* Fix Nova multi-elements state In the AugmentedFCircuit the default value for the state when no input is provided was `vec![F::zero()]`, which defaults to length `1`. So when having more than 1 element in the state, before even starting to fold, the circuit was already already failing. Additionally this commit adds an example for a circuit with a state of 5 elements. * abstract 'nova_setup' helper to avoid code duplication in examples * update example naming to 'MultiInputs' * rename nova_setup -> test_nova_setup to make it more explicitmain
| @ -0,0 +1,156 @@ | |||
| #![allow(non_snake_case)]
 | |||
| #![allow(non_upper_case_globals)]
 | |||
| #![allow(non_camel_case_types)]
 | |||
| #![allow(clippy::upper_case_acronyms)]
 | |||
| 
 | |||
| use ark_ff::PrimeField;
 | |||
| use ark_r1cs_std::alloc::AllocVar;
 | |||
| use ark_r1cs_std::fields::fp::FpVar;
 | |||
| use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
 | |||
| use core::marker::PhantomData;
 | |||
| use std::time::Instant;
 | |||
| 
 | |||
| use ark_pallas::{constraints::GVar, Fr, Projective};
 | |||
| use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
 | |||
| 
 | |||
| use folding_schemes::commitment::pedersen::Pedersen;
 | |||
| use folding_schemes::folding::nova::Nova;
 | |||
| use folding_schemes::frontend::FCircuit;
 | |||
| use folding_schemes::{Error, FoldingScheme};
 | |||
| mod utils;
 | |||
| use utils::test_nova_setup;
 | |||
| 
 | |||
| /// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
 | |||
| /// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
 | |||
| /// we get by applying the step.
 | |||
| /// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
 | |||
| /// operations on each of them.
 | |||
| #[derive(Clone, Copy, Debug)]
 | |||
| pub struct MultiInputsFCircuit<F: PrimeField> {
 | |||
|     _f: PhantomData<F>,
 | |||
| }
 | |||
| impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
 | |||
|     type Params = ();
 | |||
| 
 | |||
|     fn new(_params: Self::Params) -> Self {
 | |||
|         Self { _f: PhantomData }
 | |||
|     }
 | |||
|     fn state_len(self) -> usize {
 | |||
|         5
 | |||
|     }
 | |||
| 
 | |||
|     /// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
 | |||
|     /// z_{i+1}
 | |||
|     fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
 | |||
|         let a = z_i[0] + F::from(4_u32);
 | |||
|         let b = z_i[1] + F::from(40_u32);
 | |||
|         let c = z_i[2] * F::from(4_u32);
 | |||
|         let d = z_i[3] * F::from(40_u32);
 | |||
|         let e = z_i[4] + F::from(100_u32);
 | |||
| 
 | |||
|         Ok(vec![a, b, c, d, e])
 | |||
|     }
 | |||
| 
 | |||
|     /// generates the constraints for the step of F for the given z_i
 | |||
|     fn generate_step_constraints(
 | |||
|         self,
 | |||
|         cs: ConstraintSystemRef<F>,
 | |||
|         z_i: Vec<FpVar<F>>,
 | |||
|     ) -> Result<Vec<FpVar<F>>, SynthesisError> {
 | |||
|         let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
 | |||
|         let fourty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
 | |||
|         let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
 | |||
|         let a = z_i[0].clone() + four.clone();
 | |||
|         let b = z_i[1].clone() + fourty.clone();
 | |||
|         let c = z_i[2].clone() * four;
 | |||
|         let d = z_i[3].clone() * fourty;
 | |||
|         let e = z_i[4].clone() + onehundred;
 | |||
| 
 | |||
|         Ok(vec![a, b, c, d, e])
 | |||
|     }
 | |||
| }
 | |||
| 
 | |||
| /// cargo test --example multi_inputs
 | |||
| #[cfg(test)]
 | |||
| pub mod tests {
 | |||
|     use super::*;
 | |||
|     use ark_r1cs_std::alloc::AllocVar;
 | |||
|     use ark_relations::r1cs::ConstraintSystem;
 | |||
| 
 | |||
|     // test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
 | |||
|     #[test]
 | |||
|     fn test_add_f_circuit() {
 | |||
|         let cs = ConstraintSystem::<Fr>::new_ref();
 | |||
| 
 | |||
|         let circuit = MultiInputsFCircuit::<Fr>::new(());
 | |||
|         let z_i = vec![
 | |||
|             Fr::from(1_u32),
 | |||
|             Fr::from(1_u32),
 | |||
|             Fr::from(1_u32),
 | |||
|             Fr::from(1_u32),
 | |||
|             Fr::from(1_u32),
 | |||
|         ];
 | |||
| 
 | |||
|         let z_i1 = circuit.step_native(z_i.clone()).unwrap();
 | |||
| 
 | |||
|         let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
 | |||
|         let computed_z_i1Var = circuit
 | |||
|             .generate_step_constraints(cs.clone(), z_iVar.clone())
 | |||
|             .unwrap();
 | |||
|         assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
 | |||
|     }
 | |||
| }
 | |||
| 
 | |||
| /// cargo run --release --example multi_inputs
 | |||
| fn main() {
 | |||
|     let num_steps = 10;
 | |||
|     let initial_state = vec![
 | |||
|         Fr::from(1_u32),
 | |||
|         Fr::from(1_u32),
 | |||
|         Fr::from(1_u32),
 | |||
|         Fr::from(1_u32),
 | |||
|         Fr::from(1_u32),
 | |||
|     ];
 | |||
| 
 | |||
|     let F_circuit = MultiInputsFCircuit::<Fr>::new(());
 | |||
| 
 | |||
|     println!("Prepare Nova ProverParams & VerifierParams");
 | |||
|     let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
 | |||
| 
 | |||
|     /// The idea here is that eventually we could replace the next line chunk that defines the
 | |||
|     /// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
 | |||
|     /// trait, and the rest of our code would be working without needing to be updated.
 | |||
|     type NOVA = Nova<
 | |||
|         Projective,
 | |||
|         GVar,
 | |||
|         Projective2,
 | |||
|         GVar2,
 | |||
|         MultiInputsFCircuit<Fr>,
 | |||
|         Pedersen<Projective>,
 | |||
|         Pedersen<Projective2>,
 | |||
|     >;
 | |||
| 
 | |||
|     println!("Initialize FoldingScheme");
 | |||
|     let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
 | |||
| 
 | |||
|     // compute a step of the IVC
 | |||
|     for i in 0..num_steps {
 | |||
|         let start = Instant::now();
 | |||
|         folding_scheme.prove_step().unwrap();
 | |||
|         println!("Nova::prove_step {}: {:?}", i, start.elapsed());
 | |||
|     }
 | |||
| 
 | |||
|     let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
 | |||
| 
 | |||
|     println!("Run the Nova's IVC verifier");
 | |||
|     NOVA::verify(
 | |||
|         verifier_params,
 | |||
|         initial_state.clone(),
 | |||
|         folding_scheme.state(), // latest state
 | |||
|         Fr::from(num_steps as u32),
 | |||
|         running_instance,
 | |||
|         incomming_instance,
 | |||
|         cyclefold_instance,
 | |||
|     )
 | |||
|     .unwrap();
 | |||
| }
 | |||
| @ -0,0 +1,49 @@ | |||
| #![allow(non_snake_case)]
 | |||
| #![allow(non_upper_case_globals)]
 | |||
| #![allow(non_camel_case_types)]
 | |||
| #![allow(clippy::upper_case_acronyms)]
 | |||
| #![allow(dead_code)]
 | |||
| use ark_pallas::{constraints::GVar, Fr, Projective};
 | |||
| use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
 | |||
| 
 | |||
| use folding_schemes::commitment::pedersen::Pedersen;
 | |||
| use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
 | |||
| use folding_schemes::frontend::FCircuit;
 | |||
| use folding_schemes::transcript::poseidon::poseidon_test_config;
 | |||
| 
 | |||
| // This method computes the Prover & Verifier parameters for the example.
 | |||
| // Warning: this method is only for testing purposes. For a real world use case those parameters
 | |||
| // should be generated carefuly (both the PoseidonConfig and the PedersenParams).
 | |||
| #[allow(clippy::type_complexity)]
 | |||
| pub(crate) fn test_nova_setup<FC: FCircuit<Fr>>(
 | |||
|     F_circuit: FC,
 | |||
| ) -> (
 | |||
|     ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
 | |||
|     VerifierParams<Projective, Projective2>,
 | |||
| ) {
 | |||
|     let mut rng = ark_std::test_rng();
 | |||
|     let poseidon_config = poseidon_test_config::<Fr>();
 | |||
| 
 | |||
|     // get the CM & CF_CM len
 | |||
|     let (r1cs, cf_r1cs) =
 | |||
|         get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
 | |||
|     let cm_len = r1cs.A.n_rows;
 | |||
|     let cf_cm_len = cf_r1cs.A.n_rows;
 | |||
| 
 | |||
|     let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
 | |||
|     let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
 | |||
| 
 | |||
|     let prover_params =
 | |||
|         ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
 | |||
|             poseidon_config: poseidon_config.clone(),
 | |||
|             cm_params: pedersen_params,
 | |||
|             cf_cm_params: cf_pedersen_params,
 | |||
|         };
 | |||
|     let verifier_params = VerifierParams::<Projective, Projective2> {
 | |||
|         poseidon_config: poseidon_config.clone(),
 | |||
|         r1cs,
 | |||
|         cf_r1cs,
 | |||
|     };
 | |||
|     (prover_params, verifier_params)
 | |||
| }
 | |||
| fn main() {}
 | |||