* Fix Nova multi-elements state In the AugmentedFCircuit the default value for the state when no input is provided was `vec![F::zero()]`, which defaults to length `1`. So when having more than 1 element in the state, before even starting to fold, the circuit was already already failing. Additionally this commit adds an example for a circuit with a state of 5 elements. * abstract 'nova_setup' helper to avoid code duplication in examples * update example naming to 'MultiInputs' * rename nova_setup -> test_nova_setup to make it more explicitmain
@ -0,0 +1,156 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(non_upper_case_globals)]
|
|||
#![allow(non_camel_case_types)]
|
|||
#![allow(clippy::upper_case_acronyms)]
|
|||
|
|||
use ark_ff::PrimeField;
|
|||
use ark_r1cs_std::alloc::AllocVar;
|
|||
use ark_r1cs_std::fields::fp::FpVar;
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|||
use core::marker::PhantomData;
|
|||
use std::time::Instant;
|
|||
|
|||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
|||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
|||
|
|||
use folding_schemes::commitment::pedersen::Pedersen;
|
|||
use folding_schemes::folding::nova::Nova;
|
|||
use folding_schemes::frontend::FCircuit;
|
|||
use folding_schemes::{Error, FoldingScheme};
|
|||
mod utils;
|
|||
use utils::test_nova_setup;
|
|||
|
|||
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
|||
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
|
|||
/// we get by applying the step.
|
|||
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
|
|||
/// operations on each of them.
|
|||
#[derive(Clone, Copy, Debug)]
|
|||
pub struct MultiInputsFCircuit<F: PrimeField> {
|
|||
_f: PhantomData<F>,
|
|||
}
|
|||
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
|||
type Params = ();
|
|||
|
|||
fn new(_params: Self::Params) -> Self {
|
|||
Self { _f: PhantomData }
|
|||
}
|
|||
fn state_len(self) -> usize {
|
|||
5
|
|||
}
|
|||
|
|||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
|||
/// z_{i+1}
|
|||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
|||
let a = z_i[0] + F::from(4_u32);
|
|||
let b = z_i[1] + F::from(40_u32);
|
|||
let c = z_i[2] * F::from(4_u32);
|
|||
let d = z_i[3] * F::from(40_u32);
|
|||
let e = z_i[4] + F::from(100_u32);
|
|||
|
|||
Ok(vec![a, b, c, d, e])
|
|||
}
|
|||
|
|||
/// generates the constraints for the step of F for the given z_i
|
|||
fn generate_step_constraints(
|
|||
self,
|
|||
cs: ConstraintSystemRef<F>,
|
|||
z_i: Vec<FpVar<F>>,
|
|||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
|||
let fourty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
|||
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
|||
let a = z_i[0].clone() + four.clone();
|
|||
let b = z_i[1].clone() + fourty.clone();
|
|||
let c = z_i[2].clone() * four;
|
|||
let d = z_i[3].clone() * fourty;
|
|||
let e = z_i[4].clone() + onehundred;
|
|||
|
|||
Ok(vec![a, b, c, d, e])
|
|||
}
|
|||
}
|
|||
|
|||
/// cargo test --example multi_inputs
|
|||
#[cfg(test)]
|
|||
pub mod tests {
|
|||
use super::*;
|
|||
use ark_r1cs_std::alloc::AllocVar;
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
|
|||
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
|
|||
#[test]
|
|||
fn test_add_f_circuit() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let circuit = MultiInputsFCircuit::<Fr>::new(());
|
|||
let z_i = vec![
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
];
|
|||
|
|||
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
|||
|
|||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
|||
let computed_z_i1Var = circuit
|
|||
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
|||
.unwrap();
|
|||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
|||
}
|
|||
}
|
|||
|
|||
/// cargo run --release --example multi_inputs
|
|||
fn main() {
|
|||
let num_steps = 10;
|
|||
let initial_state = vec![
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
Fr::from(1_u32),
|
|||
];
|
|||
|
|||
let F_circuit = MultiInputsFCircuit::<Fr>::new(());
|
|||
|
|||
println!("Prepare Nova ProverParams & VerifierParams");
|
|||
let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
|
|||
|
|||
/// The idea here is that eventually we could replace the next line chunk that defines the
|
|||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
|||
/// trait, and the rest of our code would be working without needing to be updated.
|
|||
type NOVA = Nova<
|
|||
Projective,
|
|||
GVar,
|
|||
Projective2,
|
|||
GVar2,
|
|||
MultiInputsFCircuit<Fr>,
|
|||
Pedersen<Projective>,
|
|||
Pedersen<Projective2>,
|
|||
>;
|
|||
|
|||
println!("Initialize FoldingScheme");
|
|||
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
|||
|
|||
// compute a step of the IVC
|
|||
for i in 0..num_steps {
|
|||
let start = Instant::now();
|
|||
folding_scheme.prove_step().unwrap();
|
|||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|||
}
|
|||
|
|||
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
|
|||
|
|||
println!("Run the Nova's IVC verifier");
|
|||
NOVA::verify(
|
|||
verifier_params,
|
|||
initial_state.clone(),
|
|||
folding_scheme.state(), // latest state
|
|||
Fr::from(num_steps as u32),
|
|||
running_instance,
|
|||
incomming_instance,
|
|||
cyclefold_instance,
|
|||
)
|
|||
.unwrap();
|
|||
}
|
@ -0,0 +1,49 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(non_upper_case_globals)]
|
|||
#![allow(non_camel_case_types)]
|
|||
#![allow(clippy::upper_case_acronyms)]
|
|||
#![allow(dead_code)]
|
|||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
|||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
|||
|
|||
use folding_schemes::commitment::pedersen::Pedersen;
|
|||
use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
|
|||
use folding_schemes::frontend::FCircuit;
|
|||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
|||
|
|||
// This method computes the Prover & Verifier parameters for the example.
|
|||
// Warning: this method is only for testing purposes. For a real world use case those parameters
|
|||
// should be generated carefuly (both the PoseidonConfig and the PedersenParams).
|
|||
#[allow(clippy::type_complexity)]
|
|||
pub(crate) fn test_nova_setup<FC: FCircuit<Fr>>(
|
|||
F_circuit: FC,
|
|||
) -> (
|
|||
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
|
|||
VerifierParams<Projective, Projective2>,
|
|||
) {
|
|||
let mut rng = ark_std::test_rng();
|
|||
let poseidon_config = poseidon_test_config::<Fr>();
|
|||
|
|||
// get the CM & CF_CM len
|
|||
let (r1cs, cf_r1cs) =
|
|||
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
|||
let cm_len = r1cs.A.n_rows;
|
|||
let cf_cm_len = cf_r1cs.A.n_rows;
|
|||
|
|||
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
|
|||
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
|
|||
|
|||
let prover_params =
|
|||
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
|
|||
poseidon_config: poseidon_config.clone(),
|
|||
cm_params: pedersen_params,
|
|||
cf_cm_params: cf_pedersen_params,
|
|||
};
|
|||
let verifier_params = VerifierParams::<Projective, Projective2> {
|
|||
poseidon_config: poseidon_config.clone(),
|
|||
r1cs,
|
|||
cf_r1cs,
|
|||
};
|
|||
(prover_params, verifier_params)
|
|||
}
|
|||
fn main() {}
|