Files
poulpy/core/src/test_fft64/glwe.rs
Jean-Philippe Bossuat a295085724 refactor
2025-05-27 22:19:18 +02:00

806 lines
25 KiB
Rust

use backend::{
Decoding, Encoding, FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut,
ZnxZero,
};
use itertools::izip;
use sampling::source::Source;
use crate::{
automorphism::AutomorphismKey,
elem::Infos,
ggsw_ciphertext::GGSWCiphertext,
glwe_ciphertext::GLWECiphertext,
glwe_ciphertext_fourier::GLWECiphertextFourier,
glwe_plaintext::GLWEPlaintext,
keys::{GLWEPublicKey, SecretKey, SecretKeyFourier},
keyswitch_key::GLWESwitchingKey,
test_fft64::{gglwe::log2_std_noise_gglwe_product, ggsw::noise_ggsw_product},
};
#[test]
fn encrypt_sk() {
(1..4).for_each(|rank| {
println!("test encrypt_sk rank: {}", rank);
test_encrypt_sk(11, 8, 54, 30, 3.2, rank);
});
}
#[test]
fn encrypt_zero_sk() {
(1..4).for_each(|rank| {
println!("test encrypt_zero_sk rank: {}", rank);
test_encrypt_zero_sk(11, 8, 64, 3.2, rank);
});
}
#[test]
fn encrypt_pk() {
(1..4).for_each(|rank| {
println!("test encrypt_pk rank: {}", rank);
test_encrypt_pk(11, 8, 64, 64, 3.2, rank)
});
}
#[test]
fn keyswitch() {
(1..4).for_each(|rank_in| {
(1..4).for_each(|rank_out| {
println!("test keyswitch rank_in: {} rank_out: {}", rank_in, rank_out);
test_keyswitch(12, 12, 60, 45, 60, rank_in, rank_out, 3.2);
});
});
}
#[test]
fn keyswitch_inplace() {
(1..4).for_each(|rank| {
println!("test keyswitch_inplace rank: {}", rank);
test_keyswitch_inplace(12, 12, 60, 45, rank, 3.2);
});
}
#[test]
fn external_product() {
(1..4).for_each(|rank| {
println!("test external_product rank: {}", rank);
test_external_product(12, 12, 60, 45, 60, rank, 3.2);
});
}
#[test]
fn external_product_inplace() {
(1..4).for_each(|rank| {
println!("test external_product rank: {}", rank);
test_external_product_inplace(12, 15, 60, 60, rank, 3.2);
});
}
#[test]
fn automorphism_inplace() {
(1..4).for_each(|rank| {
println!("test automorphism_inplace rank: {}", rank);
test_automorphism_inplace(12, 12, -5, 60, 60, rank, 3.2);
});
}
#[test]
fn automorphism() {
(1..4).for_each(|rank| {
println!("test automorphism rank: {}", rank);
test_automorphism(12, 12, -5, 60, 45, 60, rank, 3.2);
});
}
fn test_encrypt_sk(log_n: usize, basek: usize, k_ct: usize, k_pt: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_pt);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size()) | GLWECiphertext::decrypt_scratch_space(&module, ct.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt.data.encode_vec_i64(0, basek, k_pt, &data_want, 10);
ct.encrypt_sk(
&module,
&pt,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
pt.data.zero();
ct.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
let mut data_have: Vec<i64> = vec![0i64; module.n()];
pt.data
.decode_vec_i64(0, basek, pt.size() * basek, &mut data_have);
// TODO: properly assert the decryption noise through std(dec(ct) - pt)
let scale: f64 = (1 << (pt.size() * basek - k_pt)) as f64;
izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| {
let b_scaled = (*b as f64) / scale;
assert!(
(*a as f64 - b_scaled).abs() < 0.1,
"{} {}",
*a as f64,
b_scaled
)
});
}
fn test_encrypt_zero_sk(log_n: usize, basek: usize, k_ct: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
let mut ct_dft: GLWECiphertextFourier<Vec<u8>, FFT64> = GLWECiphertextFourier::alloc(&module, basek, k_ct, rank);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertextFourier::decrypt_scratch_space(&module, ct_dft.size())
| GLWECiphertextFourier::encrypt_sk_scratch_space(&module, rank, ct_dft.size()),
);
ct_dft.encrypt_zero_sk(
&module,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_dft.decrypt(&module, &mut pt, &sk_dft, scratch.borrow());
assert!((sigma - pt.data.std(0, basek) * (k_ct as f64).exp2()) <= 0.2);
}
fn test_encrypt_pk(log_n: usize, basek: usize, k_ct: usize, k_pk: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xu: Source = Source::new([0u8; 32]);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
let mut pk: GLWEPublicKey<Vec<u8>, FFT64> = GLWEPublicKey::alloc(&module, basek, k_pk, rank);
pk.generate_from_sk(&module, &sk_dft, &mut source_xa, &mut source_xe, sigma);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct.size())
| GLWECiphertext::encrypt_pk_scratch_space(&module, pk.size()),
);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0);
pt_want.data.encode_vec_i64(0, basek, k_ct, &data_want, 10);
ct.encrypt_pk(
&module,
&pt_want,
&pk,
&mut source_xu,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want.data, 0, &pt_have.data, 0);
let noise_have: f64 = pt_want.data.std(0, basek).log2();
let noise_want: f64 = ((((rank as f64) + 1.0) * module.n() as f64 * 0.5 * sigma * sigma).sqrt()).log2() - (k_ct as f64);
assert!(
(noise_have - noise_want).abs() < 0.2,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch(
log_n: usize,
basek: usize,
k_keyswitch: usize,
k_ct_in: usize,
k_ct_out: usize,
rank_in: usize,
rank_out: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct_in + basek - 1) / basek;
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_keyswitch, rows, rank_in, rank_out);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank_in);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank_out);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank_in, ksk.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_out.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_in.size())
| GLWECiphertext::keyswitch_scratch_space(
&module,
ct_out.size(),
rank_out,
ct_in.size(),
rank_in,
ksk.size(),
),
);
let mut sk_in: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank_in);
sk_in.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_in_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank_in);
sk_in_dft.dft(&module, &sk_in);
let mut sk_out: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank_out);
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_out_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank_out);
sk_out_dft.dft(&module, &sk_out);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk_in_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_out.keyswitch(&module, &ct_in, &ksk, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk_out_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank_in as f64,
k_ct_in,
k_keyswitch,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ksk: usize, k_ct: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct + basek - 1) / basek;
let mut ct_grlwe: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, rank, rank);
let mut ct_rlwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, ct_grlwe.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::keyswitch_inplace_scratch_space(&module, ct_rlwe.size(), rank, ct_grlwe.size()),
);
let mut sk0: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk0.fill_ternary_prob(0.5, &mut source_xs);
let mut sk0_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk0_dft.dft(&module, &sk0);
let mut sk1: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk1.fill_ternary_prob(0.5, &mut source_xs);
let mut sk1_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk1_dft.dft(&module, &sk1);
ct_grlwe.generate_from_sk(
&module,
&sk0,
&sk1_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
&pt_want,
&sk0_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk1_dft, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_automorphism(
log_n: usize,
basek: usize,
p: i64,
k_autokey: usize,
k_ct_in: usize,
k_ct_out: usize,
rank: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct_in + basek - 1) / basek;
let mut autokey: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_autokey, rows, rank);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, autokey.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_out.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_in.size())
| GLWECiphertext::automorphism_scratch_space(&module, ct_out.size(), rank, ct_in.size(), autokey.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
autokey.generate_from_sk(
&module,
p,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_out.automorphism(&module, &ct_in, &autokey, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow());
let noise_have: f64 = pt_have.data.std(0, basek).log2();
println!("{}", noise_have);
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct_in,
k_autokey,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_automorphism_inplace(log_n: usize, basek: usize, p: i64, k_autokey: usize, k_ct: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct + basek - 1) / basek;
let mut autokey: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_autokey, rows, rank);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, rank, autokey.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct.size())
| GLWECiphertext::automorphism_inplace_scratch_space(&module, ct.size(), rank, autokey.size()),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
autokey.generate_from_sk(
&module,
p,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.automorphism_inplace(&module, &autokey, scratch.borrow());
ct.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow());
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_autokey,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product(log_n: usize, basek: usize, k_ggsw: usize, k_ct_in: usize, k_ct_out: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct_in + basek - 1) / basek;
let mut ct_rgsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank);
let mut ct_rlwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_in, rank);
let mut ct_rlwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct_out, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe_out.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe_in.size())
| GLWECiphertext::external_product_scratch_space(
&module,
ct_rlwe_out.size(),
ct_rlwe_in.size(),
ct_rgsw.size(),
rank,
),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe_in.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe_out.external_product(&module, &ct_rlwe_in, &ct_rgsw, scratch.borrow());
ct_rlwe_out.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct_in,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product_inplace(log_n: usize, basek: usize, k_ggsw: usize, k_ct: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = (k_ct + basek - 1) / basek;
let mut ct_rgsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, rank);
let mut ct_rlwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, rank, ct_rgsw.size())
| GLWECiphertext::decrypt_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::encrypt_sk_scratch_space(&module, ct_rlwe.size())
| GLWECiphertext::external_product_inplace_scratch_space(&module, ct_rlwe.size(), ct_rgsw.size(), rank),
);
let mut sk: SecretKey<Vec<u8>> = SecretKey::alloc(&module, rank);
sk.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_dft: SecretKeyFourier<Vec<u8>, FFT64> = SecretKeyFourier::alloc(&module, rank);
sk_dft.dft(&module, &sk);
ct_rgsw.encrypt_sk(
&module,
&pt_rgsw,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe.encrypt_sk(
&module,
&pt_want,
&sk_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_rlwe.external_product_inplace(&module, &ct_rgsw, scratch.borrow());
ct_rlwe.decrypt(&module, &mut pt_have, &sk_dft, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.1,
"{} {}",
noise_have,
noise_want
);
}