

94
base2k/src/sampling.rs Normal file
View File

@@ -0,0 +1,94 @@
use crate::{Infos, VecZnx};
use rand_distr::{Distribution, Normal};
use sampling::source::Source;
pub trait Sampling {
/// Fills the first `limbs` limbs with uniform values in \[-2^{log_base2k}, 2^{log_base2k}\]
fn fill_uniform(&mut self, log_base2k: usize, limbs: usize, source: &mut Source);
/// Adds vector sampled according to the provided distribution, scaled by 2^{-log_k} and bounded to \[-bound, bound\].
fn add_dist_f64<T: Distribution<f64>>(
&mut self,
log_base2k: usize,
log_k: usize,
source: &mut Source,
dist: T,
bound: f64,
);
/// Adds a discrete normal vector scaled by 2^{-log_k} with the provided standard deviation and bounded to \[-bound, bound\].
fn add_normal(
&mut self,
log_base2k: usize,
log_k: usize,
source: &mut Source,
sigma: f64,
bound: f64,
);
}
impl Sampling for VecZnx {
fn fill_uniform(&mut self, log_base2k: usize, limbs: usize, source: &mut Source) {
let base2k: u64 = 1 << log_base2k;
let mask: u64 = base2k - 1;
let base2k_half: i64 = (base2k >> 1) as i64;
let size: usize = self.n() * (limbs - 1);
self.data[..size]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
}
fn add_dist_f64<T: Distribution<f64>>(
&mut self,
log_base2k: usize,
log_k: usize,
source: &mut Source,
dist: T,
bound: f64,
) {
assert!(
(bound.log2().ceil() as i64) < 64,
"invalid bound: ceil(log2(bound))={} > 63",
(bound.log2().ceil() as i64)
);
let log_base2k_rem: usize = log_k % log_base2k;
if log_base2k_rem != 0 {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += (dist_f64.round() as i64) << log_base2k_rem
});
} else {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += dist_f64.round() as i64
});
}
}
fn add_normal(
&mut self,
log_base2k: usize,
log_k: usize,
source: &mut Source,
sigma: f64,
bound: f64,
) {
self.add_dist_f64(
log_base2k,
log_k,
source,
Normal::new(0.0, sigma).unwrap(),
bound,
);
}
}

View File

@@ -1,55 +0,0 @@
use crate::Module;
use rand::seq::SliceRandom;
use rand_core::RngCore;
use rand_distr::{Distribution, WeightedIndex};
use sampling::source::Source;
pub struct Scalar(pub Vec<i64>);
impl Module {
pub fn new_scalar(&self) -> Scalar {
Scalar::new(self.n())
}
}
impl Scalar {
pub fn new(n: usize) -> Self {
Self(vec![i64::default(); Self::buffer_size(n)])
}
pub fn buffer_size(n: usize) -> usize {
n
}
pub fn from_buffer(&mut self, n: usize, buf: &[i64]) {
let size: usize = Self::buffer_size(n);
assert!(
buf.len() >= size,
"invalid buffer: buf.len()={} < self.buffer_size(n={})={}",
buf.len(),
n,
size
);
self.0 = Vec::from(&buf[..size])
}
pub fn as_ptr(&self) -> *const i64 {
self.0.as_ptr()
}
pub fn fill_ternary_prob(&mut self, prob: f64, source: &mut Source) {
let choices: [i64; 3] = [-1, 0, 1];
let weights: [f64; 3] = [prob / 2.0, 1.0 - prob, prob / 2.0];
let dist: WeightedIndex<f64> = WeightedIndex::new(&weights).unwrap();
self.0
.iter_mut()
.for_each(|x: &mut i64| *x = choices[dist.sample(source)]);
}
pub fn fill_ternary_hw(&mut self, hw: usize, source: &mut Source) {
self.0[..hw]
.iter_mut()
.for_each(|x: &mut i64| *x = (((source.next_u32() & 1) as i64) << 1) - 1);
self.0.shuffle(source);
}
}

View File

@@ -1,10 +1,65 @@
use crate::ffi::svp::{delete_svp_ppol, new_svp_ppol, svp_apply_dft, svp_ppol_t, svp_prepare};
use crate::scalar::Scalar;
use crate::ffi::svp;
use crate::{Free, Module, VecZnx, VecZnxDft};
pub struct SvpPPol(pub *mut svp_ppol_t, pub usize);
use crate::Infos;
use rand::seq::SliceRandom;
use rand_core::RngCore;
use rand_distr::{Distribution, WeightedIndex};
use sampling::source::Source;
/// A prepared [crate::Scalar] for [ScalarVectorProduct::svp_apply_dft].
pub struct Scalar(pub Vec<i64>);
impl Module {
pub fn new_scalar(&self) -> Scalar {
Scalar::new(self.n())
}
}
impl Scalar {
pub fn new(n: usize) -> Self {
Self(vec![i64::default(); Self::buffer_size(n)])
}
pub fn buffer_size(n: usize) -> usize {
n
}
pub fn from_buffer(&mut self, n: usize, buf: &[i64]) {
let size: usize = Self::buffer_size(n);
assert!(
buf.len() >= size,
"invalid buffer: buf.len()={} < self.buffer_size(n={})={}",
buf.len(),
n,
size
);
self.0 = Vec::from(&buf[..size])
}
pub fn as_ptr(&self) -> *const i64 {
self.0.as_ptr()
}
pub fn fill_ternary_prob(&mut self, prob: f64, source: &mut Source) {
let choices: [i64; 3] = [-1, 0, 1];
let weights: [f64; 3] = [prob / 2.0, 1.0 - prob, prob / 2.0];
let dist: WeightedIndex<f64> = WeightedIndex::new(&weights).unwrap();
self.0
.iter_mut()
.for_each(|x: &mut i64| *x = choices[dist.sample(source)]);
}
pub fn fill_ternary_hw(&mut self, hw: usize, source: &mut Source) {
self.0[..hw]
.iter_mut()
.for_each(|x: &mut i64| *x = (((source.next_u32() & 1) as i64) << 1) - 1);
self.0.shuffle(source);
}
}
pub struct SvpPPol(pub *mut svp::svp_ppol_t, pub usize);
/// A prepared [crate::Scalar] for [SvpPPolOps::svp_apply_dft].
/// An [SvpPPol] an be seen as a [VecZnxDft] of one limb.
/// The backend array of an [SvpPPol] is allocated in C and must be freed manually.
impl SvpPPol {
@@ -19,15 +74,8 @@ impl SvpPPol {
}
}
impl Free for SvpPPol {
fn free(self) {
unsafe { delete_svp_ppol(self.0) };
let _ = drop(self);
}
}
pub trait ScalarVectorProduct {
/// Prepares a [crate::Scalar] for a [ScalarVectorProduct::svp_apply_dft].
pub trait SvpPPolOps {
/// Prepares a [crate::Scalar] for a [SvpPPolOps::svp_apply_dft].
fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar);
/// Allocates a new [SvpPPol].
@@ -38,16 +86,16 @@ pub trait ScalarVectorProduct {
fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx);
}
impl Module {
pub fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar) {
unsafe { svp_prepare(self.0, svp_ppol.0, a.as_ptr()) }
impl SvpPPolOps for Module {
fn svp_prepare(&self, svp_ppol: &mut SvpPPol, a: &Scalar) {
unsafe { svp::svp_prepare(self.0, svp_ppol.0, a.as_ptr()) }
}
pub fn svp_new_ppol(&self) -> SvpPPol {
unsafe { SvpPPol(new_svp_ppol(self.0), self.n()) }
fn svp_new_ppol(&self) -> SvpPPol {
unsafe { SvpPPol(svp::new_svp_ppol(self.0), self.n()) }
}
pub fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx) {
fn svp_apply_dft(&self, c: &mut VecZnxDft, a: &SvpPPol, b: &VecZnx) {
let limbs: u64 = b.limbs() as u64;
assert!(
c.limbs() as u64 >= limbs,
@@ -55,6 +103,6 @@ impl Module {
c.limbs(),
limbs
);
unsafe { svp_apply_dft(self.0, c.0, limbs, a.0, b.as_ptr(), limbs, b.n() as u64) }
unsafe { svp::svp_apply_dft(self.0, c.0, limbs, a.0, b.as_ptr(), limbs, b.n() as u64) }
}
}

View File

@@ -1,26 +1,23 @@
use crate::cast_mut_u8_to_mut_i64_slice;
use crate::ffi::znx::{
znx_automorphism_i64, znx_automorphism_inplace_i64, znx_normalize, znx_zero_i64_ref,
};
use crate::module::Module;
use crate::ffi::vec_znx;
use crate::ffi::znx;
use crate::{Infos, Module};
use itertools::izip;
use rand_distr::{Distribution, Normal};
use sampling::source::Source;
use std::cmp::min;
impl Module {
pub fn new_vec_znx(&self, limbs: usize) -> VecZnx {
VecZnx::new(self.n(), limbs)
}
}
/// [VecZnx] represents a vector of small norm polynomials of Zn\[X\] with [i64] coefficients.
/// A [VecZnx] is composed of multiple Zn\[X\] polynomials stored in a single contiguous array
/// in the memory.
#[derive(Clone)]
pub struct VecZnx {
/// Polynomial degree.
pub n: usize,
/// Polynomial coefficients, as a contiguous array. Each limb is equally spaced by n.
pub data: Vec<i64>,
}
impl VecZnx {
/// Allocates a new [VecZnx] composed of #limbs polynomials of Z\[X\].
pub fn new(n: usize, limbs: usize) -> Self {
Self {
n: n,
@@ -28,11 +25,14 @@ impl VecZnx {
}
}
/// Returns the minimum size of the [i64] array required to assign a
/// new backend array to a [VecZnx] through [VecZnx::from_buffer].
pub fn buffer_size(n: usize, limbs: usize) -> usize {
n * limbs
}
pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &[i64]) {
/// Assigns a new backing array to a [VecZnx].
pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &mut [i64]) {
let size = Self::buffer_size(n, limbs);
assert!(
buf.len() >= size,
@@ -46,142 +46,94 @@ impl VecZnx {
self.data = Vec::from(&buf[..size])
}
pub fn log_n(&self) -> u64 {
(u64::BITS - (self.n - 1).leading_zeros()) as _
}
pub fn n(&self) -> usize {
self.n
}
pub fn limbs(&self) -> usize {
self.data.len() / self.n
}
/// Copies the coefficients of `a` on the receiver.
/// Copy is done with the minimum size matching both backing arrays.
pub fn copy_from(&mut self, a: &VecZnx) {
let size = min(self.data.len(), a.data.len());
self.data[..size].copy_from_slice(&a.data[..size])
}
/// Returns a non-mutable pointer to the backing array of the [VecZnx].
pub fn as_ptr(&self) -> *const i64 {
self.data.as_ptr()
}
/// Returns a mutable pointer to the backing array of the [VecZnx].
pub fn as_mut_ptr(&mut self) -> *mut i64 {
self.data.as_mut_ptr()
}
/// Returns a non-mutable reference to the i-th limb of the [VecZnx].
pub fn at(&self, i: usize) -> &[i64] {
&self.data[i * self.n..(i + 1) * self.n]
}
pub fn at_ptr(&self, i: usize) -> *const i64 {
&self.data[i * self.n] as *const i64
}
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
&mut self.data[i * self.n] as *mut i64
}
/// Returns a mutable reference to the i-th limb of the [VecZnx].
pub fn at_mut(&mut self, i: usize) -> &mut [i64] {
&mut self.data[i * self.n..(i + 1) * self.n]
}
/// Returns a non-mutable pointer to the i-th limb of the [VecZnx].
pub fn at_ptr(&self, i: usize) -> *const i64 {
&self.data[i * self.n] as *const i64
}
/// Returns a mutable pointer to the i-th limb of the [VecZnx].
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
&mut self.data[i * self.n] as *mut i64
}
/// Zeroes the backing array of the [VecZnx].
pub fn zero(&mut self) {
unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
}
pub fn from_i64(&mut self, log_base2k: usize, data: &[i64], log_max: usize, log_k: usize) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
}
pub fn from_i64_single(
&mut self,
log_base2k: usize,
i: usize,
value: i64,
log_max: usize,
log_k: usize,
) {
assert!(i < self.n());
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let limbs = self.limbs();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
unsafe { znx::znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
}
/// Normalizes the [VecZnx], ensuring all coefficients are in the interval \[-2^log_base2k, 2^log_base2k].
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the base to reduce to.
/// * `carry`: scratch space of size at least self.n()<<3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.data.len()*8.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
/// use sampling::source::Source;
///
/// let n: usize = 8; // polynomial degree
/// let log_base2k: usize = 17; // base two logarithm of the coefficients decomposition
/// let limbs: usize = 5; // number of limbs (i.e. can store coeffs in the range +/- 2^{limbs * log_base2k - 1})
/// let log_k: usize = limbs * log_base2k - 5;
/// let mut a: VecZnx = VecZnx::new(n, limbs);
/// let mut carry: Vec<u8> = vec![u8::default(); a.n()<<3];
/// let mut have: Vec<i64> = vec![i64::default(); a.n()];
/// let mut source = Source::new([1; 32]);
///
/// // Populates the first limb of the of polynomials with random i64 values.
/// have.iter_mut().for_each(|x| {
/// *x = source
/// .next_u64n(u64::MAX, u64::MAX)
/// .wrapping_sub(u64::MAX / 2 + 1) as i64;
/// });
/// a.encode_i64_vec(log_base2k, log_k, &have, 63);
/// a.normalize(log_base2k, &mut carry);
///
/// // Ensures normalized values are in the range +/- 2^{log_base2k-1}
/// let base_half = 1 << (log_base2k - 1);
/// a.data
/// .iter()
/// .for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
///
/// // Ensures reconstructed normalized values are equal to non-normalized values.
/// let mut want = vec![i64::default(); n];
/// a.decode_i64_vec(log_base2k, log_k, &mut want);
/// izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
assert!(
carry.len() >= self.n * 8,
@@ -193,9 +145,9 @@ impl VecZnx {
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
(0..self.limbs()).rev().for_each(|i| {
znx_normalize(
znx::znx_normalize(
self.n as u64,
log_base2k as u64,
self.at_mut_ptr(i),
@@ -207,120 +159,116 @@ impl VecZnx {
}
}
pub fn to_i64(&self, log_base2k: usize, data: &mut [i64], log_k: usize) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
///
/// # Arguments
///
/// * `k`: the power to which to map each coefficients.
/// * `limbs`: the number of limbs on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `limbs` is greater than `self.limbs()`.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
///
/// let n: usize = 8; // polynomial degree
/// let mut a: VecZnx = VecZnx::new(n, 2);
/// let mut b: VecZnx = VecZnx::new(n, 2);
///
/// (0..a.limbs()).for_each(|i|{
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
/// *x = i as i64
/// })
/// });
///
/// b.copy_from(&a);
///
/// a.automorphism_inplace(-1, 1); // X^i -> X^(-i)
/// let limb = b.at_mut(0);
/// (1..limb.len()).for_each(|i|{
/// limb[n-i] = -(i as i64)
/// });
/// izip!(a.data.iter(), b.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn automorphism_inplace(&mut self, k: i64, limbs: usize) {
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n
limbs <= self.limbs(),
"invalid limbs argument: limbs={} > self.limbs()={}",
limbs,
self.limbs()
);
data.copy_from_slice(self.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << log_base2k) + x;
});
}
})
}
pub fn to_i64_single(&self, log_base2k: usize, i: usize, log_k: usize) -> i64 {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
let x = self.data[i * self.n];
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << log_base2k) + x;
}
});
res
}
pub fn automorphism_inplace(&mut self, gal_el: i64) {
unsafe {
(0..self.limbs()).for_each(|i| {
znx_automorphism_inplace_i64(self.n as u64, gal_el, self.at_mut_ptr(i))
})
}
}
pub fn automorphism(&mut self, gal_el: i64, a: &mut VecZnx) {
unsafe {
(0..self.limbs()).for_each(|i| {
znx_automorphism_i64(self.n as u64, gal_el, a.at_mut_ptr(i), self.at_ptr(i))
(0..limbs).for_each(|i| {
znx::znx_automorphism_inplace_i64(self.n as u64, k, self.at_mut_ptr(i))
})
}
}
pub fn fill_uniform(&mut self, log_base2k: usize, source: &mut Source, limbs: usize) {
let base2k: u64 = 1 << log_base2k;
let mask: u64 = base2k - 1;
let base2k_half: i64 = (base2k >> 1) as i64;
let size: usize = self.n() * (limbs - 1);
self.data[..size]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
}
pub fn add_dist_f64<T: Distribution<f64>>(
&mut self,
log_base2k: usize,
source: &mut Source,
dist: T,
bound: f64,
log_k: usize,
) {
let log_base2k_rem: usize = log_k % log_base2k;
if log_base2k_rem != 0 {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += (dist_f64.round() as i64) << log_base2k_rem
});
} else {
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
}
*a += dist_f64.round() as i64
});
}
}
pub fn add_normal(
&mut self,
log_base2k: usize,
source: &mut Source,
sigma: f64,
bound: f64,
log_k: usize,
) {
self.add_dist_f64(
log_base2k,
source,
Normal::new(0.0, sigma).unwrap(),
bound,
log_k,
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
///
/// # Arguments
///
/// * `a`: the receiver.
/// * `k`: the power to which to map each coefficients.
/// * `limbs`: the number of limbs on which to apply the mapping.
///
/// # Panics
///
/// The method will panic if the argument `limbs` is greater than `self.limbs()` or `a.limbs()`.
///
/// # Example
/// ```
/// use base2k::{VecZnx, Encoding, Infos};
/// use itertools::izip;
///
/// let n: usize = 8; // polynomial degree
/// let mut a: VecZnx = VecZnx::new(n, 2);
/// let mut b: VecZnx = VecZnx::new(n, 2);
/// let mut c: VecZnx = VecZnx::new(n, 2);
///
/// (0..a.limbs()).for_each(|i|{
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
/// *x = i as i64
/// })
/// });
///
/// a.automorphism(&mut b, -1, 1); // X^i -> X^(-i)
/// let limb = c.at_mut(0);
/// (1..limb.len()).for_each(|i|{
/// limb[n-i] = -(i as i64)
/// });
/// izip!(b.data.iter(), c.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
/// ```
pub fn automorphism(&mut self, a: &mut VecZnx, k: i64, limbs: usize) {
assert!(
limbs <= self.limbs(),
"invalid limbs argument: limbs={} > self.limbs()={}",
limbs,
self.limbs()
);
assert!(
limbs <= a.limbs(),
"invalid limbs argument: limbs={} > a.limbs()={}",
limbs,
a.limbs()
);
unsafe {
(0..limbs).for_each(|i| {
znx::znx_automorphism_i64(self.n as u64, k, a.at_mut_ptr(i), self.at_ptr(i))
})
}
}
/// Truncates the precision of the [VecZnx] by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the number of bits of precision to drop.
pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
if k == 0 {
return;
@@ -339,6 +287,17 @@ impl VecZnx {
}
}
/// Right shifts the coefficients by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the shift amount.
/// * `carry`: scratch space of size at least equal to self.n() * self.limbs() << 3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.n() * self.limbs() << 3.
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
assert!(
carry.len() >> 3 >= self.n(),
@@ -352,7 +311,7 @@ impl VecZnx {
self.data.rotate_right(self.n * limbs_steps);
unsafe {
znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
znx::znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
}
let k_rem = k % log_base2k;
@@ -361,7 +320,7 @@ impl VecZnx {
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
unsafe {
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
}
let mask: i64 = (1 << k_rem) - 1;
@@ -377,6 +336,12 @@ impl VecZnx {
}
}
/// If self.n() > a.n(): Extracts X^{i*self.n()/a.n()} -> X^{i}.
/// If self.n() < a.n(): Extracts X^{i} -> X^{i*a.n()/self.n()}.
///
/// # Arguments
///
/// * `a`: the receiver polynomial in which the extracted coefficients are stored.
pub fn switch_degree(&self, a: &mut VecZnx) {
let (n_in, n_out) = (self.n(), a.n());
let (gap_in, gap_out): (usize, usize);
@@ -404,74 +369,207 @@ impl VecZnx {
}
}
#[cfg(test)]
mod tests {
use crate::VecZnx;
use itertools::izip;
use sampling::source::Source;
pub trait VecZnxOps {
/// Allocates a new [VecZnx].
///
/// # Arguments
///
/// * `limbs`: the number of limbs.
fn new_vec_znx(&self, limbs: usize) -> VecZnx;
#[test]
fn test_set_get_i64_lo_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
a.from_i64(log_base2k, &have, 10, log_k);
let mut want = vec![i64::default(); n];
a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
/// c <- a + b.
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- b + a.
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// c <- a - b.
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
/// b <- b - a.
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -a.
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx);
/// b <- -b.
fn vec_znx_negate_inplace(&self, a: &mut VecZnx);
/// b <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- a * X^k (mod X^{n} + 1)
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx);
/// b <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
/// a <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx);
}
impl VecZnxOps for Module {
fn new_vec_znx(&self, limbs: usize) -> VecZnx {
VecZnx::new(self.n(), limbs)
}
#[test]
fn test_set_get_i64_hi_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.from_i64(log_base2k, &have, 63, log_k);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
// c <- a + b
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_add(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
#[test]
fn test_normalize() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.from_i64(log_base2k, &have, 63, log_k);
let mut carry: Vec<u8> = vec![u8::default(); n * 8];
a.normalize(log_base2k, &mut carry);
let base_half = 1 << (log_base2k - 1);
a.data
.iter()
.for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
let mut want = vec![i64::default(); n];
a.to_i64(log_base2k, &mut want, log_k);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
// b <- a + b
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_add(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// c <- a + b
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_sub(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// b <- a + b
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_sub(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_negate(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_negate_inplace(&self, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_negate(
self.0,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_rotate(&self, k: i64, a: &mut VecZnx, b: &VecZnx) {
unsafe {
vec_znx::vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx) {
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
}

View File

@@ -1,168 +0,0 @@
use crate::ffi::vec_znx::{
vec_znx_add, vec_znx_automorphism, vec_znx_negate, vec_znx_rotate, vec_znx_sub,
};
use crate::{Module, VecZnx};
impl Module {
// c <- a + b
pub fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx_add(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// b <- a + b
pub fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx_add(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// c <- a + b
pub fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
unsafe {
vec_znx_sub(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
// b <- a + b
pub fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx_sub(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
pub fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx_negate(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
pub fn vec_znx_negate_inplace(&self, a: &mut VecZnx) {
unsafe {
vec_znx_negate(
self.0,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
pub fn vec_znx_rotate(&self, k: i64, a: &mut VecZnx, b: &VecZnx) {
unsafe {
vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.n() as u64,
)
}
}
pub fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx) {
unsafe {
vec_znx_rotate(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
)
}
}
// b <- a(X^gal_el)
pub fn vec_znx_automorphism(&self, gal_el: i64, b: &mut VecZnx, a: &VecZnx) {
unsafe {
vec_znx_automorphism(
self.0,
gal_el,
b.as_mut_ptr(),
b.limbs() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
// a <- a(X^gal_el)
pub fn vec_znx_automorphism_inplace(&self, gal_el: i64, a: &mut VecZnx) {
unsafe {
vec_znx_automorphism(
self.0,
gal_el,
a.as_mut_ptr(),
a.limbs() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.n() as u64,
);
}
}
}

View File

@@ -1,36 +1,22 @@
use crate::ffi::vec_znx_big::{
delete_vec_znx_big, new_vec_znx_big, vec_znx_big_add_small, vec_znx_big_automorphism,
vec_znx_big_normalize_base2k, vec_znx_big_normalize_base2k_tmp_bytes, vec_znx_big_sub_small_a,
vec_znx_bigcoeff_t,
};
use crate::ffi::vec_znx_dft::vec_znx_dft_t;
use crate::Free;
use crate::{Module, VecZnx, VecZnxDft};
use crate::ffi::vec_znx_big;
use crate::ffi::vec_znx_dft;
use crate::{Infos, Module, VecZnx, VecZnxDft};
pub struct VecZnxBig(pub *mut vec_znx_bigcoeff_t, pub usize);
pub struct VecZnxBig(pub *mut vec_znx_big::vec_znx_bigcoeff_t, pub usize);
impl VecZnxBig {
pub fn as_vec_znx_dft(&mut self) -> VecZnxDft {
VecZnxDft(self.0 as *mut vec_znx_dft_t, self.1)
VecZnxDft(self.0 as *mut vec_znx_dft::vec_znx_dft_t, self.1)
}
pub fn limbs(&self) -> usize {
self.1
}
}
impl Free for VecZnxBig {
fn free(self) {
unsafe {
delete_vec_znx_big(self.0);
}
drop(self);
}
}
impl Module {
// Allocates a vector Z[X]/(X^N+1) that stores not normalized values.
pub fn new_vec_znx_big(&self, limbs: usize) -> VecZnxBig {
unsafe { VecZnxBig(new_vec_znx_big(self.0, limbs as u64), limbs) }
unsafe { VecZnxBig(vec_znx_big::new_vec_znx_big(self.0, limbs as u64), limbs) }
}
// b <- b - a
@@ -43,7 +29,7 @@ impl Module {
limbs
);
unsafe {
vec_znx_big_sub_small_a(
vec_znx_big::vec_znx_big_sub_small_a(
self.0,
b.0,
b.limbs() as u64,
@@ -72,7 +58,7 @@ impl Module {
limbs
);
unsafe {
vec_znx_big_sub_small_a(
vec_znx_big::vec_znx_big_sub_small_a(
self.0,
c.0,
c.limbs() as u64,
@@ -101,7 +87,7 @@ impl Module {
limbs
);
unsafe {
vec_znx_big_add_small(
vec_znx_big::vec_znx_big_add_small(
self.0,
c.0,
limbs as u64,
@@ -124,7 +110,7 @@ impl Module {
limbs
);
unsafe {
vec_znx_big_add_small(
vec_znx_big::vec_znx_big_add_small(
self.0,
b.0,
limbs as u64,
@@ -138,7 +124,7 @@ impl Module {
}
pub fn vec_znx_big_normalize_tmp_bytes(&self) -> usize {
unsafe { vec_znx_big_normalize_base2k_tmp_bytes(self.0) as usize }
unsafe { vec_znx_big::vec_znx_big_normalize_base2k_tmp_bytes(self.0) as usize }
}
// b <- normalize(a)
@@ -163,7 +149,7 @@ impl Module {
self.vec_znx_big_normalize_tmp_bytes()
);
unsafe {
vec_znx_big_normalize_base2k(
vec_znx_big::vec_znx_big_normalize_base2k(
self.0,
log_base2k as u64,
b.as_mut_ptr(),
@@ -178,13 +164,27 @@ impl Module {
pub fn vec_znx_big_automorphism(&self, gal_el: i64, b: &mut VecZnxBig, a: &VecZnxBig) {
unsafe {
vec_znx_big_automorphism(self.0, gal_el, b.0, b.limbs() as u64, a.0, a.limbs() as u64);
vec_znx_big::vec_znx_big_automorphism(
self.0,
gal_el,
b.0,
b.limbs() as u64,
a.0,
a.limbs() as u64,
);
}
}
pub fn vec_znx_big_automorphism_inplace(&self, gal_el: i64, a: &mut VecZnxBig) {
unsafe {
vec_znx_big_automorphism(self.0, gal_el, a.0, a.limbs() as u64, a.0, a.limbs() as u64);
vec_znx_big::vec_znx_big_automorphism(
self.0,
gal_el,
a.0,
a.limbs() as u64,
a.0,
a.limbs() as u64,
);
}
}
}

View File

@@ -1,32 +1,22 @@
use crate::ffi::vec_znx_big::vec_znx_bigcoeff_t;
use crate::ffi::vec_znx_dft::{
delete_vec_znx_dft, new_vec_znx_dft, vec_znx_dft_t, vec_znx_idft, vec_znx_idft_tmp_a,
vec_znx_idft_tmp_bytes,
};
use crate::{Free, Module, VecZnxBig};
use crate::ffi::vec_znx_big;
use crate::ffi::vec_znx_dft;
use crate::{Module, VecZnxBig};
pub struct VecZnxDft(pub *mut vec_znx_dft_t, pub usize);
pub struct VecZnxDft(pub *mut vec_znx_dft::vec_znx_dft_t, pub usize);
impl VecZnxDft {
pub fn as_vec_znx_big(&mut self) -> VecZnxBig {
VecZnxBig(self.0 as *mut vec_znx_bigcoeff_t, self.1)
VecZnxBig(self.0 as *mut vec_znx_big::vec_znx_bigcoeff_t, self.1)
}
pub fn limbs(&self) -> usize {
self.1
}
}
impl Free for VecZnxDft {
fn free(self) {
unsafe { delete_vec_znx_dft(self.0) };
drop(self);
}
}
impl Module {
// Allocates a vector Z[X]/(X^N+1) that stores normalized in the DFT space.
pub fn new_vec_znx_dft(&self, limbs: usize) -> VecZnxDft {
unsafe { VecZnxDft(new_vec_znx_dft(self.0, limbs as u64), limbs) }
unsafe { VecZnxDft(vec_znx_dft::new_vec_znx_dft(self.0, limbs as u64), limbs) }
}
// b <- IDFT(a), uses a as scratch space.
@@ -37,12 +27,12 @@ impl Module {
b.limbs(),
a_limbs
);
unsafe { vec_znx_idft_tmp_a(self.0, b.0, a_limbs as u64, a.0, a_limbs as u64) }
unsafe { vec_znx_dft::vec_znx_idft_tmp_a(self.0, b.0, a_limbs as u64, a.0, a_limbs as u64) }
}
// Returns the size of the scratch space for [vec_znx_idft].
pub fn vec_znx_idft_tmp_bytes(&self) -> usize {
unsafe { vec_znx_idft_tmp_bytes(self.0) as usize }
unsafe { vec_znx_dft::vec_znx_idft_tmp_bytes(self.0) as usize }
}
// b <- IDFT(a), scratch space size obtained with [vec_znx_idft_tmp_bytes].
@@ -72,7 +62,7 @@ impl Module {
self.vec_znx_idft_tmp_bytes()
);
unsafe {
vec_znx_idft(
vec_znx_dft::vec_znx_idft(
self.0,
b_vector.0,
a_limbs as u64,

View File

@@ -1,10 +1,5 @@
use crate::ffi::vmp::{
delete_vmp_pmat, new_vmp_pmat, vmp_apply_dft, vmp_apply_dft_tmp_bytes, vmp_apply_dft_to_dft,
vmp_apply_dft_to_dft_tmp_bytes, vmp_pmat_t, vmp_prepare_contiguous,
vmp_prepare_contiguous_tmp_bytes,
};
use crate::Free;
use crate::{Module, VecZnx, VecZnxDft};
use crate::ffi::vmp;
use crate::{Infos, Module, VecZnx, VecZnxDft};
use std::cmp::min;
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
@@ -15,10 +10,10 @@ use std::cmp::min;
/// and thus must be manually freed.
///
/// [VmpPMat] is used to permform a vector matrix product between a [VecZnx] and a [VmpPMat].
/// See the trait [VectorMatrixProduct] for additional information.
/// See the trait [VmpPMatOps] for additional information.
pub struct VmpPMat {
/// The pointer to the C memory.
pub data: *mut vmp_pmat_t,
pub data: *mut vmp::vmp_pmat_t,
/// The number of [VecZnxDft].
pub rows: usize,
/// The number of limbs in each [VecZnxDft].
@@ -29,31 +24,18 @@ pub struct VmpPMat {
impl VmpPMat {
/// Returns the pointer to the [vmp_pmat_t].
pub fn data(&self) -> *mut vmp_pmat_t {
pub fn data(&self) -> *mut vmp::vmp_pmat_t {
self.data
}
/// Returns the number of rows of the [VmpPMat].
/// The number of rows (i.e. of [VecZnx]) of the [VmpPMat].
pub fn rows(&self) -> usize {
self.rows
}
/// Returns the number of cols of the [VmpPMat].
/// The number of cols refers to the number of limbs
/// of the prepared [VecZnx].
pub fn cols(&self) -> usize {
self.cols
}
/// Returns the ring dimension of the [VmpPMat].
pub fn n(&self) -> usize {
self.n
}
/// Returns a copy of the backend array at index (i, j) of the [VmpPMat].
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
///
/// # Arguments
///
/// * `row`: row index (i).
/// * `col`: col index (j).
pub fn at<T: Default + Copy>(&self, row: usize, col: usize) -> Vec<T> {
let mut res: Vec<T> = vec![T::default(); self.n];
@@ -86,7 +68,7 @@ impl VmpPMat {
}
}
/// Returns a non-mutable reference of [T] of the entire contiguous array of the [VmpPMat].
/// Returns a non-mutable reference of `T` of the entire contiguous array of the [VmpPMat].
/// When using [`crate::FFT64`] as backend, `T` should be [f64].
/// When using [`crate::NTT120`] as backend, `T` should be [i64].
/// The length of the returned array is rows * cols * n.
@@ -97,32 +79,38 @@ impl VmpPMat {
}
}
impl Free for VmpPMat {
fn free(self) {
unsafe { delete_vmp_pmat(self.data) };
drop(self);
}
}
/// This trait implements methods for vector matrix product,
/// that is, multiplying a [VecZnx] with a [VmpPMat].
pub trait VectorMatrixProduct {
pub trait VmpPMatOps {
/// Allocates a new [VmpPMat] with the given number of rows and columns.
///
/// # Arguments
///
/// * `rows`: number of rows (number of [VecZnxDft]).
/// * `cols`: number of cols (number of limbs of each [VecZnxDft]).
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat;
/// Returns the number of bytes needed as scratch space for [VectorMatrixProduct::vmp_prepare_contiguous].
/// Returns the number of bytes needed as scratch space for [VmpPMatOps::vmp_prepare_contiguous].
///
/// # Arguments
///
/// * `rows`: number of rows of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous].
/// * `cols`: number of cols of the [VmpPMat] used in [VmpPMatOps::vmp_prepare_contiguous].
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize;
/// Prepares a [VmpPMat] from a contiguous array of [i64].
/// The helper struct [Matrix3D] can be used to contruct and populate
/// the appropriate contiguous array.
///
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
/// # Arguments
///
/// * `b`: [VmpPMat] on which the values are encoded.
/// * `a`: the contiguous array of [i64] of the 3D matrix to encode on the [VmpPMat].
/// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_contiguous_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, Matrix3D, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use base2k::{Module, Matrix3D, VmpPMat, VmpPMatOps, FFT64, Free};
/// use std::cmp::min;
///
/// let n: usize = 1024;
@@ -148,12 +136,17 @@ pub trait VectorMatrixProduct {
/// Prepares a [VmpPMat] from a vector of [VecZnx].
///
/// The size of buf can be obtained with [VectorMatrixProduct::vmp_prepare_contiguous_tmp_bytes].
/// # Arguments
///
/// * `b`: [VmpPMat] on which the values are encoded.
/// * `a`: the vector of [VecZnx] to encode on the [VmpPMat].
/// * `buf`: scratch space, the size of buf can be obtained with [VmpPMatOps::vmp_prepare_contiguous_tmp_bytes].
///
/// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_contiguous_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, FFT64, Matrix3D, VmpPMat, VecZnx, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use base2k::{Module, FFT64, Matrix3D, VmpPMat, VmpPMatOps, VecZnx, VecZnxOps, Free};
/// use std::cmp::min;
///
/// let n: usize = 1024;
@@ -176,7 +169,14 @@ pub trait VectorMatrixProduct {
/// ```
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &Vec<VecZnx>, buf: &mut [u8]);
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft].
/// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft].
///
/// # Arguments
///
/// * `c_limbs`: number of limbs of the output [VecZnxDft].
/// * `a_limbs`: number of limbs of the input [VecZnx].
/// * `rows`: number of rows of the input [VmpPMat].
/// * `cols`: number of cols of the input [VmpPMat].
fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
@@ -186,9 +186,8 @@ pub trait VectorMatrixProduct {
) -> usize;
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
@@ -204,10 +203,16 @@ pub trait VectorMatrixProduct {
/// ```
/// where each element is a [VecZnxDft].
///
/// # Arguments
///
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
/// * `a`: the left operand [VecZnx] of the vector matrix product.
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use base2k::{Module, VecZnx, VecZnxOps, VecZnxDft, VmpPMat, VmpPMatOps, FFT64, Free};
///
/// let n = 1024;
///
@@ -233,7 +238,14 @@ pub trait VectorMatrixProduct {
/// ```
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]);
/// Returns the size of the stratch space necessary for [VectorMatrixProduct::vmp_apply_dft_to_dft].
/// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft_to_dft].
///
/// # Arguments
///
/// * `c_limbs`: number of limbs of the output [VecZnxDft].
/// * `a_limbs`: number of limbs of the input [VecZnxDft].
/// * `rows`: number of rows of the input [VmpPMat].
/// * `cols`: number of cols of the input [VmpPMat].
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
@@ -243,9 +255,9 @@ pub trait VectorMatrixProduct {
) -> usize;
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat].
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
/// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
@@ -261,10 +273,16 @@ pub trait VectorMatrixProduct {
/// ```
/// where each element is a [VecZnxDft].
///
/// # Arguments
///
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
/// * `b`: the right operand [VmpPMat] of the vector matrix product.
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, VmpPMatOps, FFT64, Free};
///
/// let n = 1024;
///
@@ -275,7 +293,7 @@ pub trait VectorMatrixProduct {
/// let cols: usize = limbs + 1;
/// let c_limbs: usize = cols;
/// let a_limbs: usize = limbs;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
@@ -292,9 +310,9 @@ pub trait VectorMatrixProduct {
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]);
/// Applies the vector matrix product [VecZnxDft] x [VmpPMat] in place.
/// The size of `buf` is given by [VectorMatrixProduct::vmp_apply_dft_to_dft_tmp_bytes].
/// The size of `buf` is given by [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
///
/// A vector matrix product is equivalent to a sum of [ScalarVectorProduct::svp_apply_dft]
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
@@ -310,10 +328,15 @@ pub trait VectorMatrixProduct {
/// ```
/// where each element is a [VecZnxDft].
///
/// # Arguments
///
/// * `b`: the input and output of the vector matrix product, as a [VecZnxDft].
/// * `a`: the right operand [VmpPMat] of the vector matrix product.
/// * `buf`: scratch space, the size can be obtained with [VmpPMatOps::vmp_apply_dft_to_dft_tmp_bytes].
///
/// # Example
/// ```
/// use base2k::{Module, VecZnx, VecZnxDft, VmpPMat, FFT64, Free};
/// use base2k::vmp::VectorMatrixProduct;
/// use base2k::{Module, VecZnx, VecZnxOps, VecZnxDft, VmpPMat, VmpPMatOps, FFT64, Free};
///
/// let n = 1024;
///
@@ -322,7 +345,7 @@ pub trait VectorMatrixProduct {
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(limbs, limbs, rows, cols);
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(limbs, limbs, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let a: VecZnx = module.new_vec_znx(limbs);
@@ -338,24 +361,25 @@ pub trait VectorMatrixProduct {
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]);
}
impl VectorMatrixProduct for Module {
impl VmpPMatOps for Module {
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat {
unsafe {
VmpPMat {
data: new_vmp_pmat(self.0, rows as u64, cols as u64),
data: vmp::new_vmp_pmat(self.0, rows as u64, cols as u64),
rows,
cols,
n: self.n(),
}
}
}
fn vmp_prepare_contiguous_tmp_bytes(&self, rows: usize, cols: usize) -> usize {
unsafe { vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
unsafe { vmp::vmp_prepare_contiguous_tmp_bytes(self.0, rows as u64, cols as u64) as usize }
}
fn vmp_prepare_contiguous(&self, b: &mut VmpPMat, a: &[i64], buf: &mut [u8]) {
unsafe {
vmp_prepare_contiguous(
vmp::vmp_prepare_contiguous(
self.0,
b.data(),
a.as_ptr(),
@@ -402,7 +426,7 @@ impl VectorMatrixProduct for Module {
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_tmp_bytes(
vmp::vmp_apply_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
@@ -414,7 +438,7 @@ impl VectorMatrixProduct for Module {
fn vmp_apply_dft(&self, c: &mut VecZnxDft, a: &VecZnx, b: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft(
vmp::vmp_apply_dft(
self.0,
c.0,
c.limbs() as u64,
@@ -437,7 +461,7 @@ impl VectorMatrixProduct for Module {
cols: usize,
) -> usize {
unsafe {
vmp_apply_dft_to_dft_tmp_bytes(
vmp::vmp_apply_dft_to_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
@@ -449,7 +473,7 @@ impl VectorMatrixProduct for Module {
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft, a: &VecZnxDft, b: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft_to_dft(
vmp::vmp_apply_dft_to_dft(
self.0,
c.0,
c.limbs() as u64,
@@ -465,7 +489,7 @@ impl VectorMatrixProduct for Module {
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft, a: &VmpPMat, buf: &mut [u8]) {
unsafe {
vmp_apply_dft_to_dft(
vmp::vmp_apply_dft_to_dft(
self.0,
b.0,
b.limbs() as u64,
@@ -481,7 +505,7 @@ impl VectorMatrixProduct for Module {
}
/// A helper struture that stores a 3D matrix as a contiguous array.
/// To be passed to [VectorMatrixProduct::vmp_prepare_contiguous].
/// To be passed to [VmpPMatOps::vmp_prepare_contiguous].
///
/// rows: index of the i-th base2K power.
/// cols: index of the j-th limb of the i-th row.
@@ -498,6 +522,12 @@ pub struct Matrix3D<T> {
impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Allocates a new [Matrix3D] with the respective dimensions.
///
/// # Arguments
///
/// * `rows`: the number of rows of the matrix.
/// * `cols`: the number of cols of the matrix.
/// # `n`: the size of each entry of the matrix.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
@@ -521,6 +551,11 @@ impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Returns a non-mutable reference to the entry (row, col) of the [Matrix3D].
/// The returned array is of size n.
///
/// # Arguments
///
/// * `row`: the index of the row.
/// * `col`: the index of the col.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
@@ -542,6 +577,11 @@ impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Returns a mutable reference of the array at the (row, col) entry of the [Matrix3D].
/// The returned array is of size n.
///
/// # Arguments
///
/// * `row`: the index of the row.
/// * `col`: the index of the col.
///
/// # Example
/// ```
/// use base2k::Matrix3D;
@@ -564,6 +604,11 @@ impl<T: Default + Clone + std::marker::Copy> Matrix3D<T> {
/// Typicall this is used to assign a [VecZnx] to the i-th row
/// of the [Matrix3D].
///
/// # Arguments
///
/// * `row`: the index of the row.
/// * `a`: the data to encode onthe row.
///
/// # Example
/// ```
/// use base2k::{Matrix3D, VecZnx};