Browse Source

add test folding k instances and n iterations. also some polishing

main
arnaucube 1 year ago
parent
commit
89b480f185
2 changed files with 97 additions and 23 deletions
  1. +2
    -2
      README.md
  2. +95
    -21
      src/protogalaxy.rs

+ 2
- 2
README.md

@ -15,7 +15,7 @@ This code has been done in the context of the research on folding schemes in [0x
## Details ## Details
Implementation of ProtoGalaxy's scheme described in section 4 of the paper. Implementation of ProtoGalaxy's scheme described in section 4 of the paper.
Current version implements the folding on prover & verifier and it works, but it is not optimized.
Current version implements the folding on prover & verifier and it works for k-to-1 instances and with multiple iterations, but it is not optimized.
Next steps in terms of implementation include: F(X) O(n) construction following Claim 4.4, compute K(X) in O(kd log(kd)M + ndkC) as described in Claim 4.5, add tests folding in multiple iterations and also in a tree approach, add the decider and integrate with some existing R1CS tooling for the R1CS & witness generation. Next steps in terms of implementation include: F(X) O(n) construction following Claim 4.4, compute K(X) in O(kd log(kd)M + ndkC) as described in Claim 4.5, add tests folding in multiple iterations and also in a tree approach, add the decider and integrate with some existing R1CS tooling for the R1CS & witness generation.
### Usage ### Usage
@ -45,7 +45,6 @@ for i in 0..k {
betas: betas.clone(), betas: betas.clone(),
e: Fr::zero(), e: Fr::zero(),
}; };
witnesses.push(witness_i);
instances.push(instance_i); instances.push(instance_i);
} }
@ -76,5 +75,6 @@ let folded_instance_v = Folding::::verifier(
// check that the folded instance satisfies the relation // check that the folded instance satisfies the relation
assert!(check_instance(&r2cs, folded_instance, folded_witness)); assert!(check_instance(&r2cs, folded_instance, folded_witness));
// now, the folded instance & witness can be folded again with n other instances.
``` ```
(see the actual code for more details) (see the actual code for more details)

+ 95
- 21
src/protogalaxy.rs

@ -97,16 +97,14 @@ where
// 'refreshed' randomness) satisfies the relation. // 'refreshed' randomness) satisfies the relation.
assert!(check_instance( assert!(check_instance(
r1cs, r1cs,
CommittedInstance {
&CommittedInstance {
phi: instance.phi.clone(), phi: instance.phi.clone(),
betas: betas_star.clone(), betas: betas_star.clone(),
e: F_alpha, e: F_alpha,
}, },
w.clone(),
&w,
)); ));
let gamma = transcript.get_challenge();
let mut ws: Vec<Vec<C::ScalarField>> = Vec::new(); let mut ws: Vec<Vec<C::ScalarField>> = Vec::new();
ws.push(w.w.clone()); ws.push(w.w.clone());
for wj in vec_w.iter() { for wj in vec_w.iter() {
@ -116,6 +114,7 @@ where
let k = vec_instances.len(); let k = vec_instances.len();
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap(); let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
// WIP review t/d
let EH = GeneralEvaluationDomain::<C::ScalarField>::new(t * k + 1).unwrap(); let EH = GeneralEvaluationDomain::<C::ScalarField>::new(t * k + 1).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H); let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
@ -165,6 +164,10 @@ where
let (K_X, remainder) = G_L0e.divide_by_vanishing_poly(H).unwrap(); let (K_X, remainder) = G_L0e.divide_by_vanishing_poly(H).unwrap();
assert!(remainder.is_zero()); assert!(remainder.is_zero());
transcript.add_vec(&K_X.coeffs);
let gamma = transcript.get_challenge();
let e_star = let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma); F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
@ -179,6 +182,10 @@ where
&vec_scalar_mul(&vec_w[i].w, &L_X[i + 1].evaluate(&gamma)), &vec_scalar_mul(&vec_w[i].w, &L_X[i + 1].evaluate(&gamma)),
); );
} }
let mut r_w_star: C::ScalarField = w.r_w * L_X[0].evaluate(&gamma);
for i in 0..k {
r_w_star += vec_w[i].r_w * L_X[i + 1].evaluate(&gamma);
}
( (
F_X_dense.coeffs, F_X_dense.coeffs,
@ -219,8 +226,8 @@ where
// F(alpha) = e + \sum_t F_i * alpha^i // F(alpha) = e + \sum_t F_i * alpha^i
let mut F_alpha = instance.e; let mut F_alpha = instance.e;
for (i, F_i) in F_coeffs.iter().enumerate() {
F_alpha += *F_i * alphas[i];
for (i, F_i) in F_coeffs.iter().skip(1).enumerate() {
F_alpha += *F_i * alphas[i + 1];
} }
let betas_star: Vec<C::ScalarField> = instance let betas_star: Vec<C::ScalarField> = instance
@ -235,8 +242,6 @@ where
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha) .map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
.collect(); .collect();
let gamma = transcript.get_challenge();
let k = vec_instances.len(); let k = vec_instances.len();
let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap(); let H = GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).unwrap();
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H); let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
@ -244,6 +249,10 @@ where
let K_X: DensePolynomial<C::ScalarField> = let K_X: DensePolynomial<C::ScalarField> =
DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs); DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs);
transcript.add_vec(&K_X.coeffs);
let gamma = transcript.get_challenge();
let e_star = let e_star =
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma); F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
@ -325,8 +334,8 @@ fn eval_f(r1cs: &R1CS, w: &[F]) -> Vec {
fn check_instance<C: CurveGroup>( fn check_instance<C: CurveGroup>(
r1cs: &R1CS<C::ScalarField>, r1cs: &R1CS<C::ScalarField>,
instance: CommittedInstance<C>,
w: Witness<C>,
instance: &CommittedInstance<C>,
w: &Witness<C>,
) -> bool { ) -> bool {
let n = 2_u64.pow(instance.betas.len() as u32) as usize; let n = 2_u64.pow(instance.betas.len() as u32) as usize;
@ -473,15 +482,18 @@ mod tests {
assert!(!is_zero_vec(&f_w)); assert!(!is_zero_vec(&f_w));
} }
#[test]
fn test_fold_native_case() {
// k represents the number of instances to be fold, appart from the running instance
fn prepare_inputs(
k: usize,
) -> (
Witness<G1Projective>,
CommittedInstance<G1Projective>,
Vec<Witness<G1Projective>>,
Vec<CommittedInstance<G1Projective>>,
) {
let mut rng = ark_std::test_rng(); let mut rng = ark_std::test_rng();
let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
let poseidon_config = poseidon_test_config::<Fr>();
let k = 6;
let r1cs = get_test_r1cs::<Fr>();
let z = get_test_z::<Fr>(3); let z = get_test_z::<Fr>(3);
let mut zs: Vec<Vec<Fr>> = Vec::new(); let mut zs: Vec<Vec<Fr>> = Vec::new();
for i in 0..k { for i in 0..k {
@ -489,10 +501,6 @@ mod tests {
zs.push(z_i); zs.push(z_i);
} }
// init Prover & Verifier's transcript
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let n = z.len(); let n = z.len();
let t = log2(n) as usize; let t = log2(n) as usize;
@ -528,6 +536,20 @@ mod tests {
instances.push(instance_i); instances.push(instance_i);
} }
(witness, instance, witnesses, instances)
}
#[test]
fn test_fold_native_case() {
let k = 6;
let (witness, instance, witnesses, instances) = prepare_inputs(k);
let r1cs = get_test_r1cs::<Fr>();
// init Prover & Verifier's transcript
let poseidon_config = poseidon_test_config::<Fr>();
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover( let (F_coeffs, K_coeffs, folded_instance, folded_witness) = Folding::<G1Projective>::prover(
&mut transcript_p, &mut transcript_p,
&r1cs, &r1cs,
@ -554,6 +576,58 @@ mod tests {
assert!(!folded_instance.e.is_zero()); assert!(!folded_instance.e.is_zero());
// check that the folded instance satisfies the relation // check that the folded instance satisfies the relation
assert!(check_instance(&r1cs, folded_instance, folded_witness));
assert!(check_instance(&r1cs, &folded_instance, &folded_witness));
}
#[test]
fn test_fold_various_iterations() {
let r1cs = get_test_r1cs::<Fr>();
// init Prover & Verifier's transcript
let poseidon_config = poseidon_test_config::<Fr>();
let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
let (mut running_witness, mut running_instance, _, _) = prepare_inputs(0);
// fold k instances on each of num_iters iterations
let k = 6;
let num_iters = 10;
for _ in 0..num_iters {
// generate the instances to be fold
let (_, _, witnesses, instances) = prepare_inputs(k);
let (F_coeffs, K_coeffs, folded_instance, folded_witness) =
Folding::<G1Projective>::prover(
&mut transcript_p,
&r1cs,
running_instance.clone(),
running_witness.clone(),
instances.clone(),
witnesses,
);
// veriier
let folded_instance_v = Folding::<G1Projective>::verifier(
&mut transcript_v,
&r1cs,
running_instance.clone(),
instances,
F_coeffs,
K_coeffs,
);
// check that prover & verifier folded instances are the same values
assert_eq!(folded_instance.phi.0, folded_instance_v.phi.0);
assert_eq!(folded_instance.betas, folded_instance_v.betas);
assert_eq!(folded_instance.e, folded_instance_v.e);
assert!(!folded_instance.e.is_zero());
// check that the folded instance satisfies the relation
assert!(check_instance(&r1cs, &folded_instance, &folded_witness));
running_witness = folded_witness;
running_instance = folded_instance;
}
} }
} }

Loading…
Cancel
Save