Files
poulpy/base2k/examples/rlwe_encrypt.rs
2025-05-01 23:29:32 +02:00

141 lines
4.5 KiB
Rust

use base2k::{
Encoding, FFT64, Module, Sampling, Scalar, ScalarOps, ScalarZnxDft, ScalarZnxDftOps, VecZnx, VecZnxBig, VecZnxBigOps,
VecZnxDft, VecZnxDftOps, VecZnxOps, ZnxInfos, alloc_aligned,
};
use itertools::izip;
use sampling::source::Source;
fn main() {
let n: usize = 16;
let log_base2k: usize = 18;
let ct_size: usize = 3;
let msg_size: usize = 2;
let log_scale: usize = msg_size * log_base2k - 5;
let module: Module<FFT64> = Module::<FFT64>::new(n);
let mut tmp_bytes_norm: Vec<u8> = alloc_aligned(module.vec_znx_big_normalize_tmp_bytes());
let mut tmp_bytes_dft = alloc_aligned(module.bytes_of_vec_znx_dft(1, ct_size));
let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed);
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
let mut s: Scalar = module.new_scalar(1);
s.fill_ternary_prob(0, 0.5, &mut source);
// Buffer to store s in the DFT domain
let mut s_dft: ScalarZnxDft<FFT64> = module.new_scalar_znx_dft(s.cols());
// s_dft <- DFT(s)
module.svp_prepare(&mut s_dft, 0, &s, 0);
// Allocates a VecZnx with two columns: ct=(0, 0)
let mut ct: VecZnx = module.new_vec_znx(
2, // Number of columns
ct_size, // Number of small poly per column
);
// Fill the second column with random values: ct = (0, a)
module.fill_uniform(log_base2k, &mut ct, 1, ct_size, &mut source);
// Scratch space for DFT values
let mut buf_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft_from_bytes_borrow(
1, // Number of columns
ct.size(), // Number of polynomials per column
&mut tmp_bytes_dft,
);
// Applies DFT(ct[1]) * DFT(s)
module.svp_apply_dft(
&mut buf_dft, // DFT(ct[1] * s)
0, // Selects the first column of res
&s_dft, // DFT(s)
0, // Selects the first column of s_dft
&ct,
1, // Selects the second column of ct
);
// Alias scratch space (VecZnxDft<B> is always at least as big as VecZnxBig<B>)
let mut buf_big: VecZnxBig<FFT64> = buf_dft.alias_as_vec_znx_big();
// BIG(ct[1] * s) <- IDFT(DFT(ct[1] * s)) (not normalized)
module.vec_znx_idft_tmp_a(&mut buf_big, 0, &mut buf_dft, 0);
// Creates a plaintext: VecZnx with 1 column
let mut m: VecZnx = module.new_vec_znx(
1, // Number of columns
msg_size, // Number of small polynomials
);
let mut want: Vec<i64> = vec![0; n];
want.iter_mut()
.for_each(|x| *x = source.next_u64n(16, 15) as i64);
m.encode_vec_i64(0, log_base2k, log_scale, &want, 4);
m.normalize(log_base2k, 0, &mut tmp_bytes_norm);
// m - BIG(ct[1] * s)
module.vec_znx_big_sub_small_a_inplace(
&mut buf_big,
0, // Selects the first column of the receiver
&m,
0, // Selects the first column of the message
);
// Normalizes back to VecZnx
// ct[0] <- m - BIG(c1 * s)
module.vec_znx_big_normalize(
log_base2k,
&mut ct,
0, // Selects the first column of ct (ct[0])
&buf_big,
0, // Selects the first column of buf_big
&mut tmp_bytes_norm,
);
// Add noise to ct[0]
// ct[0] <- ct[0] + e
module.add_normal(
log_base2k,
&mut ct,
0, // Selects the first column of ct (ct[0])
log_base2k * ct_size, // Scaling of the noise: 2^{-log_base2k * limbs}
&mut source,
3.2, // Standard deviation
19.0, // Truncatation bound
);
// Final ciphertext: ct = (-a * s + m + e, a)
// Decryption
// DFT(ct[1] * s)
module.svp_apply_dft(
&mut buf_dft,
0, // Selects the first column of res.
&s_dft,
0,
&ct,
1, // Selects the second column of ct (ct[1])
);
// BIG(c1 * s) = IDFT(DFT(c1 * s))
module.vec_znx_idft_tmp_a(&mut buf_big, 0, &mut buf_dft, 0);
// BIG(c1 * s) + ct[0]
module.vec_znx_big_add_small_inplace(&mut buf_big, 0, &ct, 0);
// m + e <- BIG(ct[1] * s + ct[0])
let mut res: VecZnx = module.new_vec_znx(1, ct_size);
module.vec_znx_big_normalize(log_base2k, &mut res, 0, &buf_big, 0, &mut tmp_bytes_norm);
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];
res.decode_vec_i64(0, log_base2k, res.size() * log_base2k, &mut have);
let scale: f64 = (1 << (res.size() * log_base2k - log_scale)) as f64;
izip!(want.iter(), have.iter())
.enumerate()
.for_each(|(i, (a, b))| {
println!("{}: {} {}", i, a, (*b as f64) / scale);
})
}