#![allow(non_snake_case)]
|
|
#![allow(non_upper_case_globals)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
|
|
use ark_ff::PrimeField;
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use core::marker::PhantomData;
|
|
use std::time::Instant;
|
|
|
|
use ark_pallas::{constraints::GVar, Fr, Projective};
|
|
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
|
|
|
use folding_schemes::commitment::pedersen::Pedersen;
|
|
use folding_schemes::folding::nova::Nova;
|
|
use folding_schemes::frontend::FCircuit;
|
|
use folding_schemes::{Error, FoldingScheme};
|
|
mod utils;
|
|
use utils::test_nova_setup;
|
|
|
|
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
|
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
|
|
/// we get by applying the step.
|
|
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
|
|
/// operations on each of them.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct MultiInputsFCircuit<F: PrimeField> {
|
|
_f: PhantomData<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
|
type Params = ();
|
|
|
|
fn new(_params: Self::Params) -> Self {
|
|
Self { _f: PhantomData }
|
|
}
|
|
fn state_len(self) -> usize {
|
|
5
|
|
}
|
|
|
|
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
|
/// z_{i+1}
|
|
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
|
let a = z_i[0] + F::from(4_u32);
|
|
let b = z_i[1] + F::from(40_u32);
|
|
let c = z_i[2] * F::from(4_u32);
|
|
let d = z_i[3] * F::from(40_u32);
|
|
let e = z_i[4] + F::from(100_u32);
|
|
|
|
Ok(vec![a, b, c, d, e])
|
|
}
|
|
|
|
/// generates the constraints for the step of F for the given z_i
|
|
fn generate_step_constraints(
|
|
self,
|
|
cs: ConstraintSystemRef<F>,
|
|
z_i: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
|
let fourty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
|
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
|
let a = z_i[0].clone() + four.clone();
|
|
let b = z_i[1].clone() + fourty.clone();
|
|
let c = z_i[2].clone() * four;
|
|
let d = z_i[3].clone() * fourty;
|
|
let e = z_i[4].clone() + onehundred;
|
|
|
|
Ok(vec![a, b, c, d, e])
|
|
}
|
|
}
|
|
|
|
/// cargo test --example multi_inputs
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
|
|
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
|
|
#[test]
|
|
fn test_add_f_circuit() {
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
|
|
let circuit = MultiInputsFCircuit::<Fr>::new(());
|
|
let z_i = vec![
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
];
|
|
|
|
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
|
|
|
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
|
let computed_z_i1Var = circuit
|
|
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
|
.unwrap();
|
|
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
|
}
|
|
}
|
|
|
|
/// cargo run --release --example multi_inputs
|
|
fn main() {
|
|
let num_steps = 10;
|
|
let initial_state = vec![
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
];
|
|
|
|
let F_circuit = MultiInputsFCircuit::<Fr>::new(());
|
|
|
|
println!("Prepare Nova ProverParams & VerifierParams");
|
|
let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
|
|
|
|
/// The idea here is that eventually we could replace the next line chunk that defines the
|
|
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
|
/// trait, and the rest of our code would be working without needing to be updated.
|
|
type NOVA = Nova<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
MultiInputsFCircuit<Fr>,
|
|
Pedersen<Projective>,
|
|
Pedersen<Projective2>,
|
|
>;
|
|
|
|
println!("Initialize FoldingScheme");
|
|
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
|
|
|
// compute a step of the IVC
|
|
for i in 0..num_steps {
|
|
let start = Instant::now();
|
|
folding_scheme.prove_step().unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
|
|
|
|
println!("Run the Nova's IVC verifier");
|
|
NOVA::verify(
|
|
verifier_params,
|
|
initial_state.clone(),
|
|
folding_scheme.state(), // latest state
|
|
Fr::from(num_steps as u32),
|
|
running_instance,
|
|
incomming_instance,
|
|
cyclefold_instance,
|
|
)
|
|
.unwrap();
|
|
}
|