Browse Source

feat: fold noir circuits, add an e2e example, tests, a `compile.sh` script and update CI (#131)

main
Pierre 4 months ago
committed by GitHub
parent
commit
18a3e0aa93
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
14 changed files with 524 additions and 0 deletions
  1. +10
    -0
      .github/workflows/ci.yml
  2. +3
    -0
      .gitignore
  3. +147
    -0
      examples/noir_full_flow.rs
  4. +2
    -0
      folding-schemes/Cargo.toml
  5. +1
    -0
      folding-schemes/src/frontend/mod.rs
  6. +299
    -0
      folding-schemes/src/frontend/noir/mod.rs
  7. +7
    -0
      folding-schemes/src/frontend/noir/test_folder/compile.sh
  8. +8
    -0
      folding-schemes/src/frontend/noir/test_folder/test_circuit/Nargo.toml
  9. +11
    -0
      folding-schemes/src/frontend/noir/test_folder/test_circuit/src/main.nr
  10. +8
    -0
      folding-schemes/src/frontend/noir/test_folder/test_mimc/Nargo.toml
  11. +6
    -0
      folding-schemes/src/frontend/noir/test_folder/test_mimc/src/main.nr
  12. +8
    -0
      folding-schemes/src/frontend/noir/test_folder/test_no_external_inputs/Nargo.toml
  13. +9
    -0
      folding-schemes/src/frontend/noir/test_folder/test_no_external_inputs/src/main.nr
  14. +5
    -0
      solidity-verifiers/Cargo.toml

+ 10
- 0
.github/workflows/ci.yml

@ -45,6 +45,9 @@ jobs:
- feature: default
steps:
- uses: actions/checkout@v2
- uses: noir-lang/noirup@v0.1.3
with:
toolchain: nightly
- uses: actions-rs/toolchain@v1
# use the more efficient nextest
- uses: taiki-e/install-action@nextest
@ -61,6 +64,8 @@ jobs:
chmod +x /usr/local/bin/solc
- name: Execute compile.sh to generate .r1cs and .wasm from .circom
run: ./folding-schemes/src/frontend/circom/test_folder/compile.sh
- name: Execute compile.sh to generate .json from noir
run: ./folding-schemes/src/frontend/noir/test_folder/compile.sh
- name: Build
# This build will be reused by nextest,
# and also checks (--all-targets) that benches don't bit-rot
@ -79,6 +84,9 @@ jobs:
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
- uses: noir-lang/noirup@v0.1.3
with:
toolchain: nightly
- name: Download Circom
run: |
mkdir -p $HOME/bin
@ -91,6 +99,8 @@ jobs:
chmod +x /usr/local/bin/solc
- name: Execute compile.sh to generate .r1cs and .wasm from .circom
run: ./folding-schemes/src/frontend/circom/test_folder/compile.sh
- name: Execute compile.sh to generate .json from noir
run: ./folding-schemes/src/frontend/noir/test_folder/compile.sh
- name: Run examples tests
run: cargo test --examples
- name: Run examples

+ 3
- 0
.gitignore

@ -6,6 +6,9 @@ folding-schemes/src/frontend/circom/test_folder/*_js/
*.r1cs
*.sym
# Noir generated files
folding-schemes/src/frontend/noir/test_folder/*/target/*
# generated contracts at test time
solidity-verifiers/generated
examples/*.sol

+ 147
- 0
examples/noir_full_flow.rs

@ -0,0 +1,147 @@
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_groth16::Groth16;
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova, PreprocessorParam,
},
frontend::{
noir::{load_noir_circuit, NoirFCircuit},
FCircuit,
},
transcript::poseidon::poseidon_canonical_config,
Decider, FoldingScheme,
};
use std::{env, time::Instant};
use solidity_verifiers::{
evm::{compile_solidity, Evm},
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
fn main() {
// set the initial state
let z_0 = vec![Fr::from(1)];
// initialize the noir fcircuit
let cur_path = env::current_dir().unwrap();
let circuit_path = format!(
"{}/folding-schemes/src/frontend/noir/test_folder/test_mimc/target/test_mimc.json",
cur_path.to_str().unwrap()
);
let circuit = load_noir_circuit(circuit_path);
let f_circuit = NoirFCircuit {
circuit,
state_len: 1,
external_inputs_len: 0,
};
pub type N = Nova<G1, GVar, G2, GVar2, NoirFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type D = DeciderEth<
G1,
GVar,
G2,
GVar2,
NoirFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0).unwrap();
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
// run n steps of the folding iteration
for i in 0..5 {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// Now, let's generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
// verify the proof against the solidity code in the EVM
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::write(
"./examples/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
}

+ 2
- 0
folding-schemes/Cargo.toml

@ -28,6 +28,8 @@ ark-noname = { git = "https://github.com/dmpierre/ark-noname", branch="feat/sono
noname = { git = "https://github.com/dmpierre/noname" }
serde_json = "1.0.85" # to (de)serialize JSON
serde = "1.0.203"
acvm = { git = "https://github.com/noir-lang/noir", rev="2b4853e", default-features = false }
arkworks_backend = { git = "https://github.com/dmpierre/arkworks_backend", branch="feat/sonobe-integration" }
# tmp import for espresso's sumcheck
espresso_subroutines = {git="https://github.com/EspressoSystems/hyperplonk", package="subroutines"}

+ 1
- 0
folding-schemes/src/frontend/mod.rs

@ -5,6 +5,7 @@ use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::fmt::Debug;
pub mod circom;
pub mod noir;
pub mod noname;
/// FCircuit defines the trait of the circuit of the F function, which is the one being folded (ie.

+ 299
- 0
folding-schemes/src/frontend/noir/mod.rs

@ -0,0 +1,299 @@
use std::collections::HashMap;
use crate::Error;
use super::FCircuit;
use acvm::{
acir::{
acir_field::GenericFieldElement,
circuit::{Circuit, Program},
native_types::{Witness as AcvmWitness, WitnessMap},
},
blackbox_solver::StubbedBlackBoxSolver,
pwg::ACVM,
};
use ark_ff::PrimeField;
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
use ark_relations::r1cs::ConstraintSynthesizer;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use arkworks_backend::{read_program_from_file, sonobe_bridge::AcirCircuitSonobe};
#[derive(Clone, Debug)]
pub struct NoirFCircuit<F: PrimeField> {
pub circuit: Circuit<GenericFieldElement<F>>,
pub state_len: usize,
pub external_inputs_len: usize,
}
impl<F: PrimeField> FCircuit<F> for NoirFCircuit<F> {
type Params = (String, usize, usize);
fn new(params: Self::Params) -> Result<Self, crate::Error> {
let (path, state_len, external_inputs_len) = params;
let program =
read_program_from_file(path).map_err(|ee| Error::Other(format!("{:?}", ee)))?;
let circuit: Circuit<GenericFieldElement<F>> = program.functions[0].clone();
let ivc_input_length = circuit.public_parameters.0.len();
let ivc_return_length = circuit.return_values.0.len();
if ivc_input_length != ivc_return_length {
return Err(Error::NotSameLength(
"IVC input: ".to_string(),
ivc_input_length,
"IVC output: ".to_string(),
ivc_return_length,
));
}
Ok(NoirFCircuit {
circuit,
state_len,
external_inputs_len,
})
}
fn state_len(&self) -> usize {
self.state_len
}
fn external_inputs_len(&self) -> usize {
self.external_inputs_len
}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
external_inputs: Vec<F>, // inputs that are not part of the state
) -> Result<Vec<F>, crate::Error> {
let mut acvm = ACVM::new(
&StubbedBlackBoxSolver,
&self.circuit.opcodes,
WitnessMap::new(),
&[],
&[],
);
self.circuit
.public_parameters
.0
.iter()
.map(|witness| {
let idx: usize = witness.as_usize();
let value = z_i[idx].to_string();
let witness = AcvmWitness(witness.witness_index());
let f = GenericFieldElement::<F>::try_from_str(&value)
.ok_or(SynthesisError::Unsatisfiable)?;
acvm.overwrite_witness(witness, f);
Ok(())
})
.collect::<Result<Vec<()>, SynthesisError>>()?;
// write witness values for external_inputs
self.circuit
.private_parameters
.iter()
.map(|witness| {
let idx = witness.as_usize() - z_i.len();
let value = external_inputs[idx].to_string();
let f = GenericFieldElement::<F>::try_from_str(&value)
.ok_or(SynthesisError::Unsatisfiable)?;
acvm.overwrite_witness(AcvmWitness(witness.witness_index()), f);
Ok(())
})
.collect::<Result<Vec<()>, SynthesisError>>()?;
let _ = acvm.solve();
let witness_map = acvm.finalize();
// get the z_{i+1} output state
let assigned_z_i1 = self
.circuit
.return_values
.0
.iter()
.map(|witness| {
let noir_field_element = witness_map
.get(witness)
.ok_or(SynthesisError::AssignmentMissing)?;
Ok(noir_field_element.into_repr())
})
.collect::<Result<Vec<F>, SynthesisError>>()?;
Ok(assigned_z_i1)
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
external_inputs: Vec<FpVar<F>>, // inputs that are not part of the state
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut acvm = ACVM::new(
&StubbedBlackBoxSolver,
&self.circuit.opcodes,
WitnessMap::new(),
&[],
&[],
);
let mut already_assigned_witness_values = HashMap::new();
self.circuit
.public_parameters
.0
.iter()
.map(|witness| {
let idx: usize = witness.as_usize();
let witness = AcvmWitness(witness.witness_index());
already_assigned_witness_values.insert(witness, &z_i[idx]);
let val = z_i[idx].value()?;
let value = if val == F::zero() {
"0".to_string()
} else {
val.to_string()
};
let f = GenericFieldElement::<F>::try_from_str(&value)
.ok_or(SynthesisError::Unsatisfiable)?;
acvm.overwrite_witness(witness, f);
Ok(())
})
.collect::<Result<Vec<()>, SynthesisError>>()?;
// write witness values for external_inputs
self.circuit
.private_parameters
.iter()
.map(|witness| {
let idx = witness.as_usize() - z_i.len();
let witness = AcvmWitness(witness.witness_index());
already_assigned_witness_values.insert(witness, &external_inputs[idx]);
let val = external_inputs[idx].value()?;
let value = if val == F::zero() {
"0".to_string()
} else {
val.to_string()
};
let f = GenericFieldElement::<F>::try_from_str(&value)
.ok_or(SynthesisError::Unsatisfiable)?;
acvm.overwrite_witness(witness, f);
Ok(())
})
.collect::<Result<Vec<()>, SynthesisError>>()?;
// computes the witness
let _ = acvm.solve();
let witness_map = acvm.finalize();
// get the z_{i+1} output state
let assigned_z_i1 = self
.circuit
.return_values
.0
.iter()
.map(|witness| {
let noir_field_element = witness_map
.get(witness)
.ok_or(SynthesisError::AssignmentMissing)?;
FpVar::<F>::new_witness(cs.clone(), || Ok(noir_field_element.into_repr()))
})
.collect::<Result<Vec<FpVar<F>>, SynthesisError>>()?;
// initialize circuit and set already assigned values
let mut acir_circuit = AcirCircuitSonobe::from((&self.circuit, witness_map));
acir_circuit.already_assigned_witnesses = already_assigned_witness_values;
acir_circuit.generate_constraints(cs.clone())?;
Ok(assigned_z_i1)
}
}
pub fn load_noir_circuit<F: PrimeField>(path: String) -> Circuit<GenericFieldElement<F>> {
let program: Program<GenericFieldElement<F>> = read_program_from_file(path).unwrap();
let circuit: Circuit<GenericFieldElement<F>> = program.functions[0].clone();
circuit
}
#[cfg(test)]
mod tests {
use crate::frontend::{noir::load_noir_circuit, FCircuit};
use ark_bn254::Fr;
use ark_r1cs_std::R1CSVar;
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar};
use ark_relations::r1cs::ConstraintSystem;
use std::env;
use crate::frontend::noir::NoirFCircuit;
#[test]
fn test_step_native() {
let cur_path = env::current_dir().unwrap();
let circuit_path = format!(
"{}/src/frontend/noir/test_folder/test_circuit/target/test_circuit.json",
cur_path.to_str().unwrap()
);
let circuit = load_noir_circuit(circuit_path);
let noirfcircuit = NoirFCircuit {
circuit,
state_len: 2,
external_inputs_len: 2,
};
let inputs = vec![Fr::from(2), Fr::from(5)];
let res = noirfcircuit.step_native(0, inputs.clone(), inputs);
assert!(res.is_ok());
assert_eq!(res.unwrap(), vec![Fr::from(4), Fr::from(25)]);
}
#[test]
fn test_step_constraints() {
let cs = ConstraintSystem::<Fr>::new_ref();
let cur_path = env::current_dir().unwrap();
let circuit_path = format!(
"{}/src/frontend/noir/test_folder/test_circuit/target/test_circuit.json",
cur_path.to_str().unwrap()
);
let circuit = load_noir_circuit(circuit_path);
let noirfcircuit = NoirFCircuit {
circuit,
state_len: 2,
external_inputs_len: 2,
};
let inputs = vec![Fr::from(2), Fr::from(5)];
let z_i = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs.clone())).unwrap();
let external_inputs = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs)).unwrap();
let output = noirfcircuit
.generate_step_constraints(cs.clone(), 0, z_i, external_inputs)
.unwrap();
assert_eq!(output[0].value().unwrap(), Fr::from(4));
assert_eq!(output[1].value().unwrap(), Fr::from(25));
}
#[test]
fn test_step_constraints_no_external_inputs() {
let cs = ConstraintSystem::<Fr>::new_ref();
let cur_path = env::current_dir().unwrap();
let circuit_path = format!(
"{}/src/frontend/noir/test_folder/test_no_external_inputs/target/test_no_external_inputs.json",
cur_path.to_str().unwrap()
);
let circuit = load_noir_circuit(circuit_path);
let noirfcircuit = NoirFCircuit {
circuit,
state_len: 2,
external_inputs_len: 0,
};
let inputs = vec![Fr::from(2), Fr::from(5)];
let z_i = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs.clone())).unwrap();
let external_inputs = vec![];
let output = noirfcircuit
.generate_step_constraints(cs.clone(), 0, z_i, external_inputs)
.unwrap();
assert_eq!(output[0].value().unwrap(), Fr::from(4));
assert_eq!(output[1].value().unwrap(), Fr::from(25));
}
}

+ 7
- 0
folding-schemes/src/frontend/noir/test_folder/compile.sh

@ -0,0 +1,7 @@
#!/bin/bash
CUR_DIR=$(pwd)
TEST_PATH="${CUR_DIR}/folding-schemes/src/frontend/noir/test_folder/"
for test_path in test_circuit test_mimc test_no_external_inputs; do
FOLDER="${TEST_PATH}${test_path}/"
cd ${FOLDER} && nargo compile && cd ${TEST_PATH}
done

+ 8
- 0
folding-schemes/src/frontend/noir/test_folder/test_circuit/Nargo.toml

@ -0,0 +1,8 @@
[package]
name = "test_circuit"
type = "bin"
authors = [""]
compiler_version = ">=0.30.0"
[dependencies]

+ 11
- 0
folding-schemes/src/frontend/noir/test_folder/test_circuit/src/main.nr

@ -0,0 +1,11 @@
fn main(public_inputs: pub [Field; 2], private_inputs: [Field; 2]) -> pub [Field; 2]{
let a_pub = public_inputs[0];
let b_pub = public_inputs[1];
let c_private = private_inputs[0];
let d_private = private_inputs[1];
let out_1 = a_pub * c_private;
let out_2 = b_pub * d_private;
[out_1, out_2]
}

+ 8
- 0
folding-schemes/src/frontend/noir/test_folder/test_mimc/Nargo.toml

@ -0,0 +1,8 @@
[package]
name = "test_mimc"
type = "bin"
authors = [""]
compiler_version = ">=0.30.0"
[dependencies]

+ 6
- 0
folding-schemes/src/frontend/noir/test_folder/test_mimc/src/main.nr

@ -0,0 +1,6 @@
use dep::std;
pub fn main(x: pub [Field; 1]) -> pub Field {
let hash = std::hash::mimc::mimc_bn254(x);
hash
}

+ 8
- 0
folding-schemes/src/frontend/noir/test_folder/test_no_external_inputs/Nargo.toml

@ -0,0 +1,8 @@
[package]
name = "test_no_external_inputs"
type = "bin"
authors = [""]
compiler_version = ">=0.30.0"
[dependencies]

+ 9
- 0
folding-schemes/src/frontend/noir/test_folder/test_no_external_inputs/src/main.nr

@ -0,0 +1,9 @@
fn main(public_inputs: pub [Field; 2]) -> pub [Field; 2]{
let a_pub = public_inputs[0];
let b_pub = public_inputs[1];
let out_1 = a_pub * a_pub;
let out_2 = b_pub * b_pub;
[out_1, out_2]
}

+ 5
- 0
solidity-verifiers/Cargo.toml

@ -52,3 +52,8 @@ path = "../examples/circom_full_flow.rs"
[[example]]
name = "noname_full_flow"
path = "../examples/noname_full_flow.rs"
[[example]]
name = "noir_full_flow"
path = "../examples/noir_full_flow.rs"

Loading…
Cancel
Save