@ -0,0 +1,7 @@ |
|||
# slides |
|||
|
|||
- [RSA and Homomorphic Multiplication](https://github.com/arnaucube/slides/blob/master/rsa-and-homomorphicmultiplication.pdf) |
|||
- [Shamir's Secret Sharing](https://github.com/arnaucube/slides/blob/master/rsa-and-homomorphicmultiplication.pdf) |
|||
- [zkSNARKs from scratch, a technical explanation](https://github.com/arnaucube/slides/blob/master/zksnarks-from-scratch-a-technical-explanation.pdf) |
|||
|
|||
Any error, typo, mistake, etc, open an issue or a pull request and I'll be glad to fix it. |
@ -0,0 +1,358 @@ |
|||
# RSA and Homomorphic Multiplication |
|||
|
|||
<img src="https://arnaucube.com/img/logoArnauCubeTransparent.png" style="max-width:20%; float:right;" /> |
|||
|
|||
|
|||
- https://arnaucube.com |
|||
- https://github.com/arnaucube |
|||
- https://twitter.com/arnaucube |
|||
<br><br><br> |
|||
<div style="float:right;font-size:80%;"> |
|||
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png" /></a> |
|||
<br> |
|||
2018-11-30 |
|||
</div> |
|||
|
|||
--- |
|||
|
|||
- Intro |
|||
- Public key cryptography |
|||
- Basics of modular arithmetic |
|||
- Brief history of RSA |
|||
- Keys generation |
|||
- Prime numbers |
|||
- Encryption |
|||
- Decryption |
|||
- What's going on in encryption and decryption? |
|||
- Signature |
|||
- Verification of the signature |
|||
- Homomorphic Multiplication with RSA |
|||
- Resources |
|||
|
|||
--- |
|||
# Intro |
|||
- I'm not an expert on the field, neither a mathematician. Just an engineer with interest for cryptography |
|||
- Short talk (15 min), with the objective to make a practical introduction to the RSA cryptosystem |
|||
- Is not a talk about mathematical demostrations, is a talk with the objective to get the basic notions to be able to do a practical implementation of the algorithm |
|||
- After the talk, we will do a practical workshop to implement the concepts. We can offer support for Go, Rust, Python and Nodejs (you can choose any other language, but we will not be able to help) |
|||
|
|||
--- |
|||
# Public key cryptography |
|||
![pubkencr](https://upload.wikimedia.org/wikipedia/commons/f/f9/Public_key_encryption.svg "pubkencr") |
|||
|
|||
--- |
|||
Some examples: |
|||
- RSA |
|||
- Paillier |
|||
- ECC (Corba el·líptica) |
|||
|
|||
--- |
|||
# Basics of modular arithmetic |
|||
- Modulus, `mod`, `%` |
|||
- Remainder after division of two numbers |
|||
|
|||
![clocks](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Clock_group.svg/220px-Clock_group.svg.png "clocks") |
|||
|
|||
``` |
|||
5 mod 12 = 5 |
|||
14 mod 12 = 2 |
|||
83 mod 10 = 3 |
|||
``` |
|||
|
|||
``` |
|||
5 + 3 mod 6 = 8 mod 6 = 2 |
|||
``` |
|||
|
|||
--- |
|||
|
|||
# Brief history of RSA |
|||
- RSA (Rivest–Shamir–Adleman): Ron Rivest, Adi Shamir, Leonard Adleman |
|||
- year 1977 |
|||
- one of the first public key cryptosystems |
|||
- based on the difficulty of factorization of the product of two big prime numbers |
|||
|
|||
--- |
|||
# Prime numbers |
|||
- We need an asymmetric key, in a way where we can decrypt a message encrypted with the asymetric key |
|||
- Without allowing to find the private key from the public key |
|||
- in RSA we resolve this with factorization of prime numbers |
|||
- using prime numbers for $p$ and $q$, it's difficult factorize $n$ to obtain $p$ and $q$, where $n=p*q$ |
|||
|
|||
--- |
|||
|
|||
Example: |
|||
If we know $n$ which we need to find the $p$ and $q$ values where $p*q=n$: |
|||
``` |
|||
n = 35 |
|||
``` |
|||
To obtain the possible factors, is needed to brute force trying different combinations, until we find: |
|||
``` |
|||
p = 5 |
|||
q = 7 |
|||
``` |
|||
In this case is easy as it's a simple example with small numbers. The idea is to do this with big prime numbers |
|||
|
|||
--- |
|||
|
|||
Another exmample with more bigger prime numbers: |
|||
``` |
|||
n = 272604817800326282194810623604278579733 |
|||
``` |
|||
From $n$, I don't have a 'direct' way to obtain $p$ and $q$. I need to try by brute force the different values until finding a correct combination. |
|||
``` |
|||
p = 17975460804519255043 |
|||
q = 15165386899666573831 |
|||
n = 17975460804519255043 * 15165386899666573831 = 272604817800326282194810623604278579733 |
|||
``` |
|||
|
|||
--- |
|||
|
|||
If we do this with non prime numbers: |
|||
``` |
|||
n = 32 |
|||
We can factorize 32 = 2 * 2 * 2 * 2 * 2 |
|||
combining that values in two values X * Y |
|||
for example (2*2*2) * (2*2) = 8*4 = 32 |
|||
we can also take 2 * (2*2*2*2) = 2 * 16 = 32 |
|||
... |
|||
``` |
|||
|
|||
--- |
|||
|
|||
One example with bigger non prime numbers: |
|||
``` |
|||
n = 272604817800326282227951471308464408608 |
|||
We can take: |
|||
p = 17975460804519255044 |
|||
q = 15165386899666573832 |
|||
|
|||
Or also: |
|||
p = 2 |
|||
q = 136302408900163141113975735654232204304 |
|||
... |
|||
``` |
|||
|
|||
In the real world: |
|||
- https://en.wikipedia.org/wiki/RSA_numbers |
|||
- https://en.wikipedia.org/wiki/RSA_Factoring_Challenge#The_prizes_and_records |
|||
|
|||
So, we are basing this in the fact that is not easy to factorize big numbers composed by big primes. |
|||
|
|||
|
|||
--- |
|||
# Keys generation |
|||
- PubK: $e$, $n$ |
|||
- PrivK: $d$, $n$ |
|||
- are choosen randomly 2 big prime numbers $p$ and $q$, that will be secrets |
|||
- $n = p * q$ |
|||
- $λ$ is the Carmichael function |
|||
- $λ(n) = (p − 1) * (q − 1)$ |
|||
- Choose a prime number $e$ that satisfies $1 < e < λ(n)$ and $gcd(e, λ(n))=1$ |
|||
- Usually in examples is used $e = 2^16 + 1 = 65537$ |
|||
- $d$ such as $e * d = 1 mod λ(n)$ |
|||
- $d = e^(-1) mod λ(n) = e modinv λ(n)$ |
|||
|
|||
--- |
|||
|
|||
### Example |
|||
- `p = 3` |
|||
- `q = 11` |
|||
- `e = 7` value choosen between 1 and λ(n)=20, where λ(n) is not divisible by this value |
|||
- `n = 3 * 11 = 33` |
|||
- `λ(n) = (3-1) * (11-1) = 2 * 10 = 20` |
|||
- `d` such as `7 * d = 1 mod 20` |
|||
- `d = 3` |
|||
- PubK: `e=7, n=33` |
|||
- PrivK: `d=3, n=33` |
|||
|
|||
--- |
|||
|
|||
### Naive code |
|||
```python |
|||
def egcd(a, b): |
|||
if a == 0: |
|||
return (b, 0, 1) |
|||
g, y, x = egcd(b%a,a) |
|||
return (g, x - (b//a) * y, y) |
|||
|
|||
def modinv(a, m): |
|||
g, x, y = egcd(a, m) |
|||
if g != 1: |
|||
raise Exception('No modular inverse') |
|||
return x%m |
|||
``` |
|||
|
|||
--- |
|||
|
|||
``` |
|||
def newKeys(): |
|||
p = number.getPrime(n_length) |
|||
q = number.getPrime(n_length) |
|||
|
|||
# pubK e, n |
|||
e = 65537 |
|||
n = p*q |
|||
pubK = PubK(e, n) |
|||
|
|||
# privK d, n |
|||
phi = (p-1) * (q-1) |
|||
d = modinv(e, phi) |
|||
privK = PrivK(d, n) |
|||
|
|||
return({'pubK': pubK, 'privK': privK}) |
|||
``` |
|||
|
|||
--- |
|||
|
|||
# Encryption |
|||
- Brenna wants to send the message `m` to Alice, so, will use the Public Key from Alice to encrypt `m` |
|||
- `m` powered at `e` of the public key from Alice |
|||
- evaluate at modulus of `n` |
|||
|
|||
### Example |
|||
- message to encrypt `m = 5` |
|||
- receiver public key: `e=7, n=33` |
|||
- `c = 5 ^ 7 mod 33 = 78125 mod 33 = 14` |
|||
|
|||
### Naive code |
|||
```python |
|||
def encrypt(pubK, m): |
|||
c = (m ** pubK.e) % pubK.n |
|||
return c |
|||
``` |
|||
|
|||
--- |
|||
# Decrypt |
|||
- from an encrypted value `c` |
|||
- `c` powered at `d` of the private key of the person to who the message was encrypted |
|||
- evaluate at modulus of `n` |
|||
|
|||
### Example |
|||
- receiver private key, PrivK: `d=3, n=33` |
|||
- `m = 14 ^ 3 mod 33 = 2744 mod 33 = 5` |
|||
|
|||
### Naive code |
|||
```python |
|||
def decrypt(privK, c): |
|||
m_d = (c ** privK.d) % privK.n |
|||
return m_d |
|||
``` |
|||
|
|||
--- |
|||
# What's going on when encrypting and decrypting? |
|||
|
|||
![encrdecr](https://cdn-images-1.medium.com/max/1600/1*4AXQNOrddQJud0fZJ3FNgg.png "encrdecr") |
|||
|
|||
--- |
|||
|
|||
``` |
|||
n = pq |
|||
e |
|||
phi = (p-1)(q-1) |
|||
d = e^-1 mod (phi) = e^-1 mod (p-1)(q-1) |
|||
|
|||
# encrypt |
|||
c = m^e mod n = m^e mod pq |
|||
|
|||
# decrypt |
|||
m' = c^d mod n = c ^(e^-1 mod (p-1)(q-1)) mod pq = |
|||
= (m^e)^(e^-1 mod (p-1)(q-1)) mod pq = |
|||
= m^(e * e^-1 mod (p-1)(q-1)) mod pq = |
|||
= m^(1 mod (p-1)(q-1)) mod pq = |
|||
[theorem in which we're not going into details] |
|||
a ^ (1 mod λ(N)) mod N = a mod N |
|||
[/theorem] |
|||
= m mod pq |
|||
``` |
|||
|
|||
|
|||
--- |
|||
# Signature |
|||
- encryption operation but using PrivK instead of PubK, and PubK instead of PrivK |
|||
|
|||
- having a message `m` |
|||
- power of `m` at `d` of the private key from the signer person |
|||
- evaluated at modulus `n` |
|||
|
|||
--- |
|||
|
|||
### Example |
|||
- private key of the person emitter of the signature: `d = 3, n = 33` |
|||
- message to be signed: `m=5` |
|||
- signature: `s = 5 ** 3 % 33 = 26` |
|||
|
|||
### Naive code |
|||
```python |
|||
def sign(privK, m): |
|||
s = (m ** privK.d) % privK.n |
|||
return s |
|||
``` |
|||
|
|||
--- |
|||
|
|||
# Verification of the signature |
|||
- having message `m` and the signature `s` |
|||
- elevate `m` at `e` of the public key from the signer |
|||
- evaluate at modulus of `n` |
|||
|
|||
--- |
|||
|
|||
### Example |
|||
- public key from the singer person `e=7, n=33` |
|||
- message `m=5` |
|||
- signature `s=26` |
|||
- verification `v = 26**7 % 33 = 5` |
|||
- check that we have recovered the message (that `m` is equivalent to `v`) `m = 5 = v = 5` |
|||
|
|||
### Naive code |
|||
```python |
|||
def verifySign(pubK, s, m): |
|||
v = (s ** pubK.e) % privK.n |
|||
return v==m |
|||
``` |
|||
|
|||
--- |
|||
|
|||
# Homomorphic Multiplication |
|||
- from two values $a$ and $b$ |
|||
- encrypted are $a_{encr}$ and $b_{encr}$ |
|||
- we can compute the multiplication of the two encrypted values, obtaining the result encrypted |
|||
- the encrypted result from the multiplication is calculated doing: $c_{encr} = a_{encr} * b_{encr} mod n$ |
|||
- we can decrypt $c_{encr}$ and we will obtain $c$, equivalent to $a * b$ |
|||
|
|||
- Why: |
|||
``` |
|||
((a^e mod n) * (b^e mod n)) mod n = |
|||
= (a^e * b^e mod n) mod n = (a*b)^e mod n |
|||
``` |
|||
|
|||
--- |
|||
|
|||
### Example |
|||
- PubK: `e=7, n=33` |
|||
- PrivK: `d=3, n=33` |
|||
- `a = 5` |
|||
- `b = 8` |
|||
- `a_encr = 5^7 mod 33 = 78125 mod 33 = 14` |
|||
- `b_encr = 8^7 mod 33 = 2097152 mod 33 = 2` |
|||
- `c_encr = (14 * 2) mod 33 = 28 mod 33 = 28` |
|||
- `c = 28 ^ 3 mod 33 = 21952 mod 33 = 7` |
|||
- `c = 7 = a * b % n = 5 * 8 % 33 = 7`, on `5*8 mod 33 = 7` |
|||
- take a `n` enough big, if not the result will be cropped by the modulus |
|||
|
|||
--- |
|||
|
|||
### Naive code |
|||
```python |
|||
def homomorphic_mul(pubK, a, b): |
|||
c = (a*b) % pubK.n |
|||
return c |
|||
``` |
|||
|
|||
--- |
|||
# Small demo |
|||
[...] |
|||
|
|||
# And now... practical implementation |
|||
- full night long |
|||
- big ints are your friends |
@ -0,0 +1,176 @@ |
|||
# Shamir's Secret Sharing |
|||
|
|||
<img src="https://arnaucube.com/img/logoArnauCubeTransparent.png" style="max-width:20%; float:right;" /> |
|||
|
|||
- https://arnaucube.com |
|||
- https://github.com/arnaucube |
|||
- https://twitter.com/arnaucube |
|||
<br><br><br> |
|||
<div style="float:right;font-size:80%;"> |
|||
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png" /></a> |
|||
<br> |
|||
2019-07-05 |
|||
</div> |
|||
|
|||
--- |
|||
|
|||
# Intro |
|||
- I'm not an expert on the field, neither a mathematician. Just an engineer with interest for cryptography |
|||
- Short talk (15 min), with the objective to make a practical introduction to the Shamir's Secret Sharing algorithm |
|||
- Is not a talk about mathematical demostrations, is a talk with the objective to get the basic notions to be able to do a practical implementation of the algorithm |
|||
- After the talk, we will do a practical workshop to implement the concepts. We can offer support for Go, Rust, Python and Nodejs (you can choose any other language, but we will not be able to help) |
|||
|
|||
--- |
|||
|
|||
- Cryptographic algorithm |
|||
- Created by Adi Shamir, in 1979 |
|||
- also known by the $RSA$ cryptosystem |
|||
- explained in few months ago in a similar talk: https://github.com/arnaucube/slides/rsa |
|||
|
|||
--- |
|||
## What's this about? |
|||
- imagine having a password that you want to share with 5 persons, in a way that they need to join their parts to get the original password |
|||
- take the password, split it in 5 parts, and give one part to each one |
|||
- when they need to recover it, they just need to get together, put all the pieces and recover the password (the `secret`) |
|||
- this, has the problem that if a person looses its part, the secret will not be recovered anymore.. luckly we have a solution here: |
|||
|
|||
--- |
|||
|
|||
- Shamir's Secret Sharing: |
|||
- from a secret to be shared, we generate 5 parts, but we can specify a number of parts that are needed to recover the secret |
|||
- so for example, we generate 5 parts, where we will need only 3 of that 5 parts to recover the secret, and the order doesn't matter |
|||
- we have the ability to define the thresholds of $M$ parts to be created, and $N$ parts to be able the recover |
|||
|
|||
--- |
|||
|
|||
- 2 points are sufficient to define a line |
|||
- 3 points are sufficient to define a parabola |
|||
- 4 points are sufficient to define a cubic curve |
|||
- $K$ points are suficient to define a polynomial of degree $k-1$ |
|||
|
|||
We can create infinity of polynomials of degree 2, that goes through 2 points, but with 3 points, we can define a polynomial of degree 2 unique. |
|||
|
|||
![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/66/3_polynomials_of_degree_2_through_2_points.svg/220px-3_polynomials_of_degree_2_through_2_points.svg.png) |
|||
|
|||
--- |
|||
|
|||
## Naming |
|||
|
|||
- `s`: secret |
|||
- `m`: number of parts to be created |
|||
- `n`: number of minimum parts necessary to recover the secret |
|||
- `p`: random prime number, the Finite Field will be over that value |
|||
|
|||
--- |
|||
|
|||
## Secret generation |
|||
- we want that are necessary $n$ parts of $m$ to recover $s$ |
|||
- where $n<m$ |
|||
- need to create a polynomial of degree $n-1$ |
|||
$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + ... + + \alpha_{n-1} x^{n-1}$ |
|||
- where $\alpha_0$ is the secret $s$ |
|||
- $\alpha_i$ are random values that build the polynomial |
|||
*where $\alpha_0$ is the secret to share, and $\alpha_i$ are the random values inside the $Finite Field$ |
|||
|
|||
--- |
|||
|
|||
$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + ... + + \alpha_{n-1} x^{n-1}$ |
|||
|
|||
- the packets that we will generate are $P = (x, f(x))$ |
|||
- where $x$ is each one of the values between $1$ and $m$ |
|||
- $P_1=(1, f(1))$ |
|||
- $P_2=(2, f(2))$ |
|||
- $P_3=(3, f(3))$ |
|||
- ... |
|||
- $P_m=(m, f(m))$ |
|||
|
|||
--- |
|||
## Secret recovery |
|||
- in order to recover the secret $s$, we will need a minimum of $n$ points of the polynomial |
|||
- the order doesn't matter |
|||
- with that $n$ parts, we do Lagrange Interpolation/Polynomial Interpolation |
|||
|
|||
--- |
|||
|
|||
## Polynomial Interpolation / Lagrange Interpolation |
|||
- for a group of points, we can find the smallest degree polynomial that goees through all that points |
|||
- this polynomial is unique for each group of points |
|||
|
|||
![](https://upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Lagrange_polynomial.svg/440px-Lagrange_polynomial.svg.png) |
|||
|
|||
--- |
|||
|
|||
![](https://www.researchgate.net/profile/Chinthanie_Weerakoon/publication/319703488/figure/fig4/AS:614100010799117@1523424260513/Lagrange-Interpolation-Technique.png) |
|||
|
|||
--- |
|||
|
|||
$L(x) = \sum_{j=0}^{n} y_j l_j(x)$ |
|||
|
|||
<br><br> |
|||
|
|||
![](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c3a2ab16a8723c0446de6a30da839198fb04b) |
|||
|
|||
--- |
|||
|
|||
## Wikipedia example |
|||
*example over real numbers, in the practical world, we use the algorithm in the Finite Field over $p$ |
|||
<span style="font-size:70%;float:right;">(more details: https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Problem)</span><br> |
|||
- $s=1234$ |
|||
- $m=6$ |
|||
- $n=3$ |
|||
- $f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$ |
|||
- $\alpha_0 = s = 1234$ |
|||
- $\alpha_1 = 166$ *(random)* |
|||
- $\alpha_2 = 94$ *(random)* |
|||
- $f(x) = 1234 + 166 x + 94 x^2$ |
|||
|
|||
--- |
|||
|
|||
- $f(x) = 1234 + 166 x + 94 x^2$ |
|||
- we calculate the points $P = (x, f(x))$ |
|||
- where $x$ is each one of the values between $1$ and $m$ |
|||
- $P_1=(1, f(1)) = (1, 1494)$ |
|||
- $P_2=(2, f(2)) = (2, 1942)$ |
|||
- $P_3=(3, f(3)) = (3, 2578)$ |
|||
- $P_4=(4, f(4)) = (4, 3402)$ |
|||
- $P_5=(5, f(5)) = (5, 4414)$ |
|||
- $P_6=(6, f(6)) = (6, 5614)$ |
|||
--- |
|||
|
|||
- to recover the secret, let's imagine that we take the packets 2, 4, 5 |
|||
- $(x_0, y_0) = (2, 1942)$ |
|||
- $(x_0, y_0) = (4, 3402)$ |
|||
- $(x_0, y_0) = (5, 4414)$ |
|||
|
|||
--- |
|||
|
|||
- let's calculate the Lagrange Interpolation |
|||
- ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/388471f79b8d3bdb75851b99ed15e5849329cc84) |
|||
- ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c853bdf0daa2db92cd70a6ab21dfd858296cfdd) |
|||
- ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/2013ee56aba68b07d8d4a2c6578e77ff8e8940ff) |
|||
- ![](https://wikimedia.org/api/rest_v1/media/math/render/svg/32fc145272d82d9ebf62b4e30a05eac2b7d2873a) |
|||
- obtaining $f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$, where $\alpha_0$ is the secret $s$ recovered |
|||
- where we eavluate the polynomial at $f(0)$, obtaining $\alpha_0 = s$ |
|||
- *we are not going into details now, but if you want in the practical workshop we can analyze the 'mathematical' part of all of this |
|||
|
|||
--- |
|||
|
|||
# And now... practical implementation |
|||
- full night long |
|||
- big ints are your friends |
|||
- $L(x) = \sum_{j=0}^{n} y_j l_j(x)$ |
|||
![](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c3a2ab16a8723c0446de6a30da839198fb04b) |
|||
|
|||
# About |
|||
|
|||
<img src="https://arnaucube.com/img/logoArnauCubeTransparent.png" style="max-width:20%; float:right;" /> |
|||
|
|||
- https://arnaucube.com |
|||
- https://github.com/arnaucube |
|||
- https://twitter.com/arnaucube |
|||
<br> |
|||
<div style="float:right;font-size:80%;"> |
|||
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png" /></a> |
|||
<br> |
|||
2019-07-05 |
|||
</div> |
@ -0,0 +1,8 @@ |
|||
module demo |
|||
|
|||
go 1.12 |
|||
|
|||
require ( |
|||
github.com/arnaucube/go-snark v0.0.4 // indirect |
|||
github.com/stretchr/testify v1.4.0 // indirect |
|||
) |
@ -0,0 +1,15 @@ |
|||
github.com/arnaucube/go-snark v0.0.4 h1:JJbQx/wg0u1mzJk9Of/rqCkclPgXuvPrLWHfvgnoyEE= |
|||
github.com/arnaucube/go-snark v0.0.4/go.mod h1:m1VkAgz3F+Jdighf2n5eMLe670AR6fBhBGfVHwz2QRk= |
|||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= |
|||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c= |
|||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= |
|||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM= |
|||
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4= |
|||
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME= |
|||
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs= |
|||
github.com/stretchr/testify v1.4.0 h1:2E4SXV/wtOkTonXsotYi4li6zVWxYlZuYNCXe9XRJyk= |
|||
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4= |
|||
github.com/urfave/cli v1.20.0/go.mod h1:70zkFmudgCuE/ngEzBv17Jvp/497gISqfk5gWijbERA= |
|||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0= |
|||
gopkg.in/yaml.v2 v2.2.2 h1:ZCJp+EgiOT7lHqUV2J862kp8Qj64Jo6az82+3Td9dZw= |
|||
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI= |
@ -0,0 +1,109 @@ |
|||
package main |
|||
|
|||
import ( |
|||
"encoding/json" |
|||
"fmt" |
|||
"math/big" |
|||
"strings" |
|||
"time" |
|||
|
|||
"github.com/arnaucube/go-snark" |
|||
"github.com/arnaucube/go-snark/circuitcompiler" |
|||
) |
|||
|
|||
func main() { |
|||
// circuit function
|
|||
// y = x^5 + 2*x + 6
|
|||
code := ` |
|||
func exp5(private a): |
|||
b = a * a |
|||
c = a * b |
|||
d = a * c |
|||
e = a * d |
|||
return e |
|||
|
|||
func main(private s0, public s1): |
|||
s2 = exp5(s0) |
|||
s3 = s0 * 2 |
|||
s4 = s3 + s2 |
|||
s5 = s4 + 6 |
|||
equals(s1, s5) |
|||
out = 1 * 1 |
|||
` |
|||
fmt.Print("\ncode of the circuit:") |
|||
fmt.Println(code) |
|||
|
|||
// parse the code
|
|||
parser := circuitcompiler.NewParser(strings.NewReader(code)) |
|||
circuit, err := parser.Parse() |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
fmt.Println("\ncircuit data:", circuit) |
|||
circuitJson, _ := json.Marshal(circuit) |
|||
fmt.Println("circuit:", string(circuitJson)) |
|||
|
|||
b8 := big.NewInt(int64(8)) |
|||
privateInputs := []*big.Int{b8} |
|||
b32790 := big.NewInt(int64(32790)) |
|||
publicSignals := []*big.Int{b32790} |
|||
|
|||
// wittness
|
|||
w, err := circuit.CalculateWitness(privateInputs, publicSignals) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
|
|||
// code to R1CS
|
|||
fmt.Println("\ngenerating R1CS from code") |
|||
a, b, c := circuit.GenerateR1CS() |
|||
fmt.Println("\nR1CS:") |
|||
fmt.Println("a:", a) |
|||
fmt.Println("b:", b) |
|||
fmt.Println("c:", c) |
|||
|
|||
// R1CS to QAP
|
|||
// TODO zxQAP is not used and is an old impl, TODO remove
|
|||
alphas, betas, gammas, _ := snark.Utils.PF.R1CSToQAP(a, b, c) |
|||
fmt.Println("qap") |
|||
fmt.Println(alphas) |
|||
fmt.Println(betas) |
|||
fmt.Println(gammas) |
|||
|
|||
_, _, _, px := snark.Utils.PF.CombinePolynomials(w, alphas, betas, gammas) |
|||
|
|||
// calculate trusted setup
|
|||
setup, err := snark.GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
fmt.Println("\nt:", setup.Toxic.T) |
|||
|
|||
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
|
|||
|
|||
proof, err := snark.GenerateProofs(*circuit, setup.Pk, w, px) |
|||
if err != nil { |
|||
panic(err) |
|||
} |
|||
|
|||
fmt.Println("\n proofs:") |
|||
fmt.Println(proof) |
|||
|
|||
// fmt.Println("public signals:", proof.PublicSignals)
|
|||
fmt.Println("\nsignals:", circuit.Signals) |
|||
fmt.Println("witness:", w) |
|||
b32790Verif := big.NewInt(int64(32790)) |
|||
publicSignalsVerif := []*big.Int{b32790Verif} |
|||
before := time.Now() |
|||
if !snark.VerifyProof(setup.Vk, proof, publicSignalsVerif, true) { |
|||
fmt.Println("Verification not passed") |
|||
} |
|||
fmt.Println("verify proof time elapsed:", time.Since(before)) |
|||
|
|||
// check that with another public input the verification returns false
|
|||
bOtherWrongPublic := big.NewInt(int64(34)) |
|||
wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} |
|||
if snark.VerifyProof(setup.Vk, proof, wrongPublicSignalsVerif, true) { |
|||
fmt.Println("Verification should not have passed") |
|||
} |
|||
} |
@ -0,0 +1 @@ |
|||
<mxfile modified="2019-08-13T18:47:10.347Z" host="www.draw.io" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36" etag="g-j6-4IYbbkWM6JlDttD" version="11.1.4" type="device"><diagram id="gLyV9NRtU4jVRmGOj88S" name="Page-1">5Vldb5swFP01edyEMRDy2NCvSZu0Ldu6Pk0OXMCtwcgxTbJfPwMmQKFdqpGiqalUcY99zeX4HMglM+wluytBsvgTD4DNTCPYzfD5zDTxHKn/BbCvgLnhVkAkaFBBqAFW9Ddo0NBoTgPYdCZKzpmkWRf0eZqCLzsYEYJvu9NCzrpnzUgEPWDlE9ZHb2ggY40iw2gGroFGsT61a+uBhNSTNbCJScC3LQhfzLAnOJfVUbLzgBXc1bxUeZdPjB4KE5DKYxJ+ba6tm/P766UHd/g7OeN3Hx7emdUqD4Tl+oJ1sXJfMyB4ngZQLGLM8HIbUwmrjPjF6FZtucJimTAVIXWolwMhYfdknehw9Uo1wBOQYq+m6ISF5ksLBjk63rbor+fELeaRpUGitzw6LN2wog40MS8gyelxAoESiQ65kDGPeErYRYMuu6w1cz5ynmmu7kDKvVY8ySUfYrI40fM8qrp4Lnx4pn6sfUNEBPKZedbwvghgRNKHbh2jk4x7SrxUp5WQKhJLe2+kIDSVm38TaEgZ8zjjoszFoeuD7ytcrc7voTWydm3LNsaRNEKPNL0Y0LQ9oGl8KkkvppA07Kj8WaS/t3V02xo53+mVy2BfB6m63FZSEd62x5q0MqrzRrSPdaR93CntY/Xs8xV5q3G9EoIz7JVgvlgbY3nFsjteMW275xX3Na2C8CRemV737pG6R+aUwnd7wv9y9nlk3YfmE7p31o7tnEb32Jxa96jH4tvQff2w/qvw8ZS6r6tsCd9Tzde4yreLvyHlO+WnyOCpbOHV5zSOOHyLmswR9lt1hHnso2DSFqIus2WJbyLfyLKDWIHMs1HdEdjgBtaQO1xzjZ2xngu42ztgt/9cODjjdWwwn8QG/2fzgI7tHpAzqXX6/cNnwXmooCvVggtVAk/HdQ8BNxz8VuX4LqzD07jHsiZ3j9Nj+gcIGlJ/fI4BqXvUfIjjhTPH5ER3KNuYnON+U+BR4edUlq+SkowyED2mFQOyS2eXtpSn8IhjDRFGo1SFvmJMLYyXBZ9qQ9mZHkhoEJS3waH96+7wGBtyxCvUoTeo5sv3Q4XNG+xyrPUzAL74Aw==</diagram></mxfile> |
@ -0,0 +1 @@ |
|||
<mxfile modified="2019-08-13T18:56:28.989Z" host="www.draw.io" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36" etag="eB5zEFUdvqCOVYVfGWWE" version="11.1.4" type="device"><diagram id="ifYI8tIDXpRssO3bx3ur" name="Page-1">5Vhdb5swFP01eexEMB/u45p267TuQ4vWdo8OXMCbw40ck4/9+hliCBQSpRJJGg0e8D32NebccyyLARlNVx8lmyVfMAQxsK1wNSC3A9se2o6jHzmy3iC+RTdALHloBm2BMf8LBrQMmvEQ5o2BClEoPmuCAaYpBKqBMSlx2RwWoWi+dcZiaAHjgIk2+sRDlRh0aFnbjnvgcWJeTV3TMWXlYAPMExbisgaRuwEZSUS1aU1XIxA5eSUvm7wPO3qrhUlI1SEJ2dXDeArBjX/z4+f9+69OFH17vKoWp9blF0OoCTBhiql+3EjM0hDyeSwdoVQJxpgy8YA40+BQg79BqbUpH8sUaihRU2F6YcXVc639K5/qnWui25WZuQjWZZAquX6uB7WsPNymFVGZt/mg/Ct2EmWgOWYygD3slIJjMga1Zxytyql9ADgFvR6dJ0EwxRfNdTAjyLgat62ZbpiyvaKEZt4FE5l503eJC5CtwjaruEy4gvGMFQQstXmbFYu4ECMUKItcErn5rfG5kvgHaj1eceUZmKoavrmqeugFKVjtr0ibQZNQ7QZmE7EtV8ugQJY1U5aeTGp+HDrWsXj3Ls469gm9Yx/onR2VP4137A7v8AVToMFP6SxT835dRAMIgi4XTajruFY/biEvzWIdZhVyNKf4b9YpPQqeXILgSVvw2UTw4Dh6h2Hogt+l92vPJ8w7jt6ds+ud/g96dy9B725L709cpTDvV+da5TR0unRO7QnxjqRzenadX79Zne86AfknPAH5l2AQv+MEhAuexhr8DOt+jz9RZHcff0Jv4rnHsQmxz20T2kUxRv3uQAxo1EmtF1CYRD1RS19sQS49kFv31dzqcPtvpOir/WEid/8A</diagram></mxfile> |
@ -0,0 +1 @@ |
|||
<mxfile modified="2019-08-13T18:59:55.608Z" host="www.draw.io" agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36" etag="6NXsGmdxVBTOZbGWR0NA" version="11.1.4" type="device"><diagram id="ifYI8tIDXpRssO3bx3ur" name="Page-1">3Vdbk5owFP41Pm4HiFz66OpeOt12O+vspU+dCAfIGhImBJX++gYMCuI6bqvrWHwg5zvnJPE7+ZLQQ8NkcSNwGn/jAdCeZQSLHhr1LMu0+n31KpFiibiGtwQiQQIdtAbG5Ddo0NBoTgLIWoGScypJ2gZ9zhj4soVhIfi8HRZy2h41xRF0gLGPaRd9JoGMNWoaxtpxCySK9dCerR0JroM1kMU44PMGhK56aCg4l8tWshgCLcmreVnmXb/hXU1MAJP7JOQXd+ME/Ev38uHxdvC9H4b3Txerycmi/scQKAK0yThTr0vBcxZA2Y+hLC5kzCPOML3jPFWgqcBXkLLQ5cO55AqKZUK1FxZEvjTaP8uuPtnaGi10z5VR1AaTonhpGo2s0lynVVad1+VFU5XxXPiwg4x6fWERgdwRp1dwSVRjAM36DfAE1HxUgACKJZm1VxLWCzJaxa1rphq6bO8ooe53hmmuR3oCQUIColPadh3nMZEwTnHFyVzJt12zkFA65JSLKheFdvlTeCYFn0LD41RPmcGZbODLZ1dFZiAkLHZyqL2r/UBvI5Zhq4VQIfOGLGtVxg1Fmn3j35k3H/GgIKPrXwPnNUumLJzkDzXzbxJ8YqFY+yllYxn/nXTQntI5qVJQRyk/8gklvsK+sDSX2UEFA2Zgg7tNMJ8dF2HnMMJAG7qwjH11gY4lC+s/PVIOIhT7HIRid4Wi7inhQeURYPBCf+t54nswCY8jD+f08kBnJw/3A/XhnoM+3O1XroKwSMFfoTjszSsMLX+rUgJn4tjHOUiQ8aFK2XXPbtB8Pz3HPcjb2IRsb09i7XcTq8z1F2Xla3yXo6s/</diagram></mxfile> |
@ -0,0 +1,877 @@ |
|||
# zkSNARKs from scratch, a technical explanation |
|||
|
|||
<br><br><br> |
|||
<div style="float:right; text-align:right;"> |
|||
<img style="width:80px" src="imgs/arnaucube.png" /> <br> |
|||
|
|||
[arnaucube.com](https://arnaucube.com) |
|||
[github.com/arnaucube](https://github.com/arnaucube) |
|||
[twitter.com/arnaucube](https://twitter.com/arnaucube) |
|||
<br> |
|||
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png" /></a> |
|||
2019-08-20 |
|||
</div> |
|||
|
|||
<img style="width:200px;" src="imgs/iden3.png" /> <br> |
|||
[iden3.io](https://iden3.io) |
|||
[github.com/iden3](https://github.com/iden3) |
|||
[twitter.com/identhree](https://twitter.com/identhree) |
|||
|
|||
|
|||
--- |
|||
|
|||
## Warning |
|||
|
|||
<div style="font-size:90%;"> |
|||
|
|||
- I'm not a mathematician, this talk is not for mathematicians |
|||
|
|||
- In free time, have been studying zkSNARKS & implementing it in Go |
|||
|
|||
- Talk about a technical explaination from an engineer point of view |
|||
- The idea is to try to transmit the learnings from long night study hours during last winter |
|||
- Also at the end will briefly overview how we use zkSNARKs in iden3 |
|||
- This slides will be combined with |
|||
- parts of the code from https://github.com/arnaucube/go-snark |
|||
- whiteboard draws and writtings |
|||
- Don't use your own crypto. But it's fun to implement it (only for learning purposes) |
|||
|
|||
</div> |
|||
|
|||
--- |
|||
|
|||
## Contents |
|||
|
|||
<div style="font-size: 90%;"> |
|||
|
|||
- Introduction |
|||
- zkSNARK overview |
|||
- zkSNARK flow |
|||
- Generating and verifying proofs |
|||
- Foundations |
|||
- Basics of modular arithmetic |
|||
- Groups |
|||
- Finite fields |
|||
- Elliptic curve operations |
|||
- Pairings |
|||
- Bilinear Pairings |
|||
- BLS signatures |
|||
|
|||
</div> |
|||
|
|||
--- |
|||
|
|||
<div style="font-size: 90%;"> |
|||
|
|||
- zkSNARK (Pinocchio) |
|||
- Circuit compiler |
|||
- R1CS |
|||
- QAP |
|||
- Lagrange Interpolation |
|||
- Trusted Setup |
|||
- Proofs generation |
|||
- Proofs verification |
|||
- Groth16 |
|||
- How we use zkSNARKs in iden3 |
|||
- libraries |
|||
- Circuit languages |
|||
- utilities (Elliptic curve & Hash functions) inside the zkSNARK libraries |
|||
- BabyJubJub |
|||
- Mimc |
|||
- Poseidon |
|||
- References |
|||
|
|||
</div> |
|||
|
|||
--- |
|||
|
|||
## Introduction |
|||
- zero knowledge concept |
|||
- examples |
|||
- some concept explanations |
|||
- https://en.wikipedia.org/wiki/Zero-knowledge_proof |
|||
- https://hackernoon.com/wtf-is-zero-knowledge-proof-be5b49735f27 |
|||
|
|||
--- |
|||
|
|||
|
|||
## zkSNARK overview |
|||
|
|||
|
|||
- protocol to prove the correctness of a computation |
|||
- useful for |
|||
- scalability |
|||
- privacy |
|||
- interoperability |
|||
- examples: |
|||
- Alice can prove to Brenna that knows $x$ such as $f(x) = y$ |
|||
- Brenna can prove to Alice that knows a certain input which $Hash$ results in a certain known value |
|||
- Carol can proof that is a member of an organization without revealing their identity |
|||
- etc |
|||
|
|||
--- |
|||
|
|||
### zkSNARK flow |
|||
|
|||
<div style="text-align:center;"> |
|||
<img src="imgs/zksnark-concept-flow.png"/> |
|||
</div> |
|||
|
|||
--- |
|||
|
|||
|
|||
### Generating and verifying proofs |
|||
Generating a proof: |
|||
|
|||
<img src="imgs/zksnark-prover.png"/> |
|||
|
|||
<img src="imgs/cat04.jpeg" style="float:right; width:300px;" /> |
|||
|
|||
<br><br> |
|||
|
|||
Verifying a proof: |
|||
|
|||
<img src="imgs/zksnark-verifier.png"/> |
|||
|
|||
|
|||
|
|||
|
|||
--- |
|||
|
|||
|
|||
## Foundations |
|||
- Modular aritmetic |
|||
- Groups |
|||
- Finite fields |
|||
- Elliptic Curve Cryptography |
|||
|
|||
--- |
|||
|
|||
## Basics of modular arithmetic |
|||
- Modulus, `mod`, `%` |
|||
- Remainder after division of two numbers |
|||
|
|||
![clocks](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Clock_group.svg/220px-Clock_group.svg.png "clocks") |
|||
|
|||
```python |
|||
5 mod 12 = 5 |
|||
14 mod 12 = 2 |
|||
83 mod 10 = 3 |
|||
``` |
|||
|
|||
```python |
|||
5 + 3 mod 6 = 8 mod 6 = 2 |
|||
``` |
|||
|
|||
|
|||
--- |
|||
|
|||
## Groups |
|||
- a **set** with an **operation** |
|||
- **operation** must be *associative* |
|||
- neutral element ($identity$): adding the neutral element to any element gives the element |
|||
- inverse: $e$ + $e_{inverse}$ = $identity$ |
|||
- cyclic groups |
|||
- finite group with a generator element |
|||
- any element must be writable by a multiple of the generator element |
|||
- abelian group |
|||
- group with *commutative* operation |
|||
|
|||
--- |
|||
|
|||
## Finite fields |
|||
- algebraic structure like Groups, but with **two operations** |
|||
- extended fields concept (https://en.wikipedia.org/wiki/Field_extension) |
|||
|
|||
--- |
|||
|
|||
## Elliptic curve |
|||
- point addition |
|||
|
|||
$(x_1, y_1) + (x_2, y_2) = |
|||
(\dfrac{ |
|||
x_1 y_2 + x_2 y_1 |
|||
}{ |
|||
1 + d x_1 x_2 y_1 y_2 |
|||
}, |
|||
\dfrac{ |
|||
y_1 y_2 - x_1 x_2 |
|||
}{ |
|||
1-dx_1 x_2 y_1 y_2 |
|||
})$ |
|||
- G1 |
|||
- G2 |
|||
|
|||
*(whiteboard explanation)* |
|||
|
|||
--- |
|||
|
|||
## Pairings |
|||
- 3 typical types used for SNARKS: |
|||
- BN (Barreto Naehrig) - used in Ethereum |
|||
- BLS (Barreto Lynn Scott) - used in ZCash & Ethereum 2.0 |
|||
- MNT (Miyaji- Nakabayashi - Takano) - used in CodaProtocol |
|||
- $y^2 = x^3 + b$ with embedding degree 12 |
|||
- function that maps (pairs) two points from sets `S1` and `S2` into another set `S3` |
|||
- is a [bilinear](https://en.wikipedia.org/wiki/Bilinear_map) function |
|||
- $e(G_1, G_2) -> G_T$ |
|||
- the groups must be |
|||
- cyclic |
|||
- same prime order ($r$) |
|||
|
|||
--- |
|||
|
|||
- $F_q$, where $q=$`21888242871839275222246405745257275088696311157297823662689037894645226208583` |
|||
- $F_r$, where $r=$`21888242871839275222246405745257275088548364400416034343698204186575808495617` |
|||
|
|||
--- |
|||
|
|||
## Bilinear Pairings |
|||
$e(P_1 + P_2, Q_1) == e(P_1, Q_1) \cdot e(P_2, Q_1)$ |
|||
|
|||
$e(P_1, Q_1 + Q_2) == e(P_1, Q_1) \cdot e(P_1, Q_2)$ |
|||
|
|||
$e(aP, bQ) == e(P, Q)^{ab} == e(bP, aQ)$ |
|||
|
|||
<img src="imgs/cat01.jpeg" style="float:right; width:300px;" /> |
|||
|
|||
$e(g_1, g_2)^6 == e(g_1, 6 \cdot g_2)$ |
|||
|
|||
$e(g_1, g_2)^6 == e(6 \cdot g_1, g_2)$ |
|||
|
|||
$e(g_1, g_2)^6 == e(3 \cdot g_1, 2 g_2)$ |
|||
|
|||
$e(g_1, g_2)^6 == e(2 \cdot g_1, 3 g_2)$ |
|||
|
|||
|
|||
--- |
|||
|
|||
### BLS signatures |
|||
*(small overview, is offtopic here, but is interesting)* |
|||
- key generation |
|||
- random private key $x$ in $[0, r-1]$ |
|||
- public key $g^x$ |
|||
- signature |
|||
- $h=Hash(m)$ (over G2) |
|||
- signature $\sigma=h^x$ |
|||
- verification |
|||
- check that: $e(g, \sigma) == e(g^x, Hash(m))$ |
|||
$e(g, h^x) == e(g^x, h)$ |
|||
|
|||
|
|||
--- |
|||
|
|||
- aggregate signatures |
|||
- $s = s0 + s1 + s2 ...$ |
|||
- verify aggregated signatures |
|||
|
|||
<div style="font-size:75%"> |
|||
|
|||
$e(G,S) == e(P, H(m))$ |
|||
|
|||
$e(G, s0+s1+s2...) == e(p0, H(m)) \cdot e(p1, H(m)) \cdot e(p2, H(m)) ...$ |
|||
|
|||
</div> |
|||
|
|||
|
|||
More info: https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html |
|||
|
|||
--- |
|||
|
|||
## Circuit compiler |
|||
- not a software compiler -> a constraint prover |
|||
- what this means |
|||
- constraint concept |
|||
- `value0` == `value1` `<operation>` `value2` |
|||
- want to proof that a certain computation has been done correctly |
|||
- graphic of circuit with gates (whiteboard) |
|||
|
|||
- about high level programing languages for zkSNARKS, by *Harry Roberts*: https://www.youtube.com/watch?v=nKrBJo3E3FY |
|||
|
|||
--- |
|||
|
|||
Circuit code example: |
|||
$f(x) = x^5 + 2\cdot x + 6$ |
|||
|
|||
``` |
|||
func exp5(private a): |
|||
b = a * a |
|||
c = a * b |
|||
d = a * c |
|||
e = a * d |
|||
return e |
|||
|
|||
func main(private s0, public s1): |
|||
s2 = exp5(s0) |
|||
s3 = s0 * 2 |
|||
s4 = s3 + s2 |
|||
s5 = s4 + 6 |
|||
equals(s1, s5) |
|||
out = 1 * 1 |
|||
``` |
|||
|
|||
--- |
|||
|
|||
## Inputs and Witness |
|||
For a certain circuit, with the inputs that we calculate the Witness for the circuit signals |
|||
- private inputs: `[8]` |
|||
- in this case the private input is the 'secret' $x$ value that computed into the equation gives the expected $f(x)$ |
|||
- public inputs: `[32790]` |
|||
- in this case the public input is the result of the equation |
|||
- signals: `[one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]` |
|||
- witness: `[1 32790 8 64 512 4096 32768 16 32784 32790 1]` |
|||
|
|||
--- |
|||
|
|||
## R1CS |
|||
- Rank 1 Constraint System |
|||
- way to write down the constraints by 3 linear combinations |
|||
- 1 constraint per operation |
|||
- $(A, B, C) = A.s \cdot B.s - C.s = 0$ |
|||
- from flat code constraints we can generate the R1CS |
|||
|
|||
--- |
|||
|
|||
## R1CS |
|||
|
|||
<div style="font-size:65%"> |
|||
|
|||
$(a_{11}s_1 + a_{12}s_2 + ... + a_{1n}s_n) \cdot (b_{11}s_1 + b_{12}s_2 + ... + b_{1n}s_n) - (c_{11}s_1 + c_{12}s_2 + ... + c_{1n}s_n) = 0$ |
|||
|
|||
$(a_{21}s_1 + a_{22}s_2 + ... + a_{2n}s_n) \cdot (b_{21}s_1 + b_{22}s_2 + ... + b_{2n}s_n) - (c_{21}s_1 + c_{22}s_2 + ... + c_{2n}s_n) = 0$ |
|||
$(a_{31}s_1 + a_{32}s_2 + ... + a_{3n}s_n) \cdot (b_{31}s_1 + b_{32}s_2 + ... + b_{3n}s_n) - (c_{31}s_1 + c_{32}s_2 + ... + c_{3n}s_n) = 0$ |
|||
[...] |
|||
$(a_{m1}s_1 + a_{m2}s_2 + ... + a_{mn}s_n) \cdot (b_{m1}s_1 + b_{m2}s_2 + ... + b_{mn}s_n) - (c_{m1}s_1 + c_{m2}s_2 + ... + c_{mn}s_n) = 0$ |
|||
|
|||
*where $s$ are the signals of the circuit, and we need to find $a, b, c$ that satisfies the equations |
|||
</div> |
|||
|
|||
--- |
|||
|
|||
R1CS constraint example: |
|||
- signals: `[one s1 s0 b0 c0 d0 s2 s3 s4 s5 out]` |
|||
- witness: `[1 32790 8 64 512 4096 32768 16 32784 32790 1]` |
|||
- First constraint flat code: `b0 == s0 * s0` |
|||
- R1CS first constraint: |
|||
$A_1 = [00100000000]$ |
|||
$B_1 = [00100000000]$ |
|||
$C_1 = [00010000000]$ |
|||
|
|||
--- |
|||
|
|||
R1CS example: |
|||
|
|||
| $A$| $B$ | $C$: | |
|||
|-|-|-| |
|||
| $[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 0 0 0 0 1 1 0 0 0]$<br>$[6 0 0 0 0 0 0 0 1 0 0]$<br>$[0 0 0 0 0 0 0 0 0 1 0]$<br>$[0 1 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$ | $[0 0 1 0 0 0 0 0 0 0 0]$<br>$[0 0 0 1 0 0 0 0 0 0 0]$<br>$[0 0 0 0 1 0 0 0 0 0 0]$<br>$[0 0 0 0 0 1 0 0 0 0 0]$<br>$[2 0 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$<br>$[1 0 0 0 0 0 0 0 0 0 0]$ | $[0 0 0 1 0 0 0 0 0 0 0]$ <br>$[0 0 0 0 1 0 0 0 0 0 0]$<br>$[0 0 0 0 0 1 0 0 0 0 0]$<br>$[0 0 0 0 0 0 1 0 0 0 0]$<br>$[0 0 0 0 0 0 0 1 0 0 0]$<br>$[0 0 0 0 0 0 0 0 1 0 0]$<br>$[0 0 0 0 0 0 0 0 0 1 0]$<br>$[0 1 0 0 0 0 0 0 0 0 0]$<br>$[0 0 0 0 0 0 0 0 0 1 0]$<br>$[0 0 0 0 0 0 0 0 0 0 1]$ | |
|||
|
|||
|
|||
--- |
|||
|
|||
## QAP |
|||
- Quadratic Arithmetic Programs |
|||
- 3 polynomials, linear combinations of R1CS |
|||
- very good article about QAP by Vitalik Buterin https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 |
|||
|
|||
--- |
|||
|
|||
![qap](imgs/qap-screenshot.png) |
|||
|
|||
--- |
|||
|
|||
### Lagrange Interpolation |
|||
(Polynomial Interpolation) |
|||
- for a group of points, we can find the smallest degree polynomial that goees through all that points |
|||
- this polynomial is unique for each group of points |
|||
|
|||
![](https://upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Lagrange_polynomial.svg/440px-Lagrange_polynomial.svg.png) |
|||
|
|||
--- |
|||
|
|||
$L(x) = \sum_{j=0}^{n} y_j l_j(x)$ |
|||
|
|||
<br><br> |
|||
|
|||
![](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e2c3a2ab16a8723c0446de6a30da839198fb04b) |
|||
|
|||
|
|||
--- |
|||
|
|||
#### Shamir's Secret Sharing |
|||
*(small overview, is offtopic here, but is interesting)* |
|||
|
|||
- from a secret to be shared, we generate 5 parts, but we can specify a number of parts that are needed to recover the secret |
|||
- so for example, we generate 5 parts, where we will need only 3 of that 5 parts to recover the secret, and the order doesn't matter |
|||
- we have the ability to define the thresholds of $M$ parts to be created, and $N$ parts to be able the recover |
|||
|
|||
--- |
|||
|
|||
##### Shamir's Secret Sharing - Secret generation |
|||
- we want that are necessary $n$ parts of $m$ to recover $s$ |
|||
- where $n<m$ |
|||
- need to create a polynomial of degree $n-1$ |
|||
$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + ... + + \alpha_{n-1} x^{n-1}$ |
|||
- where $\alpha_0$ is the secret $s$ |
|||
- $\alpha_i$ are random values that build the polynomial |
|||
*where $\alpha_0$ is the secret to share, and $\alpha_i$ are the random values inside the $Finite Field$ |
|||
|
|||
--- |
|||
|
|||
$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + ... + + \alpha_{n-1} x^{n-1}$ |
|||
|
|||
- the packets that we will generate are $P = (x, f(x))$ |
|||
- where $x$ is each one of the values between $1$ and $m$ |
|||
- $P_1=(1, f(1))$ |
|||
- $P_2=(2, f(2))$ |
|||
- $P_3=(3, f(3))$ |
|||
- ... |
|||
- $P_m=(m, f(m))$ |
|||
|
|||
--- |
|||
|
|||
##### Shamir's Secret Sharing - Secret recovery |
|||
- in order to recover the secret $s$, we will need a minimum of $n$ points of the polynomial |
|||
- the order doesn't matter |
|||
- with that $n$ parts, we do Lagrange Interpolation/Polynomial Interpolation, recovering the original polynomial |
|||
|
|||
--- |
|||
|
|||
## QAP |
|||
|
|||
<div style="font-size:50%"> |
|||
|
|||
$(\alpha_1(x)s_1 + \alpha_2(x)s_2 + ... + \alpha_n(x)s_n) \cdot (\beta_1(x)s_1 + \beta_2(x)s_2 + ... + \beta_n(x)s_n) - (\gamma_1(x)s_1 + \gamma_2(x)s_2 + ... + \gamma_n(x)s_n) = P(x)$ |
|||
|
|||
|----------------------- $A(x)$ -----------------------|------------------------ $B(x)$ -----------------------|------------------------ $C(x)$ ------------------------| |
|||
|
|||
</div> |
|||
|
|||
<div style="font-size:70%"> |
|||
|
|||
- $P(x) = A(x)B(x)-C(x)$ |
|||
- $P(x) = Z(x) h(x)$ |
|||
- $Z(x)$: divisor polynomial |
|||
- $Z(x) = (x - x_1)(x-x_2)...(x-x_m) => ...=> (x_1, 0), (x_2, 0), ..., (x_m, 0)$ |
|||
- optimizations with FFT |
|||
- $h(x) = P(x) / Z(x)$ |
|||
|
|||
</div> |
|||
|
|||
--- |
|||
|
|||
*The following explanation is for the [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf), all the examples will be for this protocol. The [Groth16](https://eprint.iacr.org/2016/260.pdf) is explained also in the end of this slides.* |
|||
|
|||
--- |
|||
|
|||
## Trusted Setup |
|||
- concept |
|||
- $\tau$ (Tau) |
|||
- "Toxic waste" |
|||
- Proving Key |
|||
- Verification Key |
|||
|
|||
--- |
|||
|
|||
$g_1 t^0, g_1 t^1, g_1 t^2, g_1 t^3, g_1 t^4, ...$ |
|||
$g_2 t^0, g_2 t^1, g_2 t^2, g_2 t^3, g_2 t^4, ...$ |
|||
|
|||
--- |
|||
|
|||
Proving Key: |
|||
$pk = (C, pk_A, pk_A', pk_B, pk_B', pk_C, pk_C', pk_H)$ where: |
|||
- $pk_A = \{ A_i(\tau) \rho_A P_1 \}^{m+3}_{i=0}$ |
|||
- $pk_A' = \{ A_i(\tau) \alpha_A \rho_A P_1 \}^{m+3}_{i=n+1}$ |
|||
- $pk_B = \{ B_i(\tau) \rho_B P_2 \}^{m+3}_{i=0}$ |
|||
- $pk_B' = \{ B_i(\tau) \alpha_B \rho_B P_1 \}^{m+3}_{i=0}$ |
|||
- $pk_C = \{ C_i(\tau) \rho_C P_1 \}^{m+3}_{i=0} = \{C_i(\tau) \rho_A \rho_B P_1\}^{m+3}_{i=0}$ |
|||
- $pk_C' = \{ C_i(\tau) \alpha_C \rho_C P_1 \}^{m+3}_{i=0} = \{ C_i(\tau) \alpha_C \rho_A \rho_B P_1 \}^{m+3}_{i=0}$ |
|||
- $pk_K = \{ \beta (A_i(\tau) \rho_A + B_i(\tau) \rho_B C_i(\tau) \rho_A \rho_B) P_1 \} ^{m+3}_{i=0}$ |
|||
- $pk_H = \{ \tau^i P_1 \}^d_{i=0}$ |
|||
|
|||
where: |
|||
- $d$: degree of polynomial $Z(x)$ |
|||
- $m$: number of circuit signals |
|||
|
|||
--- |
|||
|
|||
Verification Key: |
|||
$vk = (vk_A, vk_B, vk_C, vk_\gamma, vk^1_{\beta\gamma}, vk^2_{\beta\gamma}, vk_Z, vk_{IC})$ |
|||
- $vk_A = \alpha_A P_2$, $vk_B = \alpha_B P_1$, $vk_C = \alpha_C P_2$ |
|||
- $vk_{\beta\gamma} = \gamma P_2$, $vk^1_{\beta\gamma} = \beta\gamma P_1$, $vk^2_{\beta\gamma} = \beta\gamma P_2$ |
|||
- $vk_Z = Z(\tau) \rho_A \rho_B P_2$, $vk_{IC} = (A_i(\tau) \rho_A P_1)^n_{i=0}$ |
|||
|
|||
--- |
|||
|
|||
```go |
|||
type Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH) |
|||
G1T [][3]*big.Int // t encrypted in G1 curve, G1T == Pk.H |
|||
A [][3]*big.Int |
|||
B [][3][2]*big.Int |
|||
C [][3]*big.Int |
|||
Kp [][3]*big.Int |
|||
Ap [][3]*big.Int |
|||
Bp [][3]*big.Int |
|||
Cp [][3]*big.Int |
|||
Z []*big.Int |
|||
} |
|||
|
|||
type Vk struct { |
|||
Vka [3][2]*big.Int |
|||
Vkb [3]*big.Int |
|||
Vkc [3][2]*big.Int |
|||
IC [][3]*big.Int |
|||
G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma |
|||
G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma |
|||
G2Kg [3][2]*big.Int // g2 * Kgamma |
|||
Vkz [3][2]*big.Int |
|||
} |
|||
``` |
|||
|
|||
--- |
|||
|
|||
```go |
|||
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed |
|||
type Setup struct { |
|||
Toxic struct { |
|||
T *big.Int // trusted setup secret |
|||
Ka *big.Int |
|||
Kb *big.Int |
|||
Kc *big.Int |
|||
Kbeta *big.Int |
|||
Kgamma *big.Int |
|||
RhoA *big.Int |
|||
RhoB *big.Int |
|||
RhoC *big.Int |
|||
} |
|||
Pk Pk |
|||
Vk Vk |
|||
} |
|||
``` |
|||
|
|||
--- |
|||
|
|||
## Proofs generation |
|||
- $A, B, C, Z$ (from the QAP) |
|||
- random $\delta_1, \delta_2, \delta_3$ |
|||
- $H(z)= \dfrac{A(z)B(z)-C(z)}{Z(z)}$ |
|||
- $A(z) = A_0(z) + \sum_{i=1}^m s_i A_i(x) + \delta_1 Z(z)$ |
|||
- $B(z) = B_0(z) + \sum_{i=1}^m s_i B_i(x) + \delta_2 Z(z)$ |
|||
- $C(z) = C_0(z) + \sum_{i=1}^m s_i B_i(x) + \delta_2 Z(z)$ |
|||
(where $m$ is the number of public inputs) |
|||
|
|||
--- |
|||
|
|||
- $\pi_A = <c, pk_A>$ |
|||
- $\pi_A' = <c, pk_A'>$ |
|||
- $\pi_B = <c, pk_B>$ |
|||
- example: |
|||
```go |
|||
for i := 0; i < circuit.NVars; i++ { |
|||
proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(pk.B[i], w[i])) |
|||
proof.PiBp = Utils.Bn.G1.Add(proof.PiBp, Utils.Bn.G1.MulScalar(pk.Bp[i], w[i])) |
|||
} |
|||
``` |
|||
($c=1+witness+\delta_1+\delta_2+\delta_3$ |
|||
- $\pi_B' = <c, pk_B'>$ |
|||
- $\pi_C = <c, pk_C>$ |
|||
- $\pi_C' = <c, pk_C'>$ |
|||
- $\pi_K = <c, pk_K>$ |
|||
- $\pi_H = <h, pk_KH>$ |
|||
- proof: $\pi = (\pi_A, \pi_A', \pi_B, \pi_B', \pi_C, \pi_C', \pi_K, \pi_H$ |
|||
|
|||
--- |
|||
|
|||
## Proofs verification |
|||
|
|||
<img src="imgs/cat03.jpeg" style="float:right; width:300px;" /> |
|||
|
|||
- $vk_{kx} = vk_{IC,0} + \sum_{i=1}^n x_i vk_{IC,i}$ |
|||
|
|||
Verification: |
|||
- $e(\pi_A, vk_a) == e(\pi_{A'}, g_2)$ |
|||
- $e(vk_b, \pi_B) == e(\pi_{B'}, g_2)$ |
|||
- $e(\pi_C, vk_c) == e(\pi_{C'}, g_2)$ |
|||
- $e(vk_{kx}+\pi_A, \pi_B) == e(\pi_H, vk_{kz}) \cdot e(\pi_C, g_2)$ |
|||
- $e(vk_{kx} + \pi_A + \pi_C, V_{\beta\gamma}^2) \cdot e(vk_{\beta\gamma}^1, \pi_B) == e(\pi_k, vk_{\gamma}^1)$ |
|||
|
|||
--- |
|||
|
|||
|
|||
<div style="font-size:60%"> |
|||
Example (whiteboard): |
|||
<br><br> |
|||
|
|||
$\dfrac{ |
|||
e(\pi_A, \pi_B) |
|||
}{ |
|||
e(\pi_C, g_2) |
|||
} |
|||
= e(g_1 h(t), g_2 z(t)) |
|||
$ |
|||
<br> |
|||
$\dfrac{ |
|||
e(A_1 + A_2 + ... + A_n, B_1 + B_2 + ... + B_n) |
|||
}{ |
|||
e(C_1 + C_2 + ... + C_n, g_2) |
|||
} |
|||
= e(g_1 h(t), g_2 z(t)) |
|||
$ |
|||
<br> |
|||
$\dfrac{ |
|||
e(g_1 \alpha_1(t) s_1 + g_1 \alpha_2(t) s_2 + ... + g_1 \alpha_n(t) s_n, g_2 \beta_1(t)s_1 + g_2 \beta_2(t) s_2 + ... + g_2 \beta_n(t) s_n) |
|||
}{ |
|||
e(g_1 \gamma_1(t) s_1 + g_1 \gamma_2(t) s_2 + ... + g_1 \gamma_n(t) s_n, g_2) |
|||
} |
|||
= e(g_1 h(t), g_2 z(t)) |
|||
$ |
|||
<br> |
|||
$ |
|||
e(g_1 \alpha_1(t) s_1 + g_1 \alpha_2(t) s_2 + ... + g_1 \alpha_n(t) s_n, g_2 \beta_1(t)s_1 + g_2 \beta_2(t) s_2 + ... + g_2 \beta_n(t) s_n)$ |
|||
$= e(g_1 h(t), g_2 z(t)) \cdot e(g_1 \gamma_1(t) s_1 + g_1 \gamma_2(t) s_2 + ... + g_1 \gamma_n(t) s_n, g_2) |
|||
$ |
|||
|
|||
</div> |
|||
|
|||
|
|||
--- |
|||
|
|||
## Groth16 |
|||
|
|||
|
|||
<img src="imgs/cat02.jpeg" style="float:right; width:300px;" /> |
|||
|
|||
### Trusted Setup |
|||
$\tau = \alpha, \beta, \gamma, \delta, x$ |
|||
|
|||
$\sigma_1 =$ |
|||
- $\alpha, \beta, \delta, \{ x^i\}_{i=0}^{n-1}$ |
|||
|
|||
- $\{ |
|||
\dfrac{ |
|||
\beta u_i(x) + \alpha v_i(x) + w_i(x) |
|||
}{ |
|||
\gamma |
|||
} |
|||
\}_{i=0}^l$ |
|||
|
|||
- $\{ |
|||
\dfrac{ |
|||
\beta u_i(x) + \alpha v_i(x) + w_i(x) |
|||
}{ |
|||
\delta |
|||
} |
|||
\}_{i=l+1}^m$ |
|||
|
|||
- $\{ |
|||
\dfrac{x^i t(x)}{\delta} |
|||
\}_{i=0}^{n-2}$ |
|||
|
|||
$\sigma_2 = (\beta, \gamma, \delta, \{ x^i \}_{i=0}^{n-1})$ |
|||
|
|||
*(where $u_i(x), v_i(x), w_i(x)$ are the $QAP$)* |
|||
|
|||
--- |
|||
|
|||
```go |
|||
type Pk struct { // Proving Key |
|||
BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m |
|||
Z []*big.Int |
|||
G1 struct { |
|||
Alpha [3]*big.Int |
|||
Beta [3]*big.Int |
|||
Delta [3]*big.Int |
|||
At [][3]*big.Int // {a(τ)} from 0 to m |
|||
BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m |
|||
} |
|||
G2 struct { |
|||
Beta [3][2]*big.Int |
|||
Gamma [3][2]*big.Int |
|||
Delta [3][2]*big.Int |
|||
BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m |
|||
} |
|||
PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ |
|||
} |
|||
``` |
|||
|
|||
--- |
|||
|
|||
```go |
|||
type Vk struct { |
|||
IC [][3]*big.Int |
|||
G1 struct { |
|||
Alpha [3]*big.Int |
|||
} |
|||
G2 struct { |
|||
Beta [3][2]*big.Int |
|||
Gamma [3][2]*big.Int |
|||
Delta [3][2]*big.Int |
|||
} |
|||
} |
|||
``` |
|||
|
|||
|
|||
--- |
|||
|
|||
```go |
|||
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed |
|||
type Setup struct { |
|||
Toxic struct { |
|||
T *big.Int // trusted setup secret |
|||
Kalpha *big.Int |
|||
Kbeta *big.Int |
|||
Kgamma *big.Int |
|||
Kdelta *big.Int |
|||
} |
|||
Pk Pk |
|||
Vk Vk |
|||
} |
|||
``` |
|||
|
|||
--- |
|||
|
|||
# |
|||
## Proofs Generation |
|||
$\pi_A=\alpha + \sum_{i=0}^m \alpha_i u_i(x) + r \delta$ |
|||
$\pi_B=\beta + \sum_{i=0}^m \alpha_i v_i(x) + s \delta$ |
|||
|
|||
<div style="font-size:80%;"> |
|||
|
|||
$\pi_C = \dfrac{ |
|||
\sum_{i=l+1}^m a_i(\beta u_i(x) + \alpha v_i(x) + w_i(x)) + h(x)t(x) |
|||
}{ |
|||
\delta |
|||
} + \pi_As + \pi_Br -rs\delta$ |
|||
|
|||
</div> |
|||
|
|||
$\pi=\pi_A^1, \pi_B^1, \pi_C^2$ |
|||
|
|||
--- |
|||
|
|||
### Proof Verification |
|||
|
|||
<div style="font-size:75%;"> |
|||
|
|||
$[\pi_A]_1 \cdot [\pi_B]_2 = [\alpha]_1 \cdot [\beta]_2 + |
|||
\sum_{i=0}^l a_i [ |
|||
\dfrac{ |
|||
\beta u_i(x) + \alpha v_i(x) + w_i(x) |
|||
}{ |
|||
\gamma |
|||
} |
|||
]_1 |
|||
\cdot [\gamma]_2 + [\pi_C]_1 \cdot [\delta]_2 |
|||
$ |
|||
|
|||
</div> |
|||
|
|||
$e(\pi_A, \pi_B) = e(\alpha, \beta) \cdot e(pub, \gamma) \cdot e(\pi_C, \delta)$ |
|||
|
|||
|
|||
--- |
|||
|
|||
## How we use zkSNARKs in iden3 |
|||
- proving a credentials without revealing it's content |
|||
- proving that an identity has a claim issued by another identity, without revealing all the data |
|||
- proving any property of an identity |
|||
- $ITF$ (Identity Transition Function), a way to prove with a zkSNARK that an identity has been updated following the defined protocol |
|||
- identities can not cheat when issuing claims |
|||
- etc |
|||
|
|||
## Other ideas for free time side project |
|||
- Zendermint (Tendermint + zkSNARKs) |
|||
|
|||
--- |
|||
|
|||
|
|||
<img src="imgs/cat05.jpeg" style="float:right; width:300px;" /> |
|||
|
|||
## zkSNARK libraries |
|||
- [bellman](https://github.com/zkcrypto/bellman) (rust) |
|||
- [libsnark](https://github.com/scipr-lab/libsnark) (c++) |
|||
- [snarkjs](https://github.com/iden3/snarkjs) (javascript) |
|||
- [websnark](https://github.com/iden3/websnark) (wasm) |
|||
- [go-snark](https://github.com/arnaucube/go-snark) (golang) <span style="font-size:80%;">[do not use in production]<span> |
|||
|
|||
## Circuit languages |
|||
| language | snark library with which plugs in | |
|||
|-----|-----| |
|||
| [Zokrates](https://github.com/Zokrates/ZoKrates) | libsnark, bellman | |
|||
| [Snarky](https://github.com/o1-labs/snarky) | libsnark | |
|||
| [circom](https://github.com/iden3/circom) | snarkjs, websnark, bellman | |
|||
| [go-snark-circuit](https://github.com/arnaucube/go-snark) | go-snark | |
|||
|
|||
--- |
|||
|
|||
## Utilities (Elliptic curve & Hash functions) inside the zkSNARK |
|||
- we work over $F_r$, where $r=$`21888242871839275222246405745257275088548364400416034343698204186575808495617` |
|||
|
|||
- BabyJubJub |
|||
- Mimc |
|||
- Poseidon |
|||
|
|||
--- |
|||
|
|||
##### *Utilities (Elliptic curve & Hash functions) inside the zkSNARK* |
|||
|
|||
### BabyJubJub |
|||
- explaination: https://medium.com/zokrates/efficient-ecc-in-zksnarks-using-zokrates-bd9ae37b8186 |
|||
- implementations: |
|||
- go: https://github.com/iden3/go-iden3-crypto |
|||
- javascript & circom: https://github.com/iden3/circomlib |
|||
- rust: https://github.com/arnaucube/babyjubjub-rs |
|||
- c++: https://github.com/barryWhiteHat/baby_jubjub_ecc |
|||
|
|||
--- |
|||
|
|||
##### *Utilities (Elliptic curve & Hash functions) inside the zkSNARK* |
|||
|
|||
### Mimc7 |
|||
- explaination: https://eprint.iacr.org/2016/492.pdf |
|||
- implementations in: |
|||
- go: https://github.com/iden3/go-iden3-crypto |
|||
- javascript & circom: https://github.com/iden3/circomlib |
|||
- rust: https://github.com/arnaucube/mimc-rs |
|||
|
|||
--- |
|||
|
|||
##### *Utilities (Elliptic curve & Hash functions) inside the zkSNARK* |
|||
|
|||
### Poseidon |
|||
- explaination: https://eprint.iacr.org/2019/458.pdf |
|||
- implementations in: |
|||
- go: https://github.com/iden3/go-iden3-crypto |
|||
- javascript & circom: https://github.com/iden3/circomlib |
|||
|
|||
--- |
|||
|
|||
# References |
|||
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf |
|||
- `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf |
|||
- `On the Size of Pairing-based Non-interactive Arguments`, Jens Groth https://eprint.iacr.org/2016/260.pdf |
|||
- (also all the links through the slides) |
|||
|
|||
--- |
|||
|
|||
<div style="text-align:center;"> |
|||
Thank you very much |
|||
<br> |
|||
<img src="imgs/cat00.jpeg" style="width:300px;" /> |
|||
</div> |
|||
|
|||
|
|||
<div style="float:right; text-align:right;"> |
|||
<img style="width:80px" src="imgs/arnaucube.png" /> <br> |
|||
|
|||
[arnaucube.com](https://arnaucube.com) |
|||
[github.com/arnaucube](https://github.com/arnaucube) |
|||
[twitter.com/arnaucube](https://twitter.com/arnaucube) |
|||
|
|||
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png" /></a> |
|||
2019-08-20 |
|||
</div> |
|||
|
|||
<img style="width:200px;" src="imgs/iden3.png" /> <br> |
|||
[iden3.io](https://iden3.io) |
|||
[github.com/iden3](https://github.com/iden3) |
|||
[twitter.com/identhree](https://twitter.com/identhree) |