Files
poulpy/base2k/src/encoding.rs
Jean-Philippe Bossuat a790ff37cc more doc
2025-02-04 17:13:46 +01:00

237 lines
8.7 KiB
Rust

use crate::ffi::znx::znx_zero_i64_ref;
use crate::{Infos, VecZnx};
use itertools::izip;
use std::cmp::min;
pub trait Encoding {
/// encode a vector of i64 on the receiver.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `data`: data to encode on the receiver.
/// * `log_max`: base two logarithm of the infinity norm of the input data.
fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize);
/// decode a vector of i64 from the receiver.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `data`: data to decode from the receiver.
fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]);
/// encodes a single i64 on the receiver at the given index.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `i`: index of the coefficient on which to encode the data.
/// * `data`: data to encode on the receiver.
/// * `log_max`: base two logarithm of the infinity norm of the input data.
fn encode_i64_coeff(
&mut self,
log_base2k: usize,
log_k: usize,
i: usize,
data: i64,
log_max: usize,
);
/// decode a single of i64 from the receiver at the given index.
///
/// # Arguments
///
/// * `log_base2k`: base two logarithm decomposition of the receiver.
/// * `log_k`: base two logarithm of the scaling of the data.
/// * `i`: index of the coefficient to decode.
/// * `data`: data to decode from the receiver.
fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64;
}
impl Encoding for VecZnx {
fn encode_i64_vec(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
}
fn decode_i64_vec(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n
);
data.copy_from_slice(self.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << log_base2k) + x;
});
}
})
}
fn encode_i64_coeff(
&mut self,
log_base2k: usize,
log_k: usize,
i: usize,
value: i64,
log_max: usize,
) {
assert!(i < self.n());
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let limbs = self.limbs();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
(limbs - steps..limbs)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
}
fn decode_i64_coeff(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
let x = self.data[i * self.n];
if i == limbs - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << log_base2k) + x;
}
});
res
}
}
#[cfg(test)]
mod tests {
use crate::{Encoding, VecZnx};
use itertools::izip;
use sampling::source::Source;
#[test]
fn test_set_get_i64_lo_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
a.encode_i64_vec(log_base2k, log_k, &have, 10);
let mut want = vec![i64::default(); n];
a.decode_i64_vec(log_base2k, log_k, &mut want);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
}
#[test]
fn test_set_get_i64_hi_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
*x = source
.next_u64n(u64::MAX, u64::MAX)
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.encode_i64_vec(log_base2k, log_k, &have, 63);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.decode_i64_vec(log_base2k, log_k, &mut want);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
}
#[test]
fn test_normalize() {}
}