Browse Source

[WIP] Implement kalinski modular inverse and tests

Implemented Kalinski Modular inverse algorithm.
See: https://www.researchgate.net/publication/3387259_Improved_Montgomery_modular_inverse_algorithm

Also implemented test for big and small Bignums.

One test is giving results over the Montgomery Domain, so
a little bit of research has to be done.
pull/2/head
kr0 5 years ago
parent
commit
bfbe547191
1 changed files with 126 additions and 0 deletions
  1. +126
    -0
      shamirsecretsharing-rs/src/lib.rs

+ 126
- 0
shamirsecretsharing-rs/src/lib.rs

@ -3,8 +3,11 @@ extern crate num;
extern crate num_bigint; extern crate num_bigint;
extern crate num_traits; extern crate num_traits;
use std::str::FromStr;
use num_bigint::RandBigInt; use num_bigint::RandBigInt;
use num::pow::pow; use num::pow::pow;
use num::Integer;
use num_bigint::{BigInt, ToBigInt}; use num_bigint::{BigInt, ToBigInt};
@ -89,6 +92,95 @@ fn mod_inverse(a: BigInt, module: BigInt) -> BigInt {
xy.0 xy.0
} }
/// Compute `a^-1 (mod l)` using the the Kalinski implementation
/// of the Montgomery Modular Inverse algorithm.
/// B. S. Kaliski Jr. - The Montgomery inverse and its applica-tions.
/// IEEE Transactions on Computers, 44(8):1064–1065, August-1995
pub fn kalinski_inv(a: &BigInt, modulo: &BigInt) -> BigInt {
// This Phase I indeed is the Binary GCD algorithm , a version o Stein's algorithm
// which tries to remove the expensive division operation away from the Classical
// Euclidean GDC algorithm replacing it for Bit-shifting, subtraction and comparaison.
//
// Output = `a^(-1) * 2^k (mod l)` where `k = log2(modulo) == Number of bits`.
//
// Stein, J.: Computational problems associated with Racah algebra.J. Comput. Phys.1, 397–405 (1967).
let phase1 = |a: &BigInt| -> (BigInt, u64) {
assert!(a != &BigInt::zero());
let p = modulo;
let mut u = modulo.clone();
let mut v = a.clone();
let mut r = BigInt::zero();
let mut s = BigInt::one();
let two = BigInt::from(2u64);
let mut k = 0u64;
while v > BigInt::zero() {
match(u.is_even(), v.is_even(), u > v, v >= u) {
// u is even
(true, _, _, _) => {
u = u >> 1;
s = &s * &two;
},
// u isn't even but v is even
(false, true, _, _) => {
v = v >> 1;
r = &r * &two;
},
// u and v aren't even and u > v
(false, false, true, _) => {
u = &u - &v;
u = u >> 1;
r = &r + &s;
s = &s * &two;
},
// u and v aren't even and v > u
(false, false, false, true) => {
v = &v - &u;
v = v >> 1;
s = &r + &s;
r = &r * &two;
},
(false, false, false, false) => panic!("Unexpected error has ocurred."),
}
k += 1;
}
if &r > p {
r = &r - p;
}
((p - &r), k)
};
// Phase II performs some adjustments to obtain
// the Montgomery inverse.
//
// We implement it as a clousure to be able to grap the
// kalinski_inv scope to get `modulo` variable.
let phase2 = |r: &BigInt, k: &u64| -> BigInt {
let mut rr = r.clone();
let _p = modulo;
for _i in 0..(k - modulo.bits() as u64) {
match rr.is_even() {
true => {
rr = rr >> 1;
},
false => {
rr = (rr + modulo) >> 1;
}
}
}
rr
};
let (r, z) = phase1(&a.clone());
phase2(&r, &z)
}
pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> BigInt { pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> BigInt {
let mut res_n: BigInt = Zero::zero(); let mut res_n: BigInt = Zero::zero();
let mut res_d: BigInt = Zero::zero(); let mut res_d: BigInt = Zero::zero();
@ -131,6 +223,7 @@ pub fn lagrange_interpolation(p: &BigInt, shares_packed: Vec<[BigInt;2]>) -> Big
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use std::str::FromStr;
#[test] #[test]
fn test_create_and_lagrange_interpolation() { fn test_create_and_lagrange_interpolation() {
@ -151,4 +244,37 @@ mod tests {
println!("original secret: {:?}", k.to_string()); println!("original secret: {:?}", k.to_string());
assert_eq!(k, r); assert_eq!(k, r);
} }
#[test]
fn kalinski_modular_inverse() {
let modul1 = BigInt::from(127u64);
let a = BigInt::from(79u64);
let res1 = kalinski_inv(&a, &modul1);
let expected1 = BigInt::from(82u64);
assert_eq!(res1, expected1);
let b = BigInt::from(50u64);
let res2 = kalinski_inv(&b, &modul1);
let expected2 = BigInt::from(94u64);
assert_eq!(res2, expected2);
// Big numbers testing.
// C = 19.
// modul2 = 2^255 - 19.
let modul2 = BigInt::from_str("57896044618658097711785492504343953926634992332820282019728792003956564819949").unwrap();
let c = BigInt::from_str("19").unwrap();
let res3 = kalinski_inv(&c, &modul2);
let expected3 = BigInt::from_str("1").unwrap();
assert_eq!(res3, expected3);
/*// D = 182687704666362864775460604089535377456991567872.
// modul3 = 2^252 + 27742317777372353535851937790883648493.
let modul3 = BigInt::from_str("7237005577332262213973186563042994240857116359379907606001950938285454250989").unwrap();
let d = BigInt::from_str("182687704666362864775460604089535377456991567872").unwrap();
let res4 = kalinski_inv(&d, &modul3);
println!("RES ON IMPL: {}", res4);
let expected4 = BigInt::from_str("7155219595916845557842258654134856828180378438239419449390401977965479867845").unwrap();
assert_eq!(expected4, res4);*/
}
} }

Loading…
Cancel
Save