mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 05:06:44 +01:00
fixed automorphism for ring and added test
This commit is contained in:
@@ -3,7 +3,7 @@ use math::dft::DFT;
|
||||
use math::{dft::ntt::Table, modulus::prime::Prime};
|
||||
|
||||
fn forward_inplace(c: &mut Criterion) {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: u64) -> Box<dyn FnMut()> {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: usize) -> Box<dyn FnMut()> {
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, nth_root);
|
||||
let mut a: Vec<u64> = vec![0; (nth_root >> 1) as usize];
|
||||
for i in 0..a.len() {
|
||||
@@ -26,7 +26,7 @@ fn forward_inplace(c: &mut Criterion) {
|
||||
}
|
||||
|
||||
fn forward_inplace_lazy(c: &mut Criterion) {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: u64) -> Box<dyn FnMut()> {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: usize) -> Box<dyn FnMut()> {
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, nth_root);
|
||||
let mut a: Vec<u64> = vec![0; (nth_root >> 1) as usize];
|
||||
for i in 0..a.len() {
|
||||
@@ -49,7 +49,7 @@ fn forward_inplace_lazy(c: &mut Criterion) {
|
||||
}
|
||||
|
||||
fn backward_inplace(c: &mut Criterion) {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: u64) -> Box<dyn FnMut()> {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: usize) -> Box<dyn FnMut()> {
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, nth_root);
|
||||
let mut a: Vec<u64> = vec![0; (nth_root >> 1) as usize];
|
||||
for i in 0..a.len() {
|
||||
@@ -72,7 +72,7 @@ fn backward_inplace(c: &mut Criterion) {
|
||||
}
|
||||
|
||||
fn backward_inplace_lazy(c: &mut Criterion) {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: u64) -> Box<dyn FnMut()> {
|
||||
fn runner(prime_instance: Prime<u64>, nth_root: usize) -> Box<dyn FnMut()> {
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, nth_root);
|
||||
let mut a: Vec<u64> = vec![0; (nth_root >> 1) as usize];
|
||||
for i in 0..a.len() {
|
||||
|
||||
@@ -5,7 +5,7 @@ use math::ring::RingRNS;
|
||||
fn div_floor_by_last_modulus_ntt_true(c: &mut Criterion) {
|
||||
fn runner(r: RingRNS<u64>) -> Box<dyn FnMut()> {
|
||||
let a: PolyRNS<u64> = r.new_polyrns();
|
||||
let mut b: PolyRNS<u64> = r.new_polyrns();
|
||||
let mut b: [math::poly::Poly<u64>; 2] = [r.new_poly(), r.new_poly()];
|
||||
let mut c: PolyRNS<u64> = r.new_polyrns();
|
||||
|
||||
Box::new(move || r.div_by_last_modulus::<false, true>(&a, &mut b, &mut c))
|
||||
|
||||
@@ -14,8 +14,8 @@ fn main() {
|
||||
println!("q_base: {}", prime_instance.q_base());
|
||||
println!("q_power: {}", prime_instance.q_power());
|
||||
|
||||
let n: u64 = 32;
|
||||
let nth_root: u64 = n << 1;
|
||||
let n: usize = 32;
|
||||
let nth_root: usize = n << 1;
|
||||
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, nth_root);
|
||||
|
||||
@@ -44,7 +44,7 @@ fn main() {
|
||||
p0.0[i] = i as u64
|
||||
}
|
||||
|
||||
r.automorphism(p0, (2 * r.n - 1) as u64, &mut p1);
|
||||
r.automorphism::<false>(&p0, 2 * r.n - 1, nth_root, &mut p1);
|
||||
|
||||
println!("{:?}", p1);
|
||||
}
|
||||
|
||||
@@ -19,14 +19,14 @@ pub struct Table<O> {
|
||||
}
|
||||
|
||||
impl Table<u64> {
|
||||
pub fn new(prime: Prime<u64>, nth_root: u64) -> Table<u64> {
|
||||
pub fn new(prime: Prime<u64>, nth_root: usize) -> Table<u64> {
|
||||
assert!(
|
||||
nth_root & (nth_root - 1) == 0,
|
||||
"invalid argument: nth_root = {} is not a power of two",
|
||||
nth_root
|
||||
);
|
||||
|
||||
let psi: u64 = prime.primitive_nth_root(nth_root);
|
||||
let psi: u64 = prime.primitive_nth_root(nth_root as u64);
|
||||
|
||||
let psi_mont: Montgomery<u64> = prime.montgomery.prepare::<ONCE>(psi);
|
||||
let psi_inv_mont: Montgomery<u64> = prime.montgomery.pow(psi_mont, prime.phi - 1);
|
||||
@@ -311,8 +311,8 @@ mod tests {
|
||||
let q_base: u64 = 0x800000000004001;
|
||||
let q_power: usize = 1;
|
||||
let prime_instance: Prime<u64> = Prime::<u64>::new(q_base, q_power);
|
||||
let n: u64 = 32;
|
||||
let two_nth_root: u64 = n << 1;
|
||||
let n: usize = 32;
|
||||
let two_nth_root: usize = n << 1;
|
||||
let ntt_table: Table<u64> = Table::<u64>::new(prime_instance, two_nth_root);
|
||||
let mut a: Vec<u64> = vec![0; n as usize];
|
||||
for i in 0..a.len() {
|
||||
|
||||
@@ -5,10 +5,10 @@ use crate::ring::Ring;
|
||||
/// Returns a lookup table for the automorphism X^{i} -> X^{i * k mod nth_root}.
|
||||
/// Method will panic if n or nth_root are not power-of-two.
|
||||
/// Method will panic if gal_el is not coprime with nth_root.
|
||||
pub fn automorphism_index_ntt(n: usize, nth_root: u64, gal_el: u64) -> Vec<u64> {
|
||||
pub fn automorphism_index<const NTT: bool>(n: usize, nth_root: usize, gal_el: usize) -> Vec<usize> {
|
||||
assert!(n & (n - 1) != 0, "invalid n={}: not a power-of-two", n);
|
||||
assert!(
|
||||
nth_root & (nth_root - 1) != 0,
|
||||
nth_root & (nth_root - 1) == 0,
|
||||
"invalid nth_root={}: not a power-of-two",
|
||||
n
|
||||
);
|
||||
@@ -19,39 +19,112 @@ pub fn automorphism_index_ntt(n: usize, nth_root: u64, gal_el: u64) -> Vec<u64>
|
||||
nth_root
|
||||
);
|
||||
|
||||
let mask = nth_root - 1;
|
||||
let log_nth_root: u32 = nth_root.log2() as u32;
|
||||
let mut index: Vec<u64> = Vec::with_capacity(n);
|
||||
for i in 0..n {
|
||||
let i_rev: usize = 2 * i.reverse_bits_msb(log_nth_root) + 1;
|
||||
let gal_el_i: u64 = (gal_el * (i_rev as u64) & mask) >> 1;
|
||||
index.push(gal_el_i.reverse_bits_msb(log_nth_root));
|
||||
let mut index: Vec<usize> = Vec::with_capacity(n);
|
||||
|
||||
if NTT {
|
||||
let mask = nth_root - 1;
|
||||
let log_nth_root_half: u32 = nth_root.log2() as u32 - 1;
|
||||
for i in 0..n {
|
||||
let i_rev: usize = 2 * i.reverse_bits_msb(log_nth_root_half) + 1;
|
||||
let gal_el_i: usize = ((gal_el * i_rev) & mask) >> 1;
|
||||
index.push(gal_el_i.reverse_bits_msb(log_nth_root_half));
|
||||
}
|
||||
} else {
|
||||
let log_n: usize = n.log2();
|
||||
let mask: usize = (n - 1) as usize;
|
||||
for i in 0..n {
|
||||
let gal_el_i: usize = i as usize * gal_el;
|
||||
let sign: usize = (gal_el_i >> log_n) & 1;
|
||||
let i_out: usize = (gal_el_i & mask) | (sign << (usize::BITS - 1));
|
||||
index.push(i_out)
|
||||
}
|
||||
}
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
impl Ring<u64> {
|
||||
pub fn automorphism(&self, a: Poly<u64>, gal_el: u64, b: &mut Poly<u64>) {
|
||||
pub fn automorphism<const NTT: bool>(
|
||||
&self,
|
||||
a: &Poly<u64>,
|
||||
gal_el: usize,
|
||||
nth_root: usize,
|
||||
b: &mut Poly<u64>,
|
||||
) {
|
||||
debug_assert!(
|
||||
a.n() == b.n(),
|
||||
"invalid inputs: a.n() = {} != b.n() = {}",
|
||||
a.n(),
|
||||
b.n()
|
||||
);
|
||||
debug_assert!(gal_el & 1 == 1, "invalid gal_el = {}: not odd", gal_el);
|
||||
|
||||
let n: usize = a.n();
|
||||
let mask: u64 = (n - 1) as u64;
|
||||
let log_n: usize = n.log2();
|
||||
let q: u64 = self.modulus.q();
|
||||
let b_vec: &mut _ = &mut b.0;
|
||||
let a_vec: &_ = &a.0;
|
||||
assert!(
|
||||
gal_el & 1 == 1,
|
||||
"invalid gal_el={}: not coprime with nth_root={}",
|
||||
gal_el,
|
||||
nth_root
|
||||
);
|
||||
|
||||
a_vec.iter().enumerate().for_each(|(i, ai)| {
|
||||
let gal_el_i: u64 = i as u64 * gal_el;
|
||||
let sign: u64 = (gal_el_i >> log_n) & 1;
|
||||
let i_out: u64 = gal_el_i & mask;
|
||||
b_vec[i_out as usize] = ai * (sign ^ 1) | (q - ai) * sign
|
||||
});
|
||||
assert!(
|
||||
nth_root & (nth_root - 1) == 0,
|
||||
"invalid nth_root={}: not a power-of-two",
|
||||
nth_root
|
||||
);
|
||||
|
||||
let b_vec: &mut Vec<u64> = &mut b.0;
|
||||
let a_vec: &Vec<u64> = &a.0;
|
||||
|
||||
if NTT {
|
||||
let mask: usize = nth_root - 1;
|
||||
let log_nth_root_half: u32 = nth_root.log2() as u32 - 1;
|
||||
a_vec.iter().enumerate().for_each(|(i, ai)| {
|
||||
let i_rev: usize = 2 * i.reverse_bits_msb(log_nth_root_half) + 1;
|
||||
let gal_el_i: usize = (((gal_el * i_rev) & mask) - 1) >> 1;
|
||||
let idx: usize = gal_el_i.reverse_bits_msb(log_nth_root_half);
|
||||
b_vec[idx] = *ai;
|
||||
});
|
||||
} else {
|
||||
let n: usize = a.n();
|
||||
let mask: usize = n - 1;
|
||||
let log_n: usize = n.log2();
|
||||
let q: u64 = self.modulus.q();
|
||||
a_vec.iter().enumerate().for_each(|(i, ai)| {
|
||||
let gal_el_i: usize = i * gal_el;
|
||||
let sign: u64 = ((gal_el_i >> log_n) & 1) as u64;
|
||||
let i_out: usize = gal_el_i & mask;
|
||||
b_vec[i_out] = ai * (sign ^ 1) | (q - ai) * sign
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
pub fn automorphism_from_index<const NTT: bool>(
|
||||
&self,
|
||||
a: &Poly<u64>,
|
||||
idx: &[usize],
|
||||
b: &mut Poly<u64>,
|
||||
) {
|
||||
debug_assert!(
|
||||
a.n() == b.n(),
|
||||
"invalid inputs: a.n() = {} != b.n() = {}",
|
||||
a.n(),
|
||||
b.n()
|
||||
);
|
||||
|
||||
let b_vec: &mut Vec<u64> = &mut b.0;
|
||||
let a_vec: &Vec<u64> = &a.0;
|
||||
|
||||
if NTT {
|
||||
a_vec.iter().enumerate().for_each(|(i, ai)| {
|
||||
b_vec[idx[i]] = *ai;
|
||||
});
|
||||
} else {
|
||||
let n: usize = a.n();
|
||||
let mask: usize = n - 1;
|
||||
let q: u64 = self.modulus.q();
|
||||
a_vec.iter().enumerate().for_each(|(i, ai)| {
|
||||
let sign: u64 = (idx[i] >> usize::BITS - 1) as u64;
|
||||
b_vec[idx[i] & mask] = ai * (sign ^ 1) | (q - ai) * sign;
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -16,7 +16,7 @@ impl Ring<u64> {
|
||||
Self {
|
||||
n: n,
|
||||
modulus: prime.clone(),
|
||||
dft: Box::new(Table::<u64>::new(prime, (2 * n) as u64)),
|
||||
dft: Box::new(Table::<u64>::new(prime, n << 1)),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ use crate::modulus::WordOps;
|
||||
use crate::poly::{Poly, PolyRNS};
|
||||
use crate::ring::{Ring, RingRNS};
|
||||
use num::ToPrimitive;
|
||||
use rand_distr::{Distribution, Normal};
|
||||
use rand_distr::Distribution;
|
||||
use sampling::source::Source;
|
||||
|
||||
impl Ring<u64> {
|
||||
|
||||
53
math/tests/automorphism.rs
Normal file
53
math/tests/automorphism.rs
Normal file
@@ -0,0 +1,53 @@
|
||||
use itertools::izip;
|
||||
use math::poly::Poly;
|
||||
use math::ring::Ring;
|
||||
|
||||
#[test]
|
||||
fn automorphism_u64() {
|
||||
let n: usize = 1 << 4;
|
||||
let nth_root: usize = n << 1;
|
||||
let q_base: u64 = 65537u64;
|
||||
let q_power: usize = 1usize;
|
||||
let ring: Ring<u64> = Ring::new(n, q_base, q_power);
|
||||
|
||||
sub_test("test_automorphism_u64::<NTT:false>", || {
|
||||
test_automorphism_u64::<false>(&ring, nth_root)
|
||||
});
|
||||
sub_test("test_automorphism_u64::<NTT:true>", || {
|
||||
test_automorphism_u64::<true>(&ring, nth_root)
|
||||
});
|
||||
}
|
||||
|
||||
fn sub_test<F: FnOnce()>(name: &str, f: F) {
|
||||
println!("Running {}", name);
|
||||
f();
|
||||
}
|
||||
|
||||
fn test_automorphism_u64<const NTT: bool>(ring: &Ring<u64>, nth_root: usize) {
|
||||
let n: usize = ring.n();
|
||||
let q: u64 = ring.modulus.q;
|
||||
|
||||
let mut p0: Poly<u64> = ring.new_poly();
|
||||
let mut p1: Poly<u64> = ring.new_poly();
|
||||
|
||||
for i in 0..p0.n() {
|
||||
p0.0[i] = i as u64
|
||||
}
|
||||
|
||||
if NTT {
|
||||
ring.ntt_inplace::<false>(&mut p0);
|
||||
}
|
||||
|
||||
ring.automorphism::<NTT>(&p0, 2 * n - 1, nth_root, &mut p1);
|
||||
|
||||
if NTT {
|
||||
ring.intt_inplace::<false>(&mut p1);
|
||||
}
|
||||
|
||||
p0.0[0] = 0;
|
||||
for i in 1..p0.n() {
|
||||
p0.0[i] = q - (n - i) as u64
|
||||
}
|
||||
|
||||
izip!(p0.0, p1.0).for_each(|(a, b)| assert_eq!(a, b));
|
||||
}
|
||||
Reference in New Issue
Block a user