Browse Source

Init commit!

main
Daniel Tehrani 2 years ago
commit
69c6b26205
32 changed files with 2367 additions and 0 deletions
  1. +2
    -0
      .gitignore
  2. +5
    -0
      Cargo.toml
  3. +36
    -0
      README.md
  4. +24
    -0
      shockwave_plus/Cargo.toml
  5. +41
    -0
      shockwave_plus/benches/prove.rs
  6. +272
    -0
      shockwave_plus/src/lib.rs
  7. +34
    -0
      shockwave_plus/src/polynomial/blinder_poly.rs
  8. +39
    -0
      shockwave_plus/src/polynomial/ml_poly.rs
  9. +2
    -0
      shockwave_plus/src/polynomial/mod.rs
  10. +3
    -0
      shockwave_plus/src/r1cs/mod.rs
  11. +306
    -0
      shockwave_plus/src/r1cs/r1cs.rs
  12. +6
    -0
      shockwave_plus/src/sumcheck/mod.rs
  13. +175
    -0
      shockwave_plus/src/sumcheck/sc_phase_1.rs
  14. +184
    -0
      shockwave_plus/src/sumcheck/sc_phase_2.rs
  15. +81
    -0
      shockwave_plus/src/sumcheck/unipoly.rs
  16. +19
    -0
      shockwave_plus/src/utils.rs
  17. +21
    -0
      tensor_pcs/Cargo.toml
  18. +93
    -0
      tensor_pcs/benches/prove.rs
  19. +118
    -0
      tensor_pcs/src/fft.rs
  20. +19
    -0
      tensor_pcs/src/lib.rs
  21. +68
    -0
      tensor_pcs/src/polynomial/eq_poly.rs
  22. +2
    -0
      tensor_pcs/src/polynomial/mod.rs
  23. +44
    -0
      tensor_pcs/src/polynomial/sparse_ml_poly.rs
  24. +27
    -0
      tensor_pcs/src/rs_config/ecfft.rs
  25. +3
    -0
      tensor_pcs/src/rs_config/mod.rs
  26. +21
    -0
      tensor_pcs/src/rs_config/naive.rs
  27. +23
    -0
      tensor_pcs/src/rs_config/smooth.rs
  28. +42
    -0
      tensor_pcs/src/tensor_code.rs
  29. +446
    -0
      tensor_pcs/src/tensor_pcs.rs
  30. +58
    -0
      tensor_pcs/src/transcript.rs
  31. +64
    -0
      tensor_pcs/src/tree.rs
  32. +89
    -0
      tensor_pcs/src/utils.rs

+ 2
- 0
.gitignore

@ -0,0 +1,2 @@
/target
Cargo.lock

+ 5
- 0
Cargo.toml

@ -0,0 +1,5 @@
[workspace]
members = [
"tensor_pcs",
"shockwave_plus"
]

+ 36
- 0
README.md

@ -0,0 +1,36 @@
# Shockwave+
## Overview
Shockwave is a variant of [Brakedown](https://eprint.iacr.org/2021/1043) that uses Reed-Solomon code instead of a linear-time encodable code. **Shockwave+** is an extension of Shockwave that works over all finite fields by using [ECFFT](https://arxiv.org/pdf/2107.08473.pdf) instead of FFT for low-degree extension of polynomial evaluations.
Brakedown has a linear-time prover and is *field-agnostic* (i.e. works over all finite fields), but its proofs are concretely larger than Shockwave’s.
Shockwave provides shorter proofs and lower verification time but requires an FFT-friendly field to achieve $O (n\log{n})$ proving time.
Shockwave+ inherits the smaller proofs of Shockwave and is also *field-agnostic*. It uses the EXTEND operation from [ECFFT](https://arxiv.org/pdf/2107.08473.pdf) to run Reed-Solomon encoding in $n\log{n}$ time.
**Crates**
[shockwave_plus](/shockwave_plus/) contains the prover/verifier for a zero-knowledge proof of R1CS satisfiability. It’s based on the PIOP from [Spartan](https://eprint.iacr.org/2019/550.pdf), and uses the multilinear polynomial commitment scheme implemented in [tensor_pcs](/tensor_pcs/).
**Zero-Knowledge**
We use the zero-knowledge sum-check protocol from Libra to transform the Spartan PIOP into a zero-knowledge PIOP. And use a technique from [BCG+17](https://eprint.iacr.org/2017/872.pdf) to make the polynomial commitment scheme zero-knowledge.
The EXTEND operation is implemented in a separate crate [ecfft](https://github.com/DanTehrani/ecfft) and is used in [tensor_pcs](/tensor_pcs/).
## Benchmarks
TBD
## Future work
- [ ] Support richer frontends (CCS, PLONKish).
- [ ] Employ *self-recursion* techniques from [Vortex](https://eprint.iacr.org/2022/1633.pdf)/[Orion](https://eprint.iacr.org/2022/1010.pdf) to make the proofs smaller.
## Run tests
```bash
cargo test
```

+ 24
- 0
shockwave_plus/Cargo.toml

@ -0,0 +1,24 @@
[package]
name = "shockwave-plus"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ark-std = "0.4.0"
bincode = "1.3.3"
halo2curves = { version = "0.1.0", features = ["derive_serde"] }
rand = "0.8.5"
tensor-pcs = { path = "../tensor_pcs" }
serde = { version = "1.0.152", features = ["derive"] }
[dev-dependencies]
criterion = { version = "0.4", features = ["html_reports"] }
[[bench]]
name = "prove"
harness = false
[features]
print-trace = ["ark-std/print-trace"]

+ 41
- 0
shockwave_plus/benches/prove.rs

@ -0,0 +1,41 @@
#![allow(non_snake_case)]
use criterion::{criterion_group, criterion_main, Criterion};
use shockwave_plus::ShockwavePlus;
use shockwave_plus::R1CS;
use tensor_pcs::Transcript;
fn shockwave_plus_bench(c: &mut Criterion) {
type F = halo2curves::secp256k1::Fp;
for exp in [12, 15, 18] {
let num_cons = 2usize.pow(exp);
let num_vars = num_cons;
let num_input = 0;
let (r1cs, witness) = R1CS::<F>::produce_synthetic_r1cs(num_cons, num_vars, num_input);
let mut group = c.benchmark_group(format!("ShockwavePlus num_cons: {}", num_cons));
let l = 319;
let num_rows = (((2f64 / l as f64).sqrt() * (num_vars as f64).sqrt()) as usize)
.next_power_of_two()
/ 2;
let ShockwavePlus = ShockwavePlus::new(r1cs.clone(), l, num_rows);
group.bench_function("prove", |b| {
b.iter(|| {
let mut transcript = Transcript::new(b"bench");
ShockwavePlus.prove(&witness, &mut transcript);
})
});
}
}
fn set_duration() -> Criterion {
Criterion::default().sample_size(10)
}
criterion_group! {
name = benches;
config = set_duration();
targets = shockwave_plus_bench
}
criterion_main!(benches);

+ 272
- 0
shockwave_plus/src/lib.rs

@ -0,0 +1,272 @@
#![allow(non_snake_case)]
mod polynomial;
mod r1cs;
mod sumcheck;
mod utils;
use ark_std::{end_timer, start_timer};
use serde::{Deserialize, Serialize};
use sumcheck::{SCPhase1Proof, SCPhase2Proof, SumCheckPhase1, SumCheckPhase2};
// Exports
pub use r1cs::R1CS;
pub use tensor_pcs::*;
#[derive(Serialize, Deserialize)]
pub struct PartialSpartanProof<F: FieldExt> {
pub z_comm: [u8; 32],
pub sc_proof_1: SCPhase1Proof<F>,
pub sc_proof_2: SCPhase2Proof<F>,
pub z_eval_proof: TensorMLOpening<F>,
pub v_A: F,
pub v_B: F,
pub v_C: F,
}
pub struct FullSpartanProof<F: FieldExt> {
pub partial_proof: PartialSpartanProof<F>,
pub A_eval_proof: TensorMLOpening<F>,
pub B_eval_proof: TensorMLOpening<F>,
pub C_eval_proof: TensorMLOpening<F>,
}
pub struct ShockwavePlus<F: FieldExt> {
pub r1cs: R1CS<F>,
pub pcs_witness: TensorMultilinearPCS<F>,
}
impl<F: FieldExt> ShockwavePlus<F> {
pub fn new(r1cs: R1CS<F>, l: usize, num_rows: usize) -> Self {
let num_cols = r1cs.num_vars / num_rows;
// Make sure that there are enough columns to run the l queries
assert!(num_cols > l);
let expansion_factor = 2;
let ecfft_config = rs_config::ecfft::gen_config(num_cols);
let pcs_config = TensorRSMultilinearPCSConfig::<F> {
expansion_factor,
domain_powers: None,
fft_domain: None,
ecfft_config: Some(ecfft_config),
l,
num_entries: r1cs.num_vars,
num_rows,
};
let pcs_witness = TensorMultilinearPCS::new(pcs_config);
Self { r1cs, pcs_witness }
}
pub fn prove(
&self,
witness: &[F],
transcript: &mut Transcript<F>,
) -> (PartialSpartanProof<F>, Vec<F>) {
// Compute the multilinear extension of the witness
assert!(witness.len().is_power_of_two());
let witness_poly = SparseMLPoly::from_dense(witness.to_vec());
// Commit the witness polynomial
let comm_witness_timer = start_timer!(|| "Commit witness");
let committed_witness = self.pcs_witness.commit(&witness_poly);
let witness_comm = committed_witness.committed_tree.root;
end_timer!(comm_witness_timer);
transcript.append_bytes(&witness_comm);
// ############################
// Phase 1: The sum-checks
// ###################
let m = (self.r1cs.num_vars as f64).log2() as usize;
let tau = transcript.challenge_vec(m);
let mut tau_rev = tau.clone();
tau_rev.reverse();
// First
// Compute the multilinear extension of the R1CS matrices.
// Prove that he Q_poly is a zero-polynomial
// Q_poly is a zero-polynomial iff F_io evaluates to zero
// over the m-dimensional boolean hypercube..
// We prove using the sum-check protocol.
// G_poly = A_poly * B_poly - C_poly
let num_rows = self.r1cs.num_cons;
let Az_poly = self.r1cs.A.mul_vector(num_rows, witness);
let Bz_poly = self.r1cs.B.mul_vector(num_rows, witness);
let Cz_poly = self.r1cs.C.mul_vector(num_rows, witness);
// Prove that the polynomial Q(t)
// \sum_{x \in {0, 1}^m} (Az_poly(x) * Bz_poly(x) - Cz_poly(x)) eq(tau, x)
// is a zero-polynomial using the sum-check protocol.
let rx = transcript.challenge_vec(m);
let mut rx_rev = rx.clone();
rx_rev.reverse();
let sc_phase_1_timer = start_timer!(|| "Sumcheck phase 1");
let sc_phase_1 = SumCheckPhase1::new(
Az_poly.clone(),
Bz_poly.clone(),
Cz_poly.clone(),
tau_rev.clone(),
rx.clone(),
);
let (sc_proof_1, (v_A, v_B, v_C)) = sc_phase_1.prove(transcript);
end_timer!(sc_phase_1_timer);
transcript.append_fe(&v_A);
transcript.append_fe(&v_B);
transcript.append_fe(&v_C);
// Phase 2
let r = transcript.challenge_vec(3);
// T_2 should equal teh evaluations of the random linear combined polynomials
let ry = transcript.challenge_vec(m);
let sc_phase_2_timer = start_timer!(|| "Sumcheck phase 2");
let sc_phase_2 = SumCheckPhase2::new(
self.r1cs.A.clone(),
self.r1cs.B.clone(),
self.r1cs.C.clone(),
witness.to_vec(),
rx.clone(),
r.as_slice().try_into().unwrap(),
ry.clone(),
);
let sc_proof_2 = sc_phase_2.prove(transcript);
end_timer!(sc_phase_2_timer);
let mut ry_rev = ry.clone();
ry_rev.reverse();
let z_open_timer = start_timer!(|| "Open witness poly");
// Prove the evaluation of the polynomial Z(y) at ry
let z_eval_proof =
self.pcs_witness
.open(&committed_witness, &witness_poly, &ry_rev, transcript);
end_timer!(z_open_timer);
// Prove the evaluation of the polynomials A(y), B(y), C(y) at ry
let rx_ry = vec![ry_rev, rx_rev].concat();
(
PartialSpartanProof {
z_comm: witness_comm,
sc_proof_1,
sc_proof_2,
z_eval_proof,
v_A,
v_B,
v_C,
},
rx_ry,
)
}
pub fn verify_partial(
&self,
partial_proof: &PartialSpartanProof<F>,
transcript: &mut Transcript<F>,
) {
partial_proof.z_comm.append_to_transcript(transcript);
let A_mle = self.r1cs.A.to_ml_extension();
let B_mle = self.r1cs.B.to_ml_extension();
let C_mle = self.r1cs.C.to_ml_extension();
let m = (self.r1cs.num_vars as f64).log2() as usize;
let tau = transcript.challenge_vec(m);
let rx = transcript.challenge_vec(m);
let mut rx_rev = rx.clone();
rx_rev.reverse();
transcript.append_fe(&partial_proof.sc_proof_1.blinder_poly_sum);
let rho = transcript.challenge_fe();
let ex = SumCheckPhase1::verify_round_polys(&partial_proof.sc_proof_1, &rx, rho);
// The final eval should equal
let v_A = partial_proof.v_A;
let v_B = partial_proof.v_B;
let v_C = partial_proof.v_C;
let T_1_eq = EqPoly::new(tau);
let T_1 = (v_A * v_B - v_C) * T_1_eq.eval(&rx_rev)
+ rho * partial_proof.sc_proof_1.blinder_poly_eval_claim;
assert_eq!(T_1, ex);
transcript.append_fe(&v_A);
transcript.append_fe(&v_B);
transcript.append_fe(&v_C);
let r = transcript.challenge_vec(3);
let r_A = r[0];
let r_B = r[1];
let r_C = r[2];
let ry = transcript.challenge_vec(m);
transcript.append_fe(&partial_proof.sc_proof_2.blinder_poly_sum);
let rho_2 = transcript.challenge_fe();
let T_2 =
(r_A * v_A + r_B * v_B + r_C * v_C) + rho_2 * partial_proof.sc_proof_2.blinder_poly_sum;
let final_poly_eval =
SumCheckPhase2::verify_round_polys(T_2, &partial_proof.sc_proof_2, &ry);
let mut ry_rev = ry.clone();
ry_rev.reverse();
let rx_ry = [rx, ry].concat();
assert_eq!(partial_proof.z_eval_proof.x, ry_rev);
let z_eval = partial_proof.z_eval_proof.y;
let A_eval = A_mle.eval(&rx_ry);
let B_eval = B_mle.eval(&rx_ry);
let C_eval = C_mle.eval(&rx_ry);
self.pcs_witness.verify(
&partial_proof.z_eval_proof,
&partial_proof.z_comm,
transcript,
);
let T_opened = (r_A * A_eval + r_B * B_eval + r_C * C_eval) * z_eval
+ rho_2 * partial_proof.sc_proof_2.blinder_poly_eval_claim;
assert_eq!(T_opened, final_poly_eval);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_shockwave_plus() {
type F = halo2curves::secp256k1::Fp;
let num_cons = 2usize.pow(6);
let num_vars = num_cons;
let num_input = 0;
let l = 10;
let (r1cs, witness) = R1CS::<F>::produce_synthetic_r1cs(num_cons, num_vars, num_input);
let num_rows = 4;
let ShockwavePlus = ShockwavePlus::new(r1cs.clone(), l, num_rows);
let mut prover_transcript = Transcript::new(b"bench");
let (partial_proof, _) = ShockwavePlus.prove(&witness, &mut prover_transcript);
let mut verifier_transcript = Transcript::new(b"bench");
ShockwavePlus.verify_partial(&partial_proof, &mut verifier_transcript);
}
}

+ 34
- 0
shockwave_plus/src/polynomial/blinder_poly.rs

@ -0,0 +1,34 @@
use crate::FieldExt;
pub struct BlinderPoly<F: FieldExt> {
inner_poly_coeffs: Vec<Vec<F>>,
}
impl<F: FieldExt> BlinderPoly<F> {
pub fn sample_random(num_vars: usize, degree: usize) -> Self {
let mut rng = rand::thread_rng();
let inner_poly_coeffs = (0..num_vars)
.map(|_| (0..(degree + 1)).map(|_| F::random(&mut rng)).collect())
.collect();
Self { inner_poly_coeffs }
}
pub fn eval(&self, x: &[F]) -> F {
let mut res = F::ZERO;
for (coeffs, x_i) in self.inner_poly_coeffs.iter().zip(x.iter()) {
let mut tmp = F::ZERO;
let mut x_i_pow = F::ONE;
for coeff in coeffs.iter() {
tmp += *coeff * x_i_pow;
x_i_pow *= x_i;
}
res += tmp;
}
res
}
}

+ 39
- 0
shockwave_plus/src/polynomial/ml_poly.rs

@ -0,0 +1,39 @@
use tensor_pcs::EqPoly;
use crate::FieldExt;
#[derive(Clone, Debug)]
pub struct MlPoly<F> {
pub evals: Vec<F>,
pub num_vars: usize,
}
impl<F: FieldExt> MlPoly<F> {
pub fn new(evals: Vec<F>) -> Self {
assert!(evals.len().is_power_of_two());
let num_vars = (evals.len() as f64).log2() as usize;
Self { evals, num_vars }
}
fn dot_prod(x: &[F], y: &[F]) -> F {
assert_eq!(x.len(), y.len());
let mut result = F::ZERO;
for i in 0..x.len() {
result += x[i] * y[i];
}
result
}
// Evaluate the multilinear extension of the polynomial `a`, at point `t`.
// `a` is in evaluation form.
pub fn eval(&self, t: &[F]) -> F {
let n = self.evals.len();
debug_assert_eq!((n as f64).log2() as usize, t.len());
// Evaluate the multilinear extension of the polynomial `a`,
// over the boolean hypercube
let eq_evals = EqPoly::new(t.to_vec()).evals();
Self::dot_prod(&self.evals, &eq_evals)
}
}

+ 2
- 0
shockwave_plus/src/polynomial/mod.rs

@ -0,0 +1,2 @@
pub mod blinder_poly;
pub mod ml_poly;

+ 3
- 0
shockwave_plus/src/r1cs/mod.rs

@ -0,0 +1,3 @@
pub mod r1cs;
pub use r1cs::R1CS;

+ 306
- 0
shockwave_plus/src/r1cs/r1cs.rs

@ -0,0 +1,306 @@
use crate::FieldExt;
use halo2curves::ff::Field;
use tensor_pcs::SparseMLPoly;
#[derive(Clone)]
pub struct SparseMatrixEntry<F: FieldExt> {
pub row: usize,
pub col: usize,
pub val: F,
}
#[derive(Clone)]
pub struct Matrix<F: FieldExt> {
pub entries: Vec<SparseMatrixEntry<F>>,
pub num_cols: usize,
pub num_rows: usize,
}
impl<F> Matrix<F>
where
F: FieldExt,
{
pub fn new(entries: Vec<SparseMatrixEntry<F>>, num_cols: usize, num_rows: usize) -> Self {
assert!((num_cols * num_rows).is_power_of_two());
Self {
entries,
num_cols,
num_rows,
}
}
pub fn mul_vector(&self, num_rows: usize, vec: &[F]) -> Vec<F> {
let mut result = vec![F::ZERO; num_rows];
let entries = &self.entries;
for i in 0..entries.len() {
let row = entries[i].row;
let col = entries[i].col;
let val = entries[i].val;
result[row] += val * vec[col];
}
result
}
// Return a multilinear extension of the matrix
// with num_vars * num_vars entries
pub fn to_ml_extension(&self) -> SparseMLPoly<F> {
let mut evals = Vec::with_capacity(self.entries.len());
let entries = &self.entries;
let num_cols = self.num_cols;
for i in 0..entries.len() {
let row = entries[i].row;
let col = entries[i].col;
let val = entries[i].val;
evals.push(((row * num_cols) + col, val));
}
let ml_poly_num_vars = ((self.num_cols * self.num_rows) as f64).log2() as usize;
let ml_poly = SparseMLPoly::new(evals, ml_poly_num_vars);
ml_poly
}
/*
pub fn fast_to_coeffs(&self, s: usize, x: F) -> Vec<F> {
let mut result = F::ZERO;
for entry in &self.0 {
let row = entry.0;
let col = entry.1;
let val = entry.2;
let index = row * 2usize.pow(s as u32) + col;
// Get the degrees of the nonzero coefficients
// Tensor product (1 - x_0)(1 - x_1)
let base = index;
let zero_bits = degree & !base;
let mut zero_bit_degrees = vec![];
for j in 0..s {
if zero_bits & (1 << j) != 0 {
zero_bit_degrees.push(j);
}
}
let mut term = val;
for degree in zero_bit_degrees {
term *= x.pow(&[base as u64, 0, 0, 0]) - x.pow(&[(degree + base) as u64, 0, 0, 0]);
}
result += term;
}
result
}
*/
/*
pub fn fast_uni_eval(&self, s: usize, x: F) -> F {
let degree = 2usize.pow(s as u32);
let mut result = F::ZERO;
for entry in &self.0 {
let row = entry.0;
let col = entry.1;
let val = entry.2;
let index = row * 2usize.pow(s as u32) + col;
// Get the degrees of the nonzero coefficients
// Tensor product (1 - x_0)(1 - x_1)
let base = index;
let zero_bits = degree & !base;
let mut zero_bit_degrees = vec![];
for j in 0..s {
if zero_bits & (1 << j) != 0 {
zero_bit_degrees.push(j);
}
}
let mut term = val;
for degree in zero_bit_degrees {
term *= x.pow(&[base as u64, 0, 0, 0]) - x.pow(&[(degree + base) as u64, 0, 0, 0]);
}
result += term;
}
result
}
*/
}
#[derive(Clone)]
pub struct R1CS<F>
where
F: FieldExt,
{
pub A: Matrix<F>,
pub B: Matrix<F>,
pub C: Matrix<F>,
pub public_input: Vec<F>,
pub num_cons: usize,
pub num_vars: usize,
pub num_input: usize,
}
impl<F> R1CS<F>
where
F: FieldExt,
{
pub fn hadamard_prod(a: &[F], b: &[F]) -> Vec<F> {
assert_eq!(a.len(), b.len());
let mut result = vec![F::ZERO; a.len()];
for i in 0..a.len() {
result[i] = a[i] * b[i];
}
result
}
pub fn produce_synthetic_r1cs(
num_cons: usize,
num_vars: usize,
num_input: usize,
) -> (Self, Vec<F>) {
// assert_eq!(num_cons, num_vars);
let mut public_input = Vec::with_capacity(num_input);
let mut witness = Vec::with_capacity(num_vars);
for i in 0..num_input {
public_input.push(F::from((i + 1) as u64));
}
for i in 0..num_vars {
witness.push(F::from((i + 1) as u64));
}
let z: Vec<F> = vec![public_input.clone(), witness.clone()].concat();
let mut A_entries: Vec<SparseMatrixEntry<F>> = vec![];
let mut B_entries: Vec<SparseMatrixEntry<F>> = vec![];
let mut C_entries: Vec<SparseMatrixEntry<F>> = vec![];
for i in 0..num_cons {
let A_col = i % num_vars;
let B_col = (i + 1) % num_vars;
let C_col = (i + 2) % num_vars;
// For the i'th constraint,
// add the value 1 at the (i % num_vars)th column of A, B.
// Compute the corresponding C_column value so that A_i * B_i = C_i
// we apply multiplication since the Hadamard product is computed for Az ・ Bz,
// We only _enable_ a single variable in each constraint.
A_entries.push(SparseMatrixEntry {
row: i,
col: A_col,
val: F::ONE,
});
B_entries.push(SparseMatrixEntry {
row: i,
col: B_col,
val: F::ONE,
});
C_entries.push(SparseMatrixEntry {
row: i,
col: C_col,
val: (z[A_col] * z[B_col]) * z[C_col].invert().unwrap(),
});
}
let A = Matrix::new(A_entries, num_vars, num_cons);
let B = Matrix::new(B_entries, num_vars, num_cons);
let C = Matrix::new(C_entries, num_vars, num_cons);
(
Self {
A,
B,
C,
public_input,
num_cons,
num_vars,
num_input,
},
witness,
)
}
pub fn is_sat(&self, witness: &Vec<F>, public_input: &Vec<F>) -> bool {
let mut z = Vec::with_capacity(witness.len() + public_input.len() + 1);
z.extend(public_input);
z.extend(witness);
let Az = self.A.mul_vector(self.num_cons, &z);
let Bz = self.B.mul_vector(self.num_cons, &z);
let Cz = self.C.mul_vector(self.num_cons, &z);
Self::hadamard_prod(&Az, &Bz) == Cz
}
}
#[cfg(test)]
mod tests {
use crate::utils::boolean_hypercube;
use super::*;
type F = halo2curves::secp256k1::Fp;
use crate::polynomial::ml_poly::MlPoly;
#[test]
fn test_r1cs() {
let num_cons = 2usize.pow(5);
let num_vars = num_cons;
let num_input = 0;
let (r1cs, mut witness) = R1CS::<F>::produce_synthetic_r1cs(num_cons, num_vars, num_input);
assert_eq!(witness.len(), num_vars);
assert_eq!(r1cs.public_input.len(), num_input);
assert!(r1cs.is_sat(&witness, &r1cs.public_input));
// Should assert if the witness is invalid
witness[0] = witness[0] + F::one();
assert!(r1cs.is_sat(&r1cs.public_input, &witness) == false);
witness[0] = witness[0] - F::one();
/*
// Should assert if the public input is invalid
let mut public_input = r1cs.public_input.clone();
public_input[0] = public_input[0] + F::one();
assert!(r1cs.is_sat(&witness, &public_input) == false);
*/
// Test MLE
let s = (num_vars as f64).log2() as usize;
let A_mle = r1cs.A.to_ml_extension();
let B_mle = r1cs.B.to_ml_extension();
let C_mle = r1cs.C.to_ml_extension();
let Z_mle = MlPoly::new(witness);
for c in &boolean_hypercube(s) {
let mut eval_a = F::zero();
let mut eval_b = F::zero();
let mut eval_c = F::zero();
for b in &boolean_hypercube(s) {
let mut b_rev = b.clone();
b_rev.reverse();
let z_eval = Z_mle.eval(&b_rev);
let mut eval_matrix = [b.as_slice(), c.as_slice()].concat();
eval_matrix.reverse();
eval_a += A_mle.eval(&eval_matrix) * z_eval;
eval_b += B_mle.eval(&eval_matrix) * z_eval;
eval_c += C_mle.eval(&eval_matrix) * z_eval;
}
let eval_con = eval_a * eval_b - eval_c;
assert_eq!(eval_con, F::zero());
}
}
/*
#[test]
fn test_fast_uni_eval() {
let (r1cs, _) = R1CS::<F>::produce_synthetic_r1cs(8, 8, 0);
let eval_at = F::from(33);
let result = r1cs.A.fast_uni_eval(r1cs.num_vars, eval_at);
println!("result: {:?}", result);
}
*/
}

+ 6
- 0
shockwave_plus/src/sumcheck/mod.rs

@ -0,0 +1,6 @@
mod sc_phase_1;
mod sc_phase_2;
pub mod unipoly;
pub use sc_phase_1::{SCPhase1Proof, SumCheckPhase1};
pub use sc_phase_2::{SCPhase2Proof, SumCheckPhase2};

+ 175
- 0
shockwave_plus/src/sumcheck/sc_phase_1.rs

@ -0,0 +1,175 @@
use crate::polynomial::ml_poly::MlPoly;
use crate::sumcheck::unipoly::UniPoly;
use serde::{Deserialize, Serialize};
use tensor_pcs::{EqPoly, Transcript};
use crate::FieldExt;
#[derive(Serialize, Deserialize)]
pub struct SCPhase1Proof<F: FieldExt> {
pub blinder_poly_sum: F,
pub blinder_poly_eval_claim: F,
pub round_polys: Vec<UniPoly<F>>,
}
pub struct SumCheckPhase1<F: FieldExt> {
Az_evals: Vec<F>,
Bz_evals: Vec<F>,
Cz_evals: Vec<F>,
bound_eq_poly: EqPoly<F>,
challenge: Vec<F>,
}
impl<F: FieldExt> SumCheckPhase1<F> {
pub fn new(
Az_evals: Vec<F>,
Bz_evals: Vec<F>,
Cz_evals: Vec<F>,
tau: Vec<F>,
challenge: Vec<F>,
) -> Self {
let bound_eq_poly = EqPoly::new(tau);
Self {
Az_evals,
Bz_evals,
Cz_evals,
bound_eq_poly,
challenge,
}
}
pub fn prove(&self, transcript: &mut Transcript<F>) -> (SCPhase1Proof<F>, (F, F, F)) {
let num_vars = (self.Az_evals.len() as f64).log2() as usize;
let mut round_polys = Vec::<UniPoly<F>>::with_capacity(num_vars - 1);
let mut rng = rand::thread_rng();
// Sample a blinding polynomial g(x_1, ..., x_m) of degree 3
let random_evals = (0..2usize.pow(num_vars as u32))
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let blinder_poly_sum = random_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly = MlPoly::new(random_evals);
transcript.append_fe(&blinder_poly_sum);
let rho = transcript.challenge_fe();
// Compute the sum of g(x_1, ... x_m) over the boolean hypercube
// Do the sum check for f + \rho g
let mut A_table = self.Az_evals.clone();
let mut B_table = self.Bz_evals.clone();
let mut C_table = self.Cz_evals.clone();
let mut blinder_table = blinder_poly.evals.clone();
let mut eq_table = self.bound_eq_poly.evals();
let zero = F::ZERO;
let one = F::ONE;
let two = F::from(2);
let three = F::from(3);
for j in 0..num_vars {
let r_i = self.challenge[j];
let high_index = 2usize.pow((num_vars - j - 1) as u32);
let mut evals = [F::ZERO; 4];
// https://eprint.iacr.org/2019/317.pdf#subsection.3.2
for b in 0..high_index {
for (i, eval_at) in [zero, one, two, three].iter().enumerate() {
let a_eval = A_table[b] + (A_table[b + high_index] - A_table[b]) * eval_at;
let b_eval = B_table[b] + (B_table[b + high_index] - B_table[b]) * eval_at;
let c_eval = C_table[b] + (C_table[b + high_index] - C_table[b]) * eval_at;
let eq_eval = eq_table[b] + (eq_table[b + high_index] - eq_table[b]) * eval_at;
let blinder_eval = blinder_table[b]
+ (blinder_table[b + high_index] - blinder_table[b]) * eval_at;
evals[i] += ((a_eval * b_eval - c_eval) * eq_eval) + rho * blinder_eval;
}
A_table[b] = A_table[b] + (A_table[b + high_index] - A_table[b]) * r_i;
B_table[b] = B_table[b] + (B_table[b + high_index] - B_table[b]) * r_i;
C_table[b] = C_table[b] + (C_table[b + high_index] - C_table[b]) * r_i;
eq_table[b] = eq_table[b] + (eq_table[b + high_index] - eq_table[b]) * r_i;
blinder_table[b] =
blinder_table[b] + (blinder_table[b + high_index] - blinder_table[b]) * r_i;
}
let round_poly = UniPoly::interpolate(&evals);
round_polys.push(round_poly);
}
let v_A = A_table[0];
let v_B = B_table[0];
let v_C = C_table[0];
let rx = self.challenge.clone();
let blinder_poly_eval_claim = blinder_poly.eval(&rx);
// Prove the evaluation of the blinder polynomial at rx.
(
SCPhase1Proof {
blinder_poly_sum,
round_polys,
blinder_poly_eval_claim,
},
(v_A, v_B, v_C),
)
}
pub fn verify_round_polys(proof: &SCPhase1Proof<F>, challenge: &[F], rho: F) -> F {
debug_assert_eq!(proof.round_polys.len(), challenge.len());
let zero = F::ZERO;
let one = F::ONE;
// target = 0 + rho * blinder_poly_sum
let mut target = rho * proof.blinder_poly_sum;
for (i, round_poly) in proof.round_polys.iter().enumerate() {
assert_eq!(
round_poly.eval(zero) + round_poly.eval(one),
target,
"round poly {} failed",
i
);
target = round_poly.eval(challenge[i]);
}
target
}
}
#[cfg(test)]
mod tests {
use super::*;
use halo2curves::secp256k1::Fp;
type F = Fp;
use halo2curves::ff::Field;
#[test]
fn test_unipoly_3() {
let coeffs = [F::from(1u64), F::from(2u64), F::from(3u64), F::from(4u64)];
let eval_at = Fp::from(33);
let mut expected_eval = F::ZERO;
for i in 0..coeffs.len() {
expected_eval += coeffs[i] * eval_at.pow(&[3 - i as u64, 0, 0, 0]);
}
let mut evals = [F::ZERO; 4];
for i in 0..4 {
let eval_at = F::from(i as u64);
let mut eval_i = F::ZERO;
for j in 0..coeffs.len() {
eval_i += coeffs[j] * eval_at.pow(&[3 - j as u64, 0, 0, 0]);
}
evals[i] = eval_i;
}
let uni_poly = UniPoly::interpolate(&evals);
let eval = uni_poly.eval(eval_at);
assert_eq!(eval, expected_eval);
}
}

+ 184
- 0
shockwave_plus/src/sumcheck/sc_phase_2.rs

@ -0,0 +1,184 @@
use crate::polynomial::ml_poly::MlPoly;
use crate::r1cs::r1cs::Matrix;
use crate::sumcheck::unipoly::UniPoly;
use crate::FieldExt;
use serde::{Deserialize, Serialize};
use tensor_pcs::{EqPoly, Transcript};
#[derive(Serialize, Deserialize)]
pub struct SCPhase2Proof<F: FieldExt> {
pub round_polys: Vec<UniPoly<F>>,
pub blinder_poly_sum: F,
pub blinder_poly_eval_claim: F,
}
pub struct SumCheckPhase2<F: FieldExt> {
A_mat: Matrix<F>,
B_mat: Matrix<F>,
C_mat: Matrix<F>,
Z_evals: Vec<F>,
rx: Vec<F>,
r: [F; 3],
challenge: Vec<F>,
}
impl<F: FieldExt> SumCheckPhase2<F> {
pub fn new(
A_mat: Matrix<F>,
B_mat: Matrix<F>,
C_mat: Matrix<F>,
Z_evals: Vec<F>,
rx: Vec<F>,
r: [F; 3],
challenge: Vec<F>,
) -> Self {
Self {
A_mat,
B_mat,
C_mat,
Z_evals,
rx,
r,
challenge,
}
}
pub fn prove(&self, transcript: &mut Transcript<F>) -> SCPhase2Proof<F> {
let r_A = self.r[0];
let r_B = self.r[1];
let r_C = self.r[2];
let n = self.Z_evals.len();
let num_vars = (self.Z_evals.len() as f64).log2() as usize;
let evals_rx = EqPoly::new(self.rx.clone()).evals();
let mut A_evals = vec![F::ZERO; n];
let mut B_evals = vec![F::ZERO; n];
let mut C_evals = vec![F::ZERO; n];
for entry in &self.A_mat.entries {
A_evals[entry.col] += evals_rx[entry.row] * entry.val;
}
for entry in &self.B_mat.entries {
B_evals[entry.col] += evals_rx[entry.row] * entry.val;
}
for entry in &self.C_mat.entries {
C_evals[entry.col] += evals_rx[entry.row] * entry.val;
}
let mut rng = rand::thread_rng();
// Sample a blinding polynomial g(x_1, ..., x_m) of degree 3
let random_evals = (0..2usize.pow(num_vars as u32))
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let blinder_poly_sum = random_evals.iter().fold(F::ZERO, |acc, x| acc + x);
let blinder_poly = MlPoly::new(random_evals);
transcript.append_fe(&blinder_poly_sum);
let rho = transcript.challenge_fe();
let mut round_polys: Vec<UniPoly<F>> = Vec::<UniPoly<F>>::with_capacity(num_vars);
let mut A_table = A_evals.clone();
let mut B_table = B_evals.clone();
let mut C_table = C_evals.clone();
let mut Z_table = self.Z_evals.clone();
let mut blinder_table = blinder_poly.evals.clone();
let zero = F::ZERO;
let one = F::ONE;
let two = F::from(2);
for j in 0..num_vars {
let high_index = 2usize.pow((num_vars - j - 1) as u32);
let mut evals = [F::ZERO; 3];
for b in 0..high_index {
let r_y_i = self.challenge[j];
for (i, eval_at) in [zero, one, two].iter().enumerate() {
let a_eval = A_table[b] + (A_table[b + high_index] - A_table[b]) * eval_at;
let b_eval = B_table[b] + (B_table[b + high_index] - B_table[b]) * eval_at;
let c_eval = C_table[b] + (C_table[b + high_index] - C_table[b]) * eval_at;
let z_eval = Z_table[b] + (Z_table[b + high_index] - Z_table[b]) * eval_at;
let blinder_eval = blinder_table[b]
+ (blinder_table[b + high_index] - blinder_table[b]) * eval_at;
evals[i] +=
(a_eval * r_A + b_eval * r_B + c_eval * r_C) * z_eval + rho * blinder_eval;
}
A_table[b] = A_table[b] + (A_table[b + high_index] - A_table[b]) * r_y_i;
B_table[b] = B_table[b] + (B_table[b + high_index] - B_table[b]) * r_y_i;
C_table[b] = C_table[b] + (C_table[b + high_index] - C_table[b]) * r_y_i;
Z_table[b] = Z_table[b] + (Z_table[b + high_index] - Z_table[b]) * r_y_i;
blinder_table[b] =
blinder_table[b] + (blinder_table[b + high_index] - blinder_table[b]) * r_y_i;
}
let round_poly = UniPoly::interpolate(&evals);
round_polys.push(round_poly);
}
let mut r_y_rev = self.challenge.clone();
let blinder_poly_eval_claim = blinder_poly.eval(&r_y_rev);
SCPhase2Proof {
round_polys,
blinder_poly_eval_claim,
blinder_poly_sum,
}
}
pub fn verify_round_polys(sum_target: F, proof: &SCPhase2Proof<F>, challenge: &[F]) -> F {
debug_assert_eq!(proof.round_polys.len(), challenge.len());
let zero = F::ZERO;
let one = F::ONE;
let mut target = sum_target;
for (i, round_poly) in proof.round_polys.iter().enumerate() {
assert_eq!(
round_poly.eval(zero) + round_poly.eval(one),
target,
"i = {}",
i
);
target = round_poly.eval(challenge[i]);
}
target
}
}
#[cfg(test)]
mod tests {
use super::*;
use halo2curves::ff::Field;
use halo2curves::secp256k1::Fp;
type F = Fp;
#[test]
fn test_unipoly_2() {
let coeffs = [F::from(1u64), F::from(2u64), F::from(3u64)];
let eval_at = Fp::from(33);
let mut expected_eval = F::ZERO;
for i in 0..coeffs.len() {
expected_eval += coeffs[i] * eval_at.pow(&[i as u64, 0, 0, 0]);
}
let mut evals = [F::ZERO; 3];
for i in 0..3 {
let eval_at = F::from(i as u64);
let mut eval_i = F::ZERO;
for j in 0..coeffs.len() {
eval_i += coeffs[j] * eval_at.pow(&[j as u64, 0, 0, 0]);
}
evals[i] = eval_i;
}
let uni_poly = UniPoly::interpolate(&evals);
let eval = uni_poly.eval(eval_at);
assert_eq!(eval, expected_eval);
}
}

+ 81
- 0
shockwave_plus/src/sumcheck/unipoly.rs

@ -0,0 +1,81 @@
use crate::FieldExt;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
pub struct UniPoly<F: FieldExt> {
pub coeffs: Vec<F>,
}
impl<F: FieldExt> UniPoly<F> {
fn eval_cubic(&self, x: F) -> F {
// ax^3 + bx^2 + cx + d
let x_sq = x.square();
let x_cub = x_sq * x;
let a = self.coeffs[0];
let b = self.coeffs[1];
let c = self.coeffs[2];
let d = self.coeffs[3];
a * x_cub + b * x_sq + c * x + d
}
fn eval_quadratic(&self, x: F) -> F {
// ax^3 + bx^2 + cx + d
let x_sq = x.square();
let a = self.coeffs[0];
let b = self.coeffs[1];
let c = self.coeffs[2];
a * x_sq + b * x + c
}
pub fn eval(&self, x: F) -> F {
if self.coeffs.len() == 3 {
self.eval_quadratic(x)
} else {
self.eval_cubic(x)
}
}
pub fn interpolate(evals: &[F]) -> Self {
debug_assert!(
evals.len() == 4 || evals.len() == 3,
"Only cubic and quadratic polynomials are supported"
);
let two_inv = F::TWO_INV;
if evals.len() == 4 {
// ax^3 + bx^2 + cx + d
let six_inv = F::from(6u64).invert().unwrap();
let d = evals[0];
let a = six_inv
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1]
- evals[0]);
let b = two_inv
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
+ evals[2]
+ evals[2]
+ evals[2]
+ evals[2]
- evals[3]);
let c = evals[1] - d - a - b;
Self {
coeffs: vec![a, b, c, d],
}
} else {
let c = evals[0];
let a = (evals[2] - evals[1] - evals[1] + evals[0]) * two_inv;
let b = evals[1] - a - c;
Self {
coeffs: vec![a, b, c],
}
}
}
}

+ 19
- 0
shockwave_plus/src/utils.rs

@ -0,0 +1,19 @@
use crate::FieldExt;
// Returns a vector of vectors of length m, where each vector is a boolean vector (little endian)
pub fn boolean_hypercube<F: FieldExt>(m: usize) -> Vec<Vec<F>> {
let n = 2usize.pow(m as u32);
let mut boolean_hypercube = Vec::<Vec<F>>::with_capacity(n);
for i in 0..n {
let mut tmp = Vec::with_capacity(m);
for j in 0..m {
let i_b = F::from((i >> j & 1) as u64);
tmp.push(i_b);
}
boolean_hypercube.push(tmp);
}
boolean_hypercube
}

+ 21
- 0
tensor_pcs/Cargo.toml

@ -0,0 +1,21 @@
[package]
name = "tensor-pcs"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rand = "0.8.5"
serde = { version = "1.0.152", features = ["derive"] }
merlin = "3.0.0"
ecfft = { git = "https://github.com/DanTehrani/ecfft" }
tiny-keccak = { version = "2.0.2", features = ["keccak"] }
halo2curves = "0.1.0"
[dev-dependencies]
criterion = { version = "0.4", features = ["html_reports"] }
[[bench]]
name = "prove"
harness = false

+ 93
- 0
tensor_pcs/benches/prove.rs

@ -0,0 +1,93 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use tensor_pcs::{
rs_config, FieldExt, SparseMLPoly, TensorMultilinearPCS, TensorRSMultilinearPCSConfig,
Transcript,
};
fn poly<F: FieldExt>(num_vars: usize) -> SparseMLPoly<F> {
let num_entries: usize = 2usize.pow(num_vars as u32);
let evals = (0..num_entries)
.map(|i| (i, F::from(i as u64)))
.collect::<Vec<(usize, F)>>();
let ml_poly = SparseMLPoly::new(evals, num_vars);
ml_poly
}
fn config_base<F: FieldExt>(ml_poly: &SparseMLPoly<F>) -> TensorRSMultilinearPCSConfig<F> {
let num_vars = ml_poly.num_vars;
let num_evals = 2usize.pow(num_vars as u32);
let num_rows = 2usize.pow((num_vars / 2) as u32);
let expansion_factor = 2;
TensorRSMultilinearPCSConfig::<F> {
expansion_factor,
domain_powers: None,
fft_domain: None,
ecfft_config: None,
l: 10,
num_entries: num_evals,
num_rows,
}
}
fn pcs_fft_bench(c: &mut Criterion) {
type F = halo2curves::pasta::Fp;
let num_vars = 13;
let ml_poly = poly(num_vars);
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let mut config = config_base(&ml_poly);
config.fft_domain = Some(rs_config::smooth::gen_config::<F>(config.num_cols()));
let mut group = c.benchmark_group("pcs fft");
group.bench_function("prove", |b| {
b.iter(|| {
let pcs = TensorMultilinearPCS::<F>::new(config.clone());
let mut transcript = Transcript::new(b"bench");
let comm = pcs.commit(&black_box(ml_poly.clone()));
pcs.open(&comm, &ml_poly, &open_at, &mut transcript);
})
});
}
fn pcs_ecfft_bench(c: &mut Criterion) {
type F = halo2curves::secp256k1::Fp;
let num_vars = 13;
let ml_poly = poly(num_vars);
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let mut config = config_base(&ml_poly);
config.ecfft_config = Some(rs_config::ecfft::gen_config::<F>(config.num_cols()));
let mut group = c.benchmark_group("pcs ecfft");
group.bench_function("prove", |b| {
b.iter(|| {
let pcs = TensorMultilinearPCS::<F>::new(config.clone());
let mut transcript = Transcript::new(b"bench");
let comm = pcs.commit(&black_box(ml_poly.clone()));
pcs.open(&comm, &ml_poly, &open_at, &mut transcript);
})
});
}
fn set_duration() -> Criterion {
Criterion::default().sample_size(10)
}
criterion_group! {
name = benches;
config = set_duration();
targets = pcs_fft_bench, pcs_ecfft_bench
}
criterion_main!(benches);

+ 118
- 0
tensor_pcs/src/fft.rs

@ -0,0 +1,118 @@
use crate::FieldExt;
use halo2curves::ff::Field;
use std::vec;
pub fn fft<F>(coeffs: &[F], domain: &[F]) -> Vec<F>
where
F: FieldExt,
{
debug_assert_eq!(coeffs.len(), domain.len());
if coeffs.len() == 1 {
return coeffs.to_vec();
}
// TODO: Just borrow the values
// Split into evens and odds
let L = coeffs
.iter()
.enumerate()
.filter(|(i, _)| i % 2 == 0)
.map(|(_, x)| *x)
.collect::<Vec<F>>();
let R = coeffs
.iter()
.enumerate()
.filter(|(i, _)| i % 2 == 1)
.map(|(_, x)| *x)
.collect::<Vec<F>>();
// Square the domain values
let domain_squared: Vec<F> = (0..(domain.len() / 2)).map(|i| domain[i * 2]).collect();
let fft_e = fft(&L, &domain_squared);
let fft_o = fft(&R, &domain_squared);
let mut evals_L = vec![];
let mut evals_R = vec![];
for i in 0..(coeffs.len() / 2) {
// We can use the previous evaluations to create a list of evaluations
// of the domain
evals_L.push(fft_e[i] + fft_o[i] * domain[i]);
evals_R.push(fft_e[i] - fft_o[i] * domain[i]);
}
evals_L.extend(evals_R);
return evals_L;
}
pub fn ifft<F: FieldExt + Field>(domain: &[F], evals: &[F]) -> Vec<F> {
let mut coeffs = vec![];
let len_mod_inv = F::from(domain.len() as u64).invert().unwrap();
let vals = fft(&evals, &domain);
coeffs.push(vals[0] * len_mod_inv);
for val in vals[1..].iter().rev() {
coeffs.push(*val * len_mod_inv);
}
coeffs
}
#[cfg(test)]
mod tests {
use halo2curves::ff::PrimeField;
use halo2curves::pasta::Fp;
use super::*;
#[test]
fn test_fft_ifft() {
// f(x) = 1 + 2x + 3x^2 + 4x^3
let mut coeffs = vec![
Fp::from(1),
Fp::from(2),
Fp::from(3),
Fp::from(4),
Fp::from(5),
Fp::from(6),
Fp::from(7),
Fp::from(81),
];
let mut domain = vec![];
let root_of_unity = Fp::ROOT_OF_UNITY;
let subgroup_order = (coeffs.len() * 2).next_power_of_two();
coeffs.resize(subgroup_order, Fp::ZERO);
// Generator for the subgroup with order _subgroup_order_ in the field
let generator = root_of_unity.pow(&[
2u32.pow(32 - ((subgroup_order as f64).log2() as u32)) as u64,
0,
0,
0,
]);
for i in 0..(subgroup_order) {
domain.push(generator.pow(&[i as u64, 0, 0, 0]));
}
let mut expected_evals = vec![];
for w in &domain {
let mut eval = Fp::ZERO;
for (i, coeff) in (&coeffs).iter().enumerate() {
eval += *coeff * w.pow(&[i as u64, 0, 0, 0]);
}
expected_evals.push(eval);
}
let evals = fft(&coeffs, &domain);
debug_assert!(evals == expected_evals);
let recovered_coeffs = ifft(&domain, &evals);
debug_assert!(recovered_coeffs == coeffs);
}
}

+ 19
- 0
tensor_pcs/src/lib.rs

@ -0,0 +1,19 @@
mod fft;
mod polynomial;
pub mod rs_config;
mod tensor_code;
mod tensor_pcs;
mod transcript;
mod tree;
mod utils;
use halo2curves::ff::FromUniformBytes;
pub trait FieldExt: FromUniformBytes<64, Repr = [u8; 32]> {}
impl FieldExt for halo2curves::secp256k1::Fp {}
impl FieldExt for halo2curves::pasta::Fp {}
pub use polynomial::eq_poly::EqPoly;
pub use polynomial::sparse_ml_poly::SparseMLPoly;
pub use tensor_pcs::{TensorMLOpening, TensorMultilinearPCS, TensorRSMultilinearPCSConfig};
pub use transcript::{AppendToTranscript, Transcript};

+ 68
- 0
tensor_pcs/src/polynomial/eq_poly.rs

@ -0,0 +1,68 @@
use crate::FieldExt;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
pub struct EqPoly<F: FieldExt> {
t: Vec<F>,
}
impl<F: FieldExt> EqPoly<F> {
pub fn new(t: Vec<F>) -> Self {
Self { t }
}
pub fn eval(&self, x: &[F]) -> F {
let mut result = F::ONE;
let one = F::ONE;
for i in 0..x.len() {
result *= self.t[i] * x[i] + (one - self.t[i]) * (one - x[i]);
}
result
}
// Copied from microsoft/Spartan
pub fn evals(&self) -> Vec<F> {
let ell = self.t.len(); // 4
let mut evals: Vec<F> = vec![F::ONE; 2usize.pow(ell as u32)];
let mut size = 1;
for j in 0..ell {
// in each iteration, we double the size of chis
size *= 2; // 2 4 8 16
for i in (0..size).rev().step_by(2) {
// copy each element from the prior iteration twice
let scalar = evals[i / 2]; // i = 0, 2, 4, 7
evals[i] = scalar * self.t[j]; // (1 * t0)(1 * t1)
evals[i - 1] = scalar - evals[i]; // 1 - (1 * t0)(1 * t1)
}
}
evals
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
use halo2curves::ff::Field;
type F = halo2curves::secp256k1::Fp;
pub fn dot_prod<F: FieldExt>(x: &[F], y: &[F]) -> F {
assert_eq!(x.len(), y.len());
let mut result = F::ZERO;
for i in 0..x.len() {
result += x[i] * y[i];
}
result
}
#[test]
fn test_eq_poly() {
let m = 4;
let t = (0..m).map(|i| F::from((i + 33) as u64)).collect::<Vec<F>>();
let eq_poly = EqPoly::new(t.clone());
eq_poly.evals();
}
}

+ 2
- 0
tensor_pcs/src/polynomial/mod.rs

@ -0,0 +1,2 @@
pub mod eq_poly;
pub mod sparse_ml_poly;

+ 44
- 0
tensor_pcs/src/polynomial/sparse_ml_poly.rs

@ -0,0 +1,44 @@
use crate::{EqPoly, FieldExt};
#[derive(Clone, Debug)]
pub struct SparseMLPoly<F> {
pub evals: Vec<(usize, F)>,
pub num_vars: usize,
}
impl<F: FieldExt> SparseMLPoly<F> {
pub fn new(evals: Vec<(usize, F)>, num_vars: usize) -> Self {
Self { evals, num_vars }
}
pub fn from_dense(dense_evals: Vec<F>) -> Self {
let sparse_evals = dense_evals
.iter()
.filter(|eval| **eval != F::ZERO)
.enumerate()
.map(|(i, eval)| (i, *eval))
.collect::<Vec<(usize, F)>>();
let num_vars = (dense_evals.len() as f64).log2() as usize;
Self {
evals: sparse_evals,
num_vars,
}
}
pub fn eval(&self, t: &[F]) -> F {
// Evaluate the multilinear extension of the polynomial `a`,
// over the boolean hypercube
let eq_poly = EqPoly::new(t.to_vec());
let eq_evals = eq_poly.evals();
let mut result = F::ZERO;
for eval in &self.evals {
result += eq_evals[eval.0] * eval.1;
}
result
}
}

+ 27
- 0
tensor_pcs/src/rs_config/ecfft.rs

@ -0,0 +1,27 @@
use crate::FieldExt;
use ecfft::{prepare_domain, prepare_matrices, GoodCurve, Matrix2x2};
#[derive(Clone, Debug)]
pub struct ECFFTConfig<F: FieldExt> {
pub domain: Vec<Vec<F>>,
pub matrices: Vec<Vec<Matrix2x2<F>>>,
pub inverse_matrices: Vec<Vec<Matrix2x2<F>>>,
}
pub fn gen_config<F: FieldExt>(num_cols: usize) -> ECFFTConfig<F> {
assert!(num_cols.is_power_of_two());
let expansion_factor = 2;
let codeword_len = num_cols * expansion_factor;
let k = (codeword_len as f64).log2() as usize;
let good_curve = GoodCurve::find_k(k);
let domain = prepare_domain(good_curve);
let (matrices, inverse_matrices) = prepare_matrices(&domain);
ECFFTConfig {
domain,
matrices,
inverse_matrices,
}
}

+ 3
- 0
tensor_pcs/src/rs_config/mod.rs

@ -0,0 +1,3 @@
pub mod ecfft;
pub mod naive;
pub mod smooth;

+ 21
- 0
tensor_pcs/src/rs_config/naive.rs

@ -0,0 +1,21 @@
use crate::FieldExt;
pub fn gen_config<F: FieldExt>(num_cols: usize) -> Vec<Vec<F>> {
assert!(num_cols.is_power_of_two());
let expansion_factor = 2;
let codeword_len = num_cols * expansion_factor;
let domain = (0..codeword_len)
.map(|i| F::from((i + 3) as u64))
.collect::<Vec<F>>();
let mut domain_powers = Vec::with_capacity(codeword_len);
for eval_at in domain {
let mut powers_i = vec![F::ONE];
for j in 0..(num_cols - 1) {
powers_i.push(powers_i[j] * eval_at);
}
domain_powers.push(powers_i);
}
domain_powers
}

+ 23
- 0
tensor_pcs/src/rs_config/smooth.rs

@ -0,0 +1,23 @@
use crate::FieldExt;
pub fn gen_config<F: FieldExt>(num_cols: usize) -> Vec<F> {
assert!(num_cols.is_power_of_two());
let expansion_factor = 2;
let codeword_len = num_cols * expansion_factor;
let domain_generator = F::ROOT_OF_UNITY.pow(&[
2u32.pow(32 - ((codeword_len as f64).log2() as u32)) as u64,
0,
0,
0,
]);
// Compute the FFT domain
let mut fft_domain = Vec::with_capacity(codeword_len);
fft_domain.push(F::ONE);
for i in 0..(codeword_len - 1) {
fft_domain.push(fft_domain[i] * domain_generator);
}
fft_domain
}

+ 42
- 0
tensor_pcs/src/tensor_code.rs

@ -0,0 +1,42 @@
use crate::tree::CommittedMerkleTree;
use crate::FieldExt;
#[derive(Clone)]
pub struct TensorCode<F>(pub Vec<Vec<F>>)
where
F: FieldExt;
impl<F: FieldExt> TensorCode<F> {
pub fn commit(&self, num_cols: usize, num_rows: usize) -> CommittedTensorCode<F> {
// Flatten the tensor codeword in column major order
let mut tensor_codeword = vec![];
for j in 0..(num_cols * 2) {
for i in 0..num_rows {
tensor_codeword.push(self.0[i][j])
}
}
// Merkle commit the codewords
let committed_tree = CommittedMerkleTree::from_leaves(tensor_codeword, num_cols * 2);
CommittedTensorCode {
committed_tree,
tensor_codeword: Self(self.0.clone()),
}
}
}
#[derive(Clone)]
pub struct CommittedTensorCode<F: FieldExt> {
pub committed_tree: CommittedMerkleTree<F>,
pub tensor_codeword: TensorCode<F>,
}
impl<F: FieldExt> CommittedTensorCode<F> {
pub fn query_column(&self, column: usize, num_cols: usize) -> Vec<F> {
let num_rows = self.tensor_codeword.0.len();
let leaves =
self.committed_tree.leaves[column * num_rows..((column + 1) * num_rows)].to_vec();
leaves
}
}

+ 446
- 0
tensor_pcs/src/tensor_pcs.rs

@ -0,0 +1,446 @@
use crate::rs_config::ecfft::ECFFTConfig;
use crate::tree::BaseOpening;
use crate::FieldExt;
use ecfft::extend;
use serde::{Deserialize, Serialize};
use crate::fft::fft;
use crate::polynomial::eq_poly::EqPoly;
use crate::polynomial::sparse_ml_poly::SparseMLPoly;
use crate::tensor_code::TensorCode;
use crate::transcript::Transcript;
use crate::utils::{dot_prod, hash_all, rlc_rows, sample_indices};
use super::tensor_code::CommittedTensorCode;
#[derive(Clone)]
pub struct TensorRSMultilinearPCSConfig<F: FieldExt> {
pub expansion_factor: usize,
pub domain_powers: Option<Vec<Vec<F>>>,
pub fft_domain: Option<Vec<F>>,
pub ecfft_config: Option<ECFFTConfig<F>>,
pub l: usize,
pub num_entries: usize,
pub num_rows: usize,
}
impl<F: FieldExt> TensorRSMultilinearPCSConfig<F> {
pub fn num_cols(&self) -> usize {
self.num_entries / self.num_rows()
}
pub fn num_rows(&self) -> usize {
self.num_rows
}
}
#[derive(Clone)]
pub struct TensorMultilinearPCS<F: FieldExt> {
config: TensorRSMultilinearPCSConfig<F>,
}
#[derive(Clone, Serialize, Deserialize)]
pub struct TensorMLOpening<F: FieldExt> {
pub x: Vec<F>,
pub y: F,
pub base_opening: BaseOpening,
pub test_query_leaves: Vec<Vec<F>>,
pub eval_query_leaves: Vec<Vec<F>>,
u_hat_comm: [u8; 32],
pub test_u_prime: Vec<F>,
pub test_r_prime: Vec<F>,
pub eval_r_prime: Vec<F>,
pub eval_u_prime: Vec<F>,
}
impl<F: FieldExt> TensorMultilinearPCS<F> {
pub fn new(config: TensorRSMultilinearPCSConfig<F>) -> Self {
Self { config }
}
pub fn commit(&self, poly: &SparseMLPoly<F>) -> CommittedTensorCode<F> {
// Merkle commit to the evaluations of the polynomial
let tensor_code = self.encode_zk(poly);
let tree = tensor_code.commit(self.config.num_cols(), self.config.num_rows());
tree
}
pub fn open(
&self,
u_hat_comm: &CommittedTensorCode<F>,
poly: &SparseMLPoly<F>,
point: &[F],
transcript: &mut Transcript<F>,
) -> TensorMLOpening<F> {
let num_cols = self.config.num_cols();
let num_rows = self.config.num_rows();
debug_assert_eq!(poly.num_vars, point.len());
transcript.append_bytes(&u_hat_comm.committed_tree.root());
// ########################################
// Testing phase
// Prove the consistency between the random linear combination of the evaluation tensor (u_prime)
// and the tensor codeword (u_hat)
// ########################################
// Derive the challenge vector;
let r_u = transcript.challenge_vec(num_rows);
let u = (0..num_rows)
.map(|i| {
poly.evals[(i * num_cols)..((i + 1) * num_cols)]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.collect::<Vec<Vec<F>>>();
// Random linear combination of the rows of the polynomial in a tensor structure
let test_u_prime = rlc_rows(u.clone(), &r_u);
// Random linear combination of the blinder
let blinder = u_hat_comm
.tensor_codeword
.0
.iter()
.map(|row| row[(row.len() / 2)..].to_vec())
.collect::<Vec<Vec<F>>>();
debug_assert_eq!(blinder[0].len(), u_hat_comm.tensor_codeword.0[0].len() / 2);
let test_r_prime = rlc_rows(blinder.clone(), &r_u);
let num_indices = self.config.l;
let indices = sample_indices(num_indices, num_cols * 2, transcript);
let test_queries = self.test_phase(&indices, &u_hat_comm);
// ########################################
// Evaluation phase
// Prove the consistency
// ########################################
// Get the evaluation point
let mut point_rev = point.to_vec();
point_rev.reverse();
let log2_num_rows = (num_rows as f64).log2() as usize;
let q1 = EqPoly::new(point_rev[0..log2_num_rows].to_vec()).evals();
let eval_r_prime = rlc_rows(blinder, &q1);
let eval_u_prime = rlc_rows(u.clone(), &q1);
let eval_queries = self.test_phase(&indices, &u_hat_comm);
TensorMLOpening {
x: point.to_vec(),
y: poly.eval(&point_rev),
eval_query_leaves: eval_queries,
test_query_leaves: test_queries,
u_hat_comm: u_hat_comm.committed_tree.root(),
test_u_prime,
test_r_prime,
eval_r_prime,
eval_u_prime,
base_opening: BaseOpening {
hashes: u_hat_comm.committed_tree.column_roots.clone(),
},
}
}
}
impl<F: FieldExt> TensorMultilinearPCS<F> {
pub fn verify(
&self,
opening: &TensorMLOpening<F>,
commitment: &[u8; 32],
transcript: &mut Transcript<F>,
) {
let num_rows = self.config.num_rows();
let num_cols = self.config.num_cols();
let u_hat_comm = opening.u_hat_comm;
transcript.append_bytes(&u_hat_comm);
assert_eq!(&u_hat_comm, commitment);
// Verify the base opening
let base_opening = &opening.base_opening;
base_opening.verify(u_hat_comm);
// ########################################
// Verify test phase
// ########################################
let r_u = transcript.challenge_vec(num_rows);
let test_u_prime_rs_codeword = self
.rs_encode(&opening.test_u_prime)
.iter()
.zip(opening.test_r_prime.iter())
.map(|(c, r)| *c + *r)
.collect::<Vec<F>>();
let num_indices = self.config.l;
let indices = sample_indices(num_indices, num_cols * 2, transcript);
debug_assert_eq!(indices.len(), opening.test_query_leaves.len());
for (expected_index, leaves) in indices.iter().zip(opening.test_query_leaves.iter()) {
// Verify that the hashes of the leaves equals the corresponding column root
let leaf_bytes = leaves
.iter()
.map(|x| x.to_repr())
.collect::<Vec<[u8; 32]>>();
let column_root = hash_all(&leaf_bytes);
let expected_column_root = base_opening.hashes[*expected_index];
assert_eq!(column_root, expected_column_root);
let mut sum = F::ZERO;
for (leaf, r_i) in leaves.iter().zip(r_u.iter()) {
sum += *r_i * *leaf;
}
assert_eq!(sum, test_u_prime_rs_codeword[*expected_index]);
}
// ########################################
// Verify evaluation phase
// ########################################
let mut x_rev = opening.x.clone();
x_rev.reverse();
let log2_num_rows = (num_rows as f64).log2() as usize;
let q1 = EqPoly::new(x_rev[0..log2_num_rows].to_vec()).evals();
let q2 = EqPoly::new(x_rev[log2_num_rows..].to_vec()).evals();
let eval_u_prime_rs_codeword = self
.rs_encode(&opening.eval_u_prime)
.iter()
.zip(opening.eval_r_prime.iter())
.map(|(c, r)| *c + *r)
.collect::<Vec<F>>();
debug_assert_eq!(q1.len(), opening.eval_query_leaves[0].len());
debug_assert_eq!(indices.len(), opening.test_query_leaves.len());
for (expected_index, leaves) in indices.iter().zip(opening.eval_query_leaves.iter()) {
// TODO: Don't need to check the leaves again?
// Verify that the hashes of the leaves equals the corresponding column root
let leaf_bytes = leaves
.iter()
.map(|x| x.to_repr())
.collect::<Vec<[u8; 32]>>();
let column_root = hash_all(&leaf_bytes);
let expected_column_root = base_opening.hashes[*expected_index];
assert_eq!(column_root, expected_column_root);
let mut sum = F::ZERO;
for (leaf, q1_i) in leaves.iter().zip(q1.iter()) {
sum += *q1_i * *leaf;
}
assert_eq!(sum, eval_u_prime_rs_codeword[*expected_index]);
}
let expected_eval = dot_prod(&opening.eval_u_prime, &q2);
assert_eq!(expected_eval, opening.y);
}
fn split_encode(&self, message: &[F]) -> Vec<F> {
let codeword = self.rs_encode(message);
let mut rng = rand::thread_rng();
let blinder = (0..codeword.len())
.map(|_| F::random(&mut rng))
.collect::<Vec<F>>();
let mut randomized_codeword = codeword
.iter()
.zip(blinder.clone().iter())
.map(|(c, b)| *b + *c)
.collect::<Vec<F>>();
randomized_codeword.extend_from_slice(&blinder);
debug_assert_eq!(randomized_codeword.len(), codeword.len() * 2);
randomized_codeword
}
fn rs_encode(&self, message: &[F]) -> Vec<F> {
let codeword = if self.config.fft_domain.is_some() {
let fft_domain = self.config.fft_domain.as_ref().unwrap();
let mut padded_coeffs = message.clone().to_vec();
padded_coeffs.resize(fft_domain.len(), F::ZERO);
let codeword = fft(&padded_coeffs, &fft_domain);
codeword
} else if self.config.ecfft_config.is_some() {
let ecfft_config = self.config.ecfft_config.as_ref().unwrap();
assert_eq!(
message.len() * self.config.expansion_factor,
ecfft_config.domain[0].len()
);
let extended_evals = extend(
message,
&ecfft_config.domain,
&ecfft_config.matrices,
&ecfft_config.inverse_matrices,
0,
);
let codeword = [message.to_vec(), extended_evals].concat();
codeword
} else {
let domain_powers = self.config.domain_powers.as_ref().unwrap();
assert_eq!(message.len(), domain_powers[0].len());
assert_eq!(
message.len() * self.config.expansion_factor,
domain_powers.len()
);
let codeword = domain_powers
.iter()
.map(|powers| {
message
.iter()
.zip(powers.iter())
.fold(F::ZERO, |acc, (m, p)| acc + *m * *p)
})
.collect::<Vec<F>>();
codeword
};
codeword
}
fn test_phase(&self, indices: &[usize], u_hat_comm: &CommittedTensorCode<F>) -> Vec<Vec<F>> {
let num_cols = self.config.num_cols() * 2;
// Query the columns of u_hat
let num_indices = self.config.l;
let u_hat_openings = indices
.iter()
.map(|index| u_hat_comm.query_column(*index, num_cols))
.collect::<Vec<Vec<F>>>();
debug_assert_eq!(u_hat_openings.len(), num_indices);
u_hat_openings
}
fn encode_zk(&self, poly: &SparseMLPoly<F>) -> TensorCode<F> {
let num_rows = self.config.num_rows();
let num_cols = self.config.num_cols();
let codewords = (0..num_rows)
.map(|i| {
poly.evals[i * num_cols..(i + 1) * num_cols]
.iter()
.map(|entry| entry.1)
.collect::<Vec<F>>()
})
.map(|row| self.split_encode(&row))
.collect::<Vec<Vec<F>>>();
TensorCode(codewords)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::rs_config::{ecfft, naive, smooth};
const TEST_NUM_VARS: usize = 10;
const TEST_L: usize = 10;
fn test_poly<F: FieldExt>() -> SparseMLPoly<F> {
let num_entries: usize = 2usize.pow(TEST_NUM_VARS as u32);
let evals = (0..num_entries)
.map(|i| (i, F::from(i as u64)))
.collect::<Vec<(usize, F)>>();
let ml_poly = SparseMLPoly::new(evals, TEST_NUM_VARS);
ml_poly
}
fn prove_and_verify<F: FieldExt>(ml_poly: SparseMLPoly<F>, pcs: TensorMultilinearPCS<F>) {
let comm = pcs.commit(&ml_poly);
let open_at = (0..ml_poly.num_vars)
.map(|i| F::from(i as u64))
.collect::<Vec<F>>();
let mut prover_transcript = Transcript::<F>::new(b"test");
let opening = pcs.open(&comm, &ml_poly, &open_at, &mut prover_transcript);
let mut verifier_transcript = Transcript::<F>::new(b"test");
pcs.verify(
&opening,
&comm.committed_tree.root(),
&mut verifier_transcript,
);
}
fn config_base<F: FieldExt>(ml_poly: &SparseMLPoly<F>) -> TensorRSMultilinearPCSConfig<F> {
let num_vars = ml_poly.num_vars;
let num_evals = 2usize.pow(num_vars as u32);
let num_rows = 2usize.pow((num_vars / 2) as u32);
let expansion_factor = 2;
TensorRSMultilinearPCSConfig::<F> {
expansion_factor,
domain_powers: None,
fft_domain: None,
ecfft_config: None,
l: TEST_L,
num_entries: num_evals,
num_rows,
}
}
#[test]
fn test_tensor_pcs_fft() {
type F = halo2curves::pasta::Fp;
// FFT config
let ml_poly = test_poly();
let mut config = config_base(&ml_poly);
config.fft_domain = Some(smooth::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_fft = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_fft);
}
#[test]
fn test_tensor_pcs_ecfft() {
type F = halo2curves::secp256k1::Fp;
let ml_poly = test_poly();
let mut config = config_base(&ml_poly);
config.ecfft_config = Some(ecfft::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_ecf = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_ecf);
}
#[test]
fn test_tensor_pcs_naive() {
type F = halo2curves::secp256k1::Fp;
// FFT config
let ml_poly = test_poly();
// Naive config
let mut config = config_base(&ml_poly);
config.domain_powers = Some(naive::gen_config(config.num_cols()));
// Test FFT PCS
let tensor_pcs_naive = TensorMultilinearPCS::<F>::new(config);
prove_and_verify(ml_poly, tensor_pcs_naive);
}
}

+ 58
- 0
tensor_pcs/src/transcript.rs

@ -0,0 +1,58 @@
use crate::FieldExt;
use halo2curves::ff::PrimeField;
use merlin::Transcript as MerlinTranscript;
use std::{io::Repeat, marker::PhantomData, panic::UnwindSafe};
#[derive(Clone)]
pub struct Transcript<F: FieldExt> {
transcript_inner: MerlinTranscript,
_marker: PhantomData<F>,
}
impl<F: FieldExt> Transcript<F> {
pub fn new(label: &'static [u8]) -> Self {
Self {
transcript_inner: MerlinTranscript::new(label),
_marker: PhantomData,
}
}
pub fn append_fe(&mut self, fe: &F) {
self.transcript_inner.append_message(b"", &fe.to_repr());
}
pub fn append_bytes(&mut self, bytes: &[u8]) {
self.transcript_inner.append_message(b"", bytes);
}
pub fn challenge_vec(&mut self, n: usize) -> Vec<F> {
(0..n)
.map(|_| {
let mut bytes = [0u8; 64];
self.transcript_inner.challenge_bytes(b"", &mut bytes);
F::from_uniform_bytes(&bytes)
})
.collect()
}
pub fn challenge_fe(&mut self) -> F {
// TODO: This is insecure
let mut bytes = [0u8; 32];
self.transcript_inner.challenge_bytes(b"", &mut bytes);
F::from_repr(bytes).unwrap()
}
pub fn challenge_bytes(&mut self, bytes: &mut [u8]) {
self.transcript_inner.challenge_bytes(b"", bytes);
}
}
pub trait AppendToTranscript<F: FieldExt> {
fn append_to_transcript(&self, transcript: &mut Transcript<F>);
}
impl<F: FieldExt> AppendToTranscript<F> for [u8; 32] {
fn append_to_transcript(&self, transcript: &mut Transcript<F>) {
transcript.append_bytes(self);
}
}

+ 64
- 0
tensor_pcs/src/tree.rs

@ -0,0 +1,64 @@
use core::num;
use std::marker::PhantomData;
use super::utils::hash_two;
use crate::{utils::hash_all, FieldExt};
use serde::{Deserialize, Serialize};
#[derive(Clone)]
pub struct CommittedMerkleTree<F> {
pub column_roots: Vec<[u8; 32]>,
pub leaves: Vec<F>,
pub num_cols: usize,
pub root: [u8; 32],
}
impl<F: FieldExt> CommittedMerkleTree<F> {
pub fn from_leaves(leaves: Vec<F>, num_cols: usize) -> Self {
let n = leaves.len();
debug_assert!(n.is_power_of_two());
let num_rows = n / num_cols;
assert!(num_rows & 1 == 0); // Number of rows must be even
let leaf_bytes = leaves
.iter()
.map(|x| x.to_repr())
.collect::<Vec<[u8; 32]>>();
let mut column_roots = Vec::with_capacity(num_cols);
for col in 0..num_cols {
let column_leaves = leaf_bytes[col * num_rows..(col + 1) * num_rows].to_vec();
let column_root = hash_all(&column_leaves);
column_roots.push(column_root);
}
let root = hash_all(&column_roots);
Self {
column_roots,
leaves,
root,
num_cols,
}
}
pub fn root(&self) -> [u8; 32] {
self.root
}
pub fn leaves(&self) -> Vec<F> {
self.leaves.clone()
}
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct BaseOpening {
pub hashes: Vec<[u8; 32]>,
}
impl BaseOpening {
pub fn verify(&self, root: [u8; 32]) -> bool {
let r = hash_all(&self.hashes);
root == r
}
}

+ 89
- 0
tensor_pcs/src/utils.rs

@ -0,0 +1,89 @@
use tiny_keccak::{Hasher, Keccak};
use crate::FieldExt;
use crate::transcript::Transcript;
pub fn rlc_rows<F: FieldExt>(x: Vec<Vec<F>>, r: &[F]) -> Vec<F> {
debug_assert_eq!(x.len(), r.len());
let num_cols = x[0].len();
let mut result = vec![F::ZERO; num_cols];
for (row, r_i) in x.iter().zip(r.iter()) {
for j in 0..num_cols {
result[j] += row[j] * r_i
}
}
result
}
pub fn dot_prod<F: FieldExt>(x: &[F], y: &[F]) -> F {
assert_eq!(x.len(), y.len());
let mut result = F::ZERO;
for i in 0..x.len() {
result += x[i] * y[i];
}
result
}
pub fn hash_two(values: &[[u8; 32]; 2]) -> [u8; 32] {
let mut hasher = Keccak::v256();
hasher.update(&values[0]);
hasher.update(&values[1]);
let mut hash = [0u8; 32];
hasher.finalize(&mut hash);
hash
}
pub fn hash_all(values: &[[u8; 32]]) -> [u8; 32] {
let mut hasher = Keccak::v256();
for value in values {
hasher.update(value);
}
let mut hash = [0u8; 32];
hasher.finalize(&mut hash);
hash
}
fn sample_index(random_bytes: [u8; 64], size: usize) -> usize {
let mut acc: u64 = 0;
for b in random_bytes {
acc = acc << 8 ^ (b as u64);
}
(acc % (size as u64)) as usize
}
pub fn sample_indices<F: FieldExt>(
num_indices: usize,
max_index: usize,
transcript: &mut Transcript<F>,
) -> Vec<usize> {
assert!(
num_indices <= max_index,
"max_index {:?} num_indices {:?}",
max_index,
num_indices
);
let mut indices = Vec::with_capacity(num_indices);
let mut counter: u32 = 0;
// TODO: Don't sample at n and n + N
while indices.len() < num_indices {
let mut random_bytes = [0u8; 64];
transcript.append_bytes(&counter.to_le_bytes());
transcript.challenge_bytes(&mut random_bytes);
let index = sample_index(random_bytes, max_index);
if !indices.contains(&index)
// || !indices.contains(&(index + (max_index / 2)))
// || !indices.contains(&(index - (max_index / 2)))
{
indices.push(index);
}
counter += 1;
}
indices
}

Loading…
Cancel
Save