|
|
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_ff::PrimeField;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::init_nova_ivc_params;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
/// operations on each of them.
#[derive(Clone, Copy, Debug)]
pub struct MultiInputsFCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Result<Self, Error> {
Ok(Self { _f: PhantomData })
}
fn state_len(&self) -> usize {
5
}
fn external_inputs_len(&self) -> usize {
0
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let a = z_i[0] + F::from(4_u32);
let b = z_i[1] + F::from(40_u32);
let c = z_i[2] * F::from(4_u32);
let d = z_i[3] * F::from(40_u32);
let e = z_i[4] + F::from(100_u32);
Ok(vec![a, b, c, d, e])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
let a = z_i[0].clone() + four.clone();
let b = z_i[1].clone() + forty.clone();
let c = z_i[2].clone() * four;
let d = z_i[3].clone() * forty;
let e = z_i[4].clone() + onehundred;
Ok(vec![a, b, c, d, e])
}
}
/// cargo test --example multi_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = MultiInputsFCircuit::<Fr>::new(()).unwrap();
let z_i = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let z_i1 = circuit.step_native(0, z_i.clone(), vec![]).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone(), vec![])
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example multi_inputs
fn main() {
let num_steps = 10;
let initial_state = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let F_circuit = MultiInputsFCircuit::<Fr>::new(()).unwrap();
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params, _) =
init_nova_ivc_params::<MultiInputsFCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
MultiInputsFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step(vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}
|