* add HyperNova's NIMFS verifier circuit * update poseidon usage after rebasing to latest main branch changesmain
@ -1,10 +1,15 @@ |
|||
/// Circuits and gadgets shared across the different folding schemes.
|
|||
use ark_ec::CurveGroup;
|
|||
use ark_ec::{AffineRepr, CurveGroup};
|
|||
use ark_ff::Field;
|
|||
|
|||
pub mod nonnative;
|
|||
pub mod sum_check;
|
|||
pub mod utils;
|
|||
|
|||
// CF represents the constraints field
|
|||
pub type CF<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
|
|||
/// CF1 represents the ConstraintField used for the main folding circuit which is over E1::Fr, where
|
|||
/// E1 is the main curve where we do the folding.
|
|||
pub type CF1<C> = <<C as CurveGroup>::Affine as AffineRepr>::ScalarField;
|
|||
/// CF2 represents the ConstraintField used for the CycleFold circuit which is over E2::Fr=E1::Fq,
|
|||
/// where E2 is the auxiliary curve (from [CycleFold](https://eprint.iacr.org/2023/1192.pdf)
|
|||
/// approach) where we check the folding of the commitments (elliptic curve points).
|
|||
pub type CF2<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
|
@ -1,169 +0,0 @@ |
|||
/// Implementation of [HyperNova](https://eprint.iacr.org/2023/573.pdf) NIMFS verifier circuit
|
|||
use ark_ff::PrimeField;
|
|||
use ark_r1cs_std::{
|
|||
alloc::AllocVar,
|
|||
fields::{fp::FpVar, FieldVar},
|
|||
};
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|||
|
|||
use crate::ccs::CCS;
|
|||
use crate::folding::circuits::utils::EqEvalGadget;
|
|||
|
|||
/// computes c from the step 5 in section 5 of HyperNova, adapted to multiple LCCCS & CCCS
|
|||
/// instances:
|
|||
/// $$
|
|||
/// c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right)
|
|||
/// + \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i}
|
|||
/// \theta_{k,j} \right)
|
|||
/// $$
|
|||
#[allow(dead_code)] // TMP while the other circuits are not ready
|
|||
#[allow(clippy::too_many_arguments)]
|
|||
fn compute_c_gadget<F: PrimeField>(
|
|||
cs: ConstraintSystemRef<F>,
|
|||
ccs: &CCS<F>,
|
|||
vec_sigmas: Vec<Vec<FpVar<F>>>,
|
|||
vec_thetas: Vec<Vec<FpVar<F>>>,
|
|||
gamma: FpVar<F>,
|
|||
beta: Vec<FpVar<F>>,
|
|||
vec_r_x: Vec<Vec<FpVar<F>>>,
|
|||
vec_r_x_prime: Vec<FpVar<F>>,
|
|||
) -> Result<FpVar<F>, SynthesisError> {
|
|||
let mut e_lcccs = Vec::new();
|
|||
for r_x in vec_r_x.iter() {
|
|||
e_lcccs.push(EqEvalGadget::eq_eval(r_x, &vec_r_x_prime)?);
|
|||
}
|
|||
|
|||
let mut c = FpVar::<F>::zero();
|
|||
let mut current_gamma = FpVar::<F>::one();
|
|||
for i in 0..vec_sigmas.len() {
|
|||
for j in 0..ccs.t {
|
|||
c += current_gamma.clone() * e_lcccs[i].clone() * vec_sigmas[i][j].clone();
|
|||
current_gamma *= gamma.clone();
|
|||
}
|
|||
}
|
|||
|
|||
let ccs_c = Vec::<FpVar<F>>::new_constant(cs.clone(), ccs.c.clone())?;
|
|||
let e_k = EqEvalGadget::eq_eval(&beta, &vec_r_x_prime)?;
|
|||
#[allow(clippy::needless_range_loop)]
|
|||
for k in 0..vec_thetas.len() {
|
|||
let mut sum = FpVar::<F>::zero();
|
|||
for i in 0..ccs.q {
|
|||
let mut prod = FpVar::<F>::one();
|
|||
for j in ccs.S[i].clone() {
|
|||
prod *= vec_thetas[k][j].clone();
|
|||
}
|
|||
sum += ccs_c[i].clone() * prod;
|
|||
}
|
|||
c += current_gamma.clone() * e_k.clone() * sum;
|
|||
current_gamma *= gamma.clone();
|
|||
}
|
|||
Ok(c)
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use ark_pallas::{Fr, Projective};
|
|||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_std::{test_rng, UniformRand};
|
|||
|
|||
use super::*;
|
|||
use crate::{
|
|||
ccs::{
|
|||
tests::{get_test_ccs, get_test_z},
|
|||
CCS,
|
|||
},
|
|||
commitment::{pedersen::Pedersen, CommitmentScheme},
|
|||
folding::hypernova::utils::{compute_c, compute_sigmas_and_thetas},
|
|||
};
|
|||
|
|||
#[test]
|
|||
pub fn test_compute_c_gadget() {
|
|||
// number of LCCCS & CCCS instances to fold in a single step
|
|||
let mu = 32;
|
|||
let nu = 42;
|
|||
|
|||
let mut z_lcccs = Vec::new();
|
|||
for i in 0..mu {
|
|||
let z = get_test_z(i + 3);
|
|||
z_lcccs.push(z);
|
|||
}
|
|||
let mut z_cccs = Vec::new();
|
|||
for i in 0..nu {
|
|||
let z = get_test_z(i + 3);
|
|||
z_cccs.push(z);
|
|||
}
|
|||
|
|||
let ccs: CCS<Fr> = get_test_ccs();
|
|||
|
|||
let mut rng = test_rng();
|
|||
let gamma: Fr = Fr::rand(&mut rng);
|
|||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
|
|||
let (pedersen_params, _) =
|
|||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
|||
|
|||
// Create the LCCCS instances out of z_lcccs
|
|||
let mut lcccs_instances = Vec::new();
|
|||
for z_i in z_lcccs.iter() {
|
|||
let (inst, _) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
lcccs_instances.push(inst);
|
|||
}
|
|||
// Create the CCCS instance out of z_cccs
|
|||
let mut cccs_instances = Vec::new();
|
|||
for z_i in z_cccs.iter() {
|
|||
let (inst, _) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
cccs_instances.push(inst);
|
|||
}
|
|||
|
|||
let sigmas_thetas = compute_sigmas_and_thetas(&ccs, &z_lcccs, &z_cccs, &r_x_prime);
|
|||
|
|||
let expected_c = compute_c(
|
|||
&ccs,
|
|||
&sigmas_thetas,
|
|||
gamma,
|
|||
&beta,
|
|||
&lcccs_instances
|
|||
.iter()
|
|||
.map(|lcccs| lcccs.r_x.clone())
|
|||
.collect(),
|
|||
&r_x_prime,
|
|||
);
|
|||
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let mut vec_sigmas = Vec::new();
|
|||
let mut vec_thetas = Vec::new();
|
|||
for sigmas in sigmas_thetas.0 {
|
|||
vec_sigmas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap());
|
|||
}
|
|||
for thetas in sigmas_thetas.1 {
|
|||
vec_thetas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(thetas.clone())).unwrap());
|
|||
}
|
|||
let vec_r_x: Vec<Vec<FpVar<Fr>>> = lcccs_instances
|
|||
.iter()
|
|||
.map(|lcccs| {
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(lcccs.r_x.clone())).unwrap()
|
|||
})
|
|||
.collect();
|
|||
let vec_r_x_prime =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(r_x_prime.clone())).unwrap();
|
|||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
|||
let beta_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(beta.clone())).unwrap();
|
|||
let computed_c = compute_c_gadget(
|
|||
cs.clone(),
|
|||
&ccs,
|
|||
vec_sigmas,
|
|||
vec_thetas,
|
|||
gamma_var,
|
|||
beta_var,
|
|||
vec_r_x,
|
|||
vec_r_x_prime,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
assert_eq!(expected_c, computed_c.value().unwrap());
|
|||
}
|
|||
}
|
@ -0,0 +1,567 @@ |
|||
/// Implementation of [HyperNova](https://eprint.iacr.org/2023/573.pdf) NIMFS verifier circuit
|
|||
use ark_crypto_primitives::sponge::Absorb;
|
|||
use ark_ec::{CurveGroup, Group};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_r1cs_std::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
eq::EqGadget,
|
|||
fields::{fp::FpVar, FieldVar},
|
|||
};
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
|
|||
use core::{borrow::Borrow, marker::PhantomData};
|
|||
|
|||
use super::{cccs::CCCS, lcccs::LCCCS, nimfs::Proof};
|
|||
use crate::folding::circuits::{
|
|||
nonnative::affine::NonNativeAffineVar,
|
|||
sum_check::{IOPProofVar, SumCheckVerifierGadget, VPAuxInfoVar},
|
|||
utils::EqEvalGadget,
|
|||
CF1,
|
|||
};
|
|||
use crate::utils::virtual_polynomial::VPAuxInfo;
|
|||
use crate::{ccs::CCS, transcript::TranscriptVar};
|
|||
|
|||
/// Committed CCS instance
|
|||
#[derive(Debug, Clone)]
|
|||
pub struct CCCSVar<C: CurveGroup>
|
|||
where
|
|||
<C as CurveGroup>::BaseField: PrimeField,
|
|||
{
|
|||
// Commitment to witness
|
|||
pub C: NonNativeAffineVar<C>,
|
|||
// Public input/output
|
|||
pub x: Vec<FpVar<CF1<C>>>,
|
|||
}
|
|||
impl<C> AllocVar<CCCS<C>, CF1<C>> for CCCSVar<C>
|
|||
where
|
|||
C: CurveGroup,
|
|||
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
|
|||
{
|
|||
fn new_variable<T: Borrow<CCCS<C>>>(
|
|||
cs: impl Into<Namespace<CF1<C>>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
f().and_then(|val| {
|
|||
let cs = cs.into();
|
|||
|
|||
let C = NonNativeAffineVar::<C>::new_variable(cs.clone(), || Ok(val.borrow().C), mode)?;
|
|||
let x: Vec<FpVar<C::ScalarField>> =
|
|||
Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
|
|||
|
|||
Ok(Self { C, x })
|
|||
})
|
|||
}
|
|||
}
|
|||
|
|||
/// Linearized Committed CCS instance
|
|||
#[derive(Debug, Clone)]
|
|||
pub struct LCCCSVar<C: CurveGroup>
|
|||
where
|
|||
<C as CurveGroup>::BaseField: PrimeField,
|
|||
{
|
|||
// Commitment to witness
|
|||
pub C: NonNativeAffineVar<C>,
|
|||
// Relaxation factor of z for folded LCCCS
|
|||
pub u: FpVar<CF1<C>>,
|
|||
// Public input/output
|
|||
pub x: Vec<FpVar<CF1<C>>>,
|
|||
// Random evaluation point for the v_i
|
|||
pub r_x: Vec<FpVar<CF1<C>>>,
|
|||
// Vector of v_i
|
|||
pub v: Vec<FpVar<CF1<C>>>,
|
|||
}
|
|||
impl<C> AllocVar<LCCCS<C>, CF1<C>> for LCCCSVar<C>
|
|||
where
|
|||
C: CurveGroup,
|
|||
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
|
|||
{
|
|||
fn new_variable<T: Borrow<LCCCS<C>>>(
|
|||
cs: impl Into<Namespace<CF1<C>>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
f().and_then(|val| {
|
|||
let cs = cs.into();
|
|||
|
|||
let C = NonNativeAffineVar::<C>::new_variable(cs.clone(), || Ok(val.borrow().C), mode)?;
|
|||
let u = FpVar::<C::ScalarField>::new_variable(cs.clone(), || Ok(val.borrow().u), mode)?;
|
|||
let x: Vec<FpVar<C::ScalarField>> =
|
|||
Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
|
|||
let r_x: Vec<FpVar<C::ScalarField>> =
|
|||
Vec::new_variable(cs.clone(), || Ok(val.borrow().r_x.clone()), mode)?;
|
|||
let v: Vec<FpVar<C::ScalarField>> =
|
|||
Vec::new_variable(cs.clone(), || Ok(val.borrow().v.clone()), mode)?;
|
|||
|
|||
Ok(Self { C, u, x, r_x, v })
|
|||
})
|
|||
}
|
|||
}
|
|||
|
|||
/// ProofVar defines a multifolding proof
|
|||
#[derive(Debug)]
|
|||
pub struct ProofVar<C: CurveGroup> {
|
|||
pub sc_proof: IOPProofVar<C>,
|
|||
#[allow(clippy::type_complexity)]
|
|||
pub sigmas_thetas: (Vec<Vec<FpVar<CF1<C>>>>, Vec<Vec<FpVar<CF1<C>>>>),
|
|||
}
|
|||
impl<C> AllocVar<Proof<C>, CF1<C>> for ProofVar<C>
|
|||
where
|
|||
C: CurveGroup,
|
|||
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
|
|||
<C as Group>::ScalarField: Absorb,
|
|||
{
|
|||
fn new_variable<T: Borrow<Proof<C>>>(
|
|||
cs: impl Into<Namespace<CF1<C>>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
f().and_then(|val| {
|
|||
let cs = cs.into();
|
|||
|
|||
let sc_proof = IOPProofVar::<C>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(val.borrow().sc_proof.clone()),
|
|||
mode,
|
|||
)?;
|
|||
let sigmas: Vec<Vec<FpVar<CF1<C>>>> = val
|
|||
.borrow()
|
|||
.sigmas_thetas
|
|||
.0
|
|||
.iter()
|
|||
.map(|sigmas_i| Vec::new_variable(cs.clone(), || Ok(sigmas_i.clone()), mode))
|
|||
.collect::<Result<Vec<Vec<FpVar<CF1<C>>>>, SynthesisError>>()?;
|
|||
let thetas: Vec<Vec<FpVar<CF1<C>>>> = val
|
|||
.borrow()
|
|||
.sigmas_thetas
|
|||
.1
|
|||
.iter()
|
|||
.map(|thetas_i| Vec::new_variable(cs.clone(), || Ok(thetas_i.clone()), mode))
|
|||
.collect::<Result<Vec<Vec<FpVar<CF1<C>>>>, SynthesisError>>()?;
|
|||
|
|||
Ok(Self {
|
|||
sc_proof,
|
|||
sigmas_thetas: (sigmas.clone(), thetas.clone()),
|
|||
})
|
|||
})
|
|||
}
|
|||
}
|
|||
|
|||
pub struct NIMFSGadget<C: CurveGroup> {
|
|||
_c: PhantomData<C>,
|
|||
}
|
|||
impl<C: CurveGroup> NIMFSGadget<C>
|
|||
where
|
|||
<C as CurveGroup>::BaseField: PrimeField,
|
|||
{
|
|||
pub fn verify(
|
|||
cs: ConstraintSystemRef<CF1<C>>,
|
|||
// only used the CCS params, not the matrices
|
|||
ccs: &CCS<C::ScalarField>,
|
|||
mut transcript: impl TranscriptVar<C::ScalarField>,
|
|||
|
|||
running_instances: &[LCCCSVar<C>],
|
|||
new_instances: &[CCCSVar<C>],
|
|||
proof: ProofVar<C>,
|
|||
) -> Result<LCCCSVar<C>, SynthesisError> {
|
|||
// get the challenges
|
|||
let gamma_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"gamma");
|
|||
let gamma_scalar: FpVar<CF1<C>> =
|
|||
FpVar::<CF1<C>>::new_constant(cs.clone(), gamma_scalar_raw)?;
|
|||
transcript.absorb(gamma_scalar)?;
|
|||
let gamma: FpVar<CF1<C>> = transcript.get_challenge()?;
|
|||
|
|||
let beta_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"beta");
|
|||
let beta_scalar: FpVar<CF1<C>> =
|
|||
FpVar::<CF1<C>>::new_constant(cs.clone(), beta_scalar_raw)?;
|
|||
transcript.absorb(beta_scalar)?;
|
|||
let beta: Vec<FpVar<CF1<C>>> = transcript.get_challenges(ccs.s)?;
|
|||
|
|||
let vp_aux_info_raw = VPAuxInfo::<C::ScalarField> {
|
|||
max_degree: ccs.d + 1,
|
|||
num_variables: ccs.s,
|
|||
phantom: PhantomData::<C::ScalarField>,
|
|||
};
|
|||
let vp_aux_info = VPAuxInfoVar::<CF1<C>>::new_witness(cs.clone(), || Ok(vp_aux_info_raw))?;
|
|||
|
|||
// sumcheck
|
|||
// first, compute the expected sumcheck sum: \sum gamma^j v_j
|
|||
let mut sum_v_j_gamma = FpVar::<CF1<C>>::zero();
|
|||
let mut gamma_j = FpVar::<C::ScalarField>::one();
|
|||
for running_instance in running_instances.iter() {
|
|||
for j in 0..running_instance.v.len() {
|
|||
gamma_j *= gamma.clone();
|
|||
sum_v_j_gamma += running_instance.v[j].clone() * gamma_j.clone();
|
|||
}
|
|||
}
|
|||
|
|||
// verify the interactive part of the sumcheck
|
|||
let (e_vars, r_vars) =
|
|||
SumCheckVerifierGadget::<C>::verify(&proof.sc_proof, &vp_aux_info, &mut transcript)?;
|
|||
|
|||
// extract the randomness from the sumcheck
|
|||
let r_x_prime = r_vars.clone();
|
|||
|
|||
// verify the claim c
|
|||
let computed_c = compute_c_gadget(
|
|||
cs.clone(),
|
|||
ccs,
|
|||
proof.sigmas_thetas.0.clone(), // sigmas
|
|||
proof.sigmas_thetas.1.clone(), // thetas
|
|||
gamma,
|
|||
beta,
|
|||
running_instances
|
|||
.iter()
|
|||
.map(|lcccs| lcccs.r_x.clone())
|
|||
.collect(),
|
|||
r_x_prime.clone(),
|
|||
)?;
|
|||
computed_c.enforce_equal(&e_vars[e_vars.len() - 1])?;
|
|||
|
|||
// get the folding challenge
|
|||
let rho_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"rho");
|
|||
let rho_scalar: FpVar<CF1<C>> = FpVar::<CF1<C>>::new_constant(cs.clone(), rho_scalar_raw)?;
|
|||
transcript.absorb(rho_scalar)?;
|
|||
let rho: FpVar<CF1<C>> = transcript.get_challenge()?;
|
|||
|
|||
// return the folded instance
|
|||
Self::fold(
|
|||
running_instances,
|
|||
new_instances,
|
|||
proof.sigmas_thetas,
|
|||
r_x_prime,
|
|||
rho,
|
|||
)
|
|||
}
|
|||
|
|||
#[allow(clippy::type_complexity)]
|
|||
fn fold(
|
|||
lcccs: &[LCCCSVar<C>],
|
|||
cccs: &[CCCSVar<C>],
|
|||
sigmas_thetas: (Vec<Vec<FpVar<CF1<C>>>>, Vec<Vec<FpVar<CF1<C>>>>),
|
|||
r_x_prime: Vec<FpVar<CF1<C>>>,
|
|||
rho: FpVar<CF1<C>>,
|
|||
) -> Result<LCCCSVar<C>, SynthesisError> {
|
|||
let (sigmas, thetas) = (sigmas_thetas.0.clone(), sigmas_thetas.1.clone());
|
|||
let mut u_folded: FpVar<CF1<C>> = FpVar::zero();
|
|||
let mut x_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); lcccs[0].x.len()];
|
|||
let mut v_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); sigmas[0].len()];
|
|||
|
|||
let mut rho_i = FpVar::one();
|
|||
for i in 0..(lcccs.len() + cccs.len()) {
|
|||
let u: FpVar<CF1<C>>;
|
|||
let x: Vec<FpVar<CF1<C>>>;
|
|||
let v: Vec<FpVar<CF1<C>>>;
|
|||
if i < lcccs.len() {
|
|||
u = lcccs[i].u.clone();
|
|||
x = lcccs[i].x.clone();
|
|||
v = sigmas[i].clone();
|
|||
} else {
|
|||
u = FpVar::one();
|
|||
x = cccs[i - lcccs.len()].x.clone();
|
|||
v = thetas[i - lcccs.len()].clone();
|
|||
}
|
|||
|
|||
u_folded += rho_i.clone() * u;
|
|||
x_folded = x_folded
|
|||
.iter()
|
|||
.zip(
|
|||
x.iter()
|
|||
.map(|x_i| x_i * rho_i.clone())
|
|||
.collect::<Vec<FpVar<CF1<C>>>>(),
|
|||
)
|
|||
.map(|(a_i, b_i)| a_i + b_i)
|
|||
.collect();
|
|||
|
|||
v_folded = v_folded
|
|||
.iter()
|
|||
.zip(
|
|||
v.iter()
|
|||
.map(|x_i| x_i * rho_i.clone())
|
|||
.collect::<Vec<FpVar<CF1<C>>>>(),
|
|||
)
|
|||
.map(|(a_i, b_i)| a_i + b_i)
|
|||
.collect();
|
|||
|
|||
rho_i *= rho.clone();
|
|||
}
|
|||
|
|||
Ok(LCCCSVar::<C> {
|
|||
C: lcccs[0].C.clone(), // WIP this will come from the cyclefold circuit
|
|||
u: u_folded,
|
|||
x: x_folded,
|
|||
r_x: r_x_prime,
|
|||
v: v_folded,
|
|||
})
|
|||
}
|
|||
}
|
|||
|
|||
/// computes c from the step 5 in section 5 of HyperNova, adapted to multiple LCCCS & CCCS
|
|||
/// instances:
|
|||
/// $$
|
|||
/// c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right)
|
|||
/// + \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i}
|
|||
/// \theta_{k,j} \right)
|
|||
/// $$
|
|||
#[allow(clippy::too_many_arguments)]
|
|||
fn compute_c_gadget<F: PrimeField>(
|
|||
cs: ConstraintSystemRef<F>,
|
|||
ccs: &CCS<F>,
|
|||
vec_sigmas: Vec<Vec<FpVar<F>>>,
|
|||
vec_thetas: Vec<Vec<FpVar<F>>>,
|
|||
gamma: FpVar<F>,
|
|||
beta: Vec<FpVar<F>>,
|
|||
vec_r_x: Vec<Vec<FpVar<F>>>,
|
|||
vec_r_x_prime: Vec<FpVar<F>>,
|
|||
) -> Result<FpVar<F>, SynthesisError> {
|
|||
let mut e_lcccs = Vec::new();
|
|||
for r_x in vec_r_x.iter() {
|
|||
e_lcccs.push(EqEvalGadget::eq_eval(r_x, &vec_r_x_prime)?);
|
|||
}
|
|||
|
|||
let mut c = FpVar::<F>::zero();
|
|||
let mut current_gamma = FpVar::<F>::one();
|
|||
for i in 0..vec_sigmas.len() {
|
|||
for j in 0..ccs.t {
|
|||
c += current_gamma.clone() * e_lcccs[i].clone() * vec_sigmas[i][j].clone();
|
|||
current_gamma *= gamma.clone();
|
|||
}
|
|||
}
|
|||
|
|||
let ccs_c = Vec::<FpVar<F>>::new_constant(cs.clone(), ccs.c.clone())?;
|
|||
let e_k = EqEvalGadget::eq_eval(&beta, &vec_r_x_prime)?;
|
|||
#[allow(clippy::needless_range_loop)]
|
|||
for k in 0..vec_thetas.len() {
|
|||
let mut sum = FpVar::<F>::zero();
|
|||
for i in 0..ccs.q {
|
|||
let mut prod = FpVar::<F>::one();
|
|||
for j in ccs.S[i].clone() {
|
|||
prod *= vec_thetas[k][j].clone();
|
|||
}
|
|||
sum += ccs_c[i].clone() * prod;
|
|||
}
|
|||
c += current_gamma.clone() * e_k.clone() * sum;
|
|||
current_gamma *= gamma.clone();
|
|||
}
|
|||
Ok(c)
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use ark_pallas::{Fr, Projective};
|
|||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_std::{test_rng, UniformRand};
|
|||
|
|||
use super::*;
|
|||
use crate::{
|
|||
ccs::{
|
|||
tests::{get_test_ccs, get_test_z},
|
|||
CCS,
|
|||
},
|
|||
commitment::{pedersen::Pedersen, CommitmentScheme},
|
|||
folding::hypernova::{
|
|||
nimfs::NIMFS,
|
|||
utils::{compute_c, compute_sigmas_and_thetas},
|
|||
},
|
|||
transcript::{
|
|||
poseidon::{poseidon_canonical_config, PoseidonTranscript, PoseidonTranscriptVar},
|
|||
Transcript,
|
|||
},
|
|||
};
|
|||
|
|||
#[test]
|
|||
pub fn test_compute_c_gadget() {
|
|||
// number of LCCCS & CCCS instances to fold in a single step
|
|||
let mu = 32;
|
|||
let nu = 42;
|
|||
|
|||
let mut z_lcccs = Vec::new();
|
|||
for i in 0..mu {
|
|||
let z = get_test_z(i + 3);
|
|||
z_lcccs.push(z);
|
|||
}
|
|||
let mut z_cccs = Vec::new();
|
|||
for i in 0..nu {
|
|||
let z = get_test_z(i + 3);
|
|||
z_cccs.push(z);
|
|||
}
|
|||
|
|||
let ccs: CCS<Fr> = get_test_ccs();
|
|||
|
|||
let mut rng = test_rng();
|
|||
let gamma: Fr = Fr::rand(&mut rng);
|
|||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
|
|||
let (pedersen_params, _) =
|
|||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
|||
|
|||
// Create the LCCCS instances out of z_lcccs
|
|||
let mut lcccs_instances = Vec::new();
|
|||
for z_i in z_lcccs.iter() {
|
|||
let (inst, _) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
lcccs_instances.push(inst);
|
|||
}
|
|||
// Create the CCCS instance out of z_cccs
|
|||
let mut cccs_instances = Vec::new();
|
|||
for z_i in z_cccs.iter() {
|
|||
let (inst, _) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
cccs_instances.push(inst);
|
|||
}
|
|||
|
|||
let sigmas_thetas = compute_sigmas_and_thetas(&ccs, &z_lcccs, &z_cccs, &r_x_prime);
|
|||
|
|||
let expected_c = compute_c(
|
|||
&ccs,
|
|||
&sigmas_thetas,
|
|||
gamma,
|
|||
&beta,
|
|||
&lcccs_instances
|
|||
.iter()
|
|||
.map(|lcccs| lcccs.r_x.clone())
|
|||
.collect(),
|
|||
&r_x_prime,
|
|||
);
|
|||
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let mut vec_sigmas = Vec::new();
|
|||
let mut vec_thetas = Vec::new();
|
|||
for sigmas in sigmas_thetas.0 {
|
|||
vec_sigmas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap());
|
|||
}
|
|||
for thetas in sigmas_thetas.1 {
|
|||
vec_thetas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(thetas.clone())).unwrap());
|
|||
}
|
|||
let vec_r_x: Vec<Vec<FpVar<Fr>>> = lcccs_instances
|
|||
.iter()
|
|||
.map(|lcccs| {
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(lcccs.r_x.clone())).unwrap()
|
|||
})
|
|||
.collect();
|
|||
let vec_r_x_prime =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(r_x_prime.clone())).unwrap();
|
|||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
|||
let beta_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(beta.clone())).unwrap();
|
|||
|
|||
let computed_c = compute_c_gadget(
|
|||
cs.clone(),
|
|||
&ccs,
|
|||
vec_sigmas,
|
|||
vec_thetas,
|
|||
gamma_var,
|
|||
beta_var,
|
|||
vec_r_x,
|
|||
vec_r_x_prime,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
assert_eq!(expected_c, computed_c.value().unwrap());
|
|||
}
|
|||
|
|||
/// Test that generates mu>1 and nu>1 instances, and folds them in a single multifolding step,
|
|||
/// to verify the folding in the NIMFSGadget circuit
|
|||
#[test]
|
|||
pub fn test_nimfs_gadget_verify() {
|
|||
let mut rng = test_rng();
|
|||
|
|||
// Create a basic CCS circuit
|
|||
let ccs = get_test_ccs::<Fr>();
|
|||
let (pedersen_params, _) =
|
|||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
|||
|
|||
let mu = 32;
|
|||
let nu = 42;
|
|||
|
|||
// Generate a mu LCCCS & nu CCCS satisfying witness
|
|||
let mut z_lcccs = Vec::new();
|
|||
for i in 0..mu {
|
|||
let z = get_test_z(i + 3);
|
|||
z_lcccs.push(z);
|
|||
}
|
|||
let mut z_cccs = Vec::new();
|
|||
for i in 0..nu {
|
|||
let z = get_test_z(nu + i + 3);
|
|||
z_cccs.push(z);
|
|||
}
|
|||
|
|||
// Create the LCCCS instances out of z_lcccs
|
|||
let mut lcccs_instances = Vec::new();
|
|||
let mut w_lcccs = Vec::new();
|
|||
for z_i in z_lcccs.iter() {
|
|||
let (running_instance, w) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
lcccs_instances.push(running_instance);
|
|||
w_lcccs.push(w);
|
|||
}
|
|||
// Create the CCCS instance out of z_cccs
|
|||
let mut cccs_instances = Vec::new();
|
|||
let mut w_cccs = Vec::new();
|
|||
for z_i in z_cccs.iter() {
|
|||
let (new_instance, w) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
|||
cccs_instances.push(new_instance);
|
|||
w_cccs.push(w);
|
|||
}
|
|||
|
|||
// Prover's transcript
|
|||
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|||
let mut transcript_p: PoseidonTranscript<Projective> =
|
|||
PoseidonTranscript::<Projective>::new(&poseidon_config);
|
|||
|
|||
// Run the prover side of the multifolding
|
|||
let (proof, folded_lcccs, folded_witness) =
|
|||
NIMFS::<Projective, PoseidonTranscript<Projective>>::prove(
|
|||
&mut transcript_p,
|
|||
&ccs,
|
|||
&lcccs_instances,
|
|||
&cccs_instances,
|
|||
&w_lcccs,
|
|||
&w_cccs,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
// Verifier's transcript
|
|||
let mut transcript_v: PoseidonTranscript<Projective> =
|
|||
PoseidonTranscript::<Projective>::new(&poseidon_config);
|
|||
|
|||
// Run the verifier side of the multifolding
|
|||
let folded_lcccs_v = NIMFS::<Projective, PoseidonTranscript<Projective>>::verify(
|
|||
&mut transcript_v,
|
|||
&ccs,
|
|||
&lcccs_instances,
|
|||
&cccs_instances,
|
|||
proof.clone(),
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
|||
|
|||
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
|
|||
folded_lcccs
|
|||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
|||
.unwrap();
|
|||
|
|||
// allocate circuit inputs
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let lcccs_instancesVar =
|
|||
Vec::<LCCCSVar<Projective>>::new_witness(cs.clone(), || Ok(lcccs_instances.clone()))
|
|||
.unwrap();
|
|||
let cccs_instancesVar =
|
|||
Vec::<CCCSVar<Projective>>::new_witness(cs.clone(), || Ok(cccs_instances.clone()))
|
|||
.unwrap();
|
|||
let proofVar =
|
|||
ProofVar::<Projective>::new_witness(cs.clone(), || Ok(proof.clone())).unwrap();
|
|||
let transcriptVar = PoseidonTranscriptVar::<Fr>::new(cs.clone(), &poseidon_config);
|
|||
|
|||
let folded_lcccsVar = NIMFSGadget::<Projective>::verify(
|
|||
cs.clone(),
|
|||
&ccs,
|
|||
transcriptVar,
|
|||
&lcccs_instancesVar,
|
|||
&cccs_instancesVar,
|
|||
proofVar,
|
|||
)
|
|||
.unwrap();
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(folded_lcccsVar.u.value().unwrap(), folded_lcccs.u);
|
|||
}
|
|||
}
|
@ -1,6 +1,6 @@ |
|||
/// Implements the scheme described in [HyperNova](https://eprint.iacr.org/2023/573.pdf)
|
|||
pub mod cccs;
|
|||
pub mod circuit;
|
|||
pub mod circuits;
|
|||
pub mod lcccs;
|
|||
pub mod nimfs;
|
|||
pub mod utils;
|