Browse Source

Fix Nova multi-elements state (#73)

* Fix Nova multi-elements state

In the AugmentedFCircuit the default value for the state when no input
is provided was `vec![F::zero()]`, which defaults to length `1`. So when
having more than 1 element in the state, before even starting to fold,
the circuit was already already failing.

Additionally this commit adds an example for a circuit with a state of 5
elements.

* abstract 'nova_setup' helper to avoid code duplication in examples

* update example naming to 'MultiInputs'

* rename nova_setup -> test_nova_setup to make it more explicit
update-nifs-interface
arnaucube 8 months ago
committed by GitHub
parent
commit
89d6067431
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
5 changed files with 230 additions and 42 deletions
  1. +156
    -0
      folding-schemes/examples/multi_inputs.rs
  2. +9
    -40
      folding-schemes/examples/sha256.rs
  3. +49
    -0
      folding-schemes/examples/utils.rs
  4. +6
    -2
      folding-schemes/src/folding/nova/circuits.rs
  5. +10
    -0
      folding-schemes/src/frontend/mod.rs

+ 156
- 0
folding-schemes/examples/multi_inputs.rs

@ -0,0 +1,156 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_ff::PrimeField;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
/// operations on each of them.
#[derive(Clone, Copy, Debug)]
pub struct MultiInputsFCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(self) -> usize {
5
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let a = z_i[0] + F::from(4_u32);
let b = z_i[1] + F::from(40_u32);
let c = z_i[2] * F::from(4_u32);
let d = z_i[3] * F::from(40_u32);
let e = z_i[4] + F::from(100_u32);
Ok(vec![a, b, c, d, e])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
self,
cs: ConstraintSystemRef<F>,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
let fourty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
let a = z_i[0].clone() + four.clone();
let b = z_i[1].clone() + fourty.clone();
let c = z_i[2].clone() * four;
let d = z_i[3].clone() * fourty;
let e = z_i[4].clone() + onehundred;
Ok(vec![a, b, c, d, e])
}
}
/// cargo test --example multi_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::alloc::AllocVar;
use ark_relations::r1cs::ConstraintSystem;
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
#[test]
fn test_add_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = MultiInputsFCircuit::<Fr>::new(());
let z_i = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example multi_inputs
fn main() {
let num_steps = 10;
let initial_state = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let F_circuit = MultiInputsFCircuit::<Fr>::new(());
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
MultiInputsFCircuit<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incomming_instance,
cyclefold_instance,
)
.unwrap();
}

folding-schemes/examples/fold_sha256.rs → folding-schemes/examples/sha256.rs

@ -20,10 +20,11 @@ use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::{get_r1cs, Nova, ProverParams, VerifierParams};
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_test_config;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait.
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
@ -40,6 +41,9 @@ impl FCircuit for Sha256FCircuit {
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(self) -> usize {
1
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
@ -63,7 +67,7 @@ impl FCircuit for Sha256FCircuit {
}
}
/// cargo test --example simple
/// cargo test --example sha256
#[cfg(test)]
pub mod tests {
use super::*;
@ -88,42 +92,7 @@ pub mod tests {
}
}
// This method computes the Prover & Verifier parameters for the example. For a real world use case
// those parameters should be generated carefuly (both the PoseidonConfig and the PedersenParams)
#[allow(clippy::type_complexity)]
fn nova_setup<FC: FCircuit<Fr>>(
F_circuit: FC,
) -> (
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
VerifierParams<Projective, Projective2>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
// get the CM & CF_CM len
let (r1cs, cf_r1cs) =
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
let cm_len = r1cs.A.n_rows;
let cf_cm_len = cf_r1cs.A.n_rows;
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
let prover_params =
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cm_params: pedersen_params,
cf_cm_params: cf_pedersen_params,
};
let verifier_params = VerifierParams::<Projective, Projective2> {
poseidon_config: poseidon_config.clone(),
r1cs,
cf_r1cs,
};
(prover_params, verifier_params)
}
/// cargo run --release --example fold_sha256
/// cargo run --release --example sha256
fn main() {
let num_steps = 10;
let initial_state = vec![Fr::from(1_u32)];
@ -131,7 +100,7 @@ fn main() {
let F_circuit = Sha256FCircuit::<Fr>::new(());
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) = nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
let (prover_params, verifier_params) = test_nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`

+ 49
- 0
folding-schemes/examples/utils.rs

@ -0,0 +1,49 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)]
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_test_config;
// This method computes the Prover & Verifier parameters for the example.
// Warning: this method is only for testing purposes. For a real world use case those parameters
// should be generated carefuly (both the PoseidonConfig and the PedersenParams).
#[allow(clippy::type_complexity)]
pub(crate) fn test_nova_setup<FC: FCircuit<Fr>>(
F_circuit: FC,
) -> (
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
VerifierParams<Projective, Projective2>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
// get the CM & CF_CM len
let (r1cs, cf_r1cs) =
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
let cm_len = r1cs.A.n_rows;
let cf_cm_len = cf_r1cs.A.n_rows;
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
let prover_params =
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cm_params: pedersen_params,
cf_cm_params: cf_pedersen_params,
};
let verifier_params = VerifierParams::<Projective, Projective2> {
poseidon_config: poseidon_config.clone(),
r1cs,
cf_r1cs,
};
(prover_params, verifier_params)
}
fn main() {}

+ 6
- 2
folding-schemes/src/folding/nova/circuits.rs

@ -310,10 +310,14 @@ where
Ok(self.i.unwrap_or_else(CF1::<C1>::zero))
})?;
let z_0 = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || {
Ok(self.z_0.unwrap_or(vec![CF1::<C1>::zero()]))
Ok(self
.z_0
.unwrap_or(vec![CF1::<C1>::zero(); self.F.state_len()]))
})?;
let z_i = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || {
Ok(self.z_i.unwrap_or(vec![CF1::<C1>::zero()]))
Ok(self
.z_i
.unwrap_or(vec![CF1::<C1>::zero(); self.F.state_len()]))
})?;
let u_dummy_native = CommittedInstance::<C1>::dummy(1);

+ 10
- 0
folding-schemes/src/frontend/mod.rs

@ -16,6 +16,10 @@ pub trait FCircuit: Clone + Copy + Debug {
/// returns a new FCircuit instance
fn new(params: Self::Params) -> Self;
/// returns the number of elements in the state of the FCircuit, which corresponds to the
/// FCircuit inputs.
fn state_len(self) -> usize;
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(
@ -59,6 +63,9 @@ pub mod tests {
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(self) -> usize {
1
}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
}
@ -90,6 +97,9 @@ pub mod tests {
n_constraints: params,
}
}
fn state_len(self) -> usize {
1
}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let mut z_i1 = F::one();
for _ in 0..self.n_constraints - 1 {

Loading…
Cancel
Save