Browse Source

Implemented Mova folding scheme (#161)

* Adding Mova

Co-Authored-By: Togzhan Barakbayeva <45527668+btogzhan2000@users.noreply.github.com>
Co-Authored-By: Ilia Vlasov <5365540+elijahvlasov@users.noreply.github.com>
Co-Authored-By: matthew-a-klein <96837318+matthew-a-klein@users.noreply.github.com>

* Fix CLI

* Updated from main

* Solution to stop the CLI from complaining about deadcode

PR comment

Co-authored-by: arnaucube <root@arnaucube.com>

* Requested changes and update from main

* Refactor NIFSTrait & port Mova impl to it

* refactor NIFSTrait interface to fit Nova variants (Nova,Mova,Ova)

  Refactor NIFSTrait interface to fit Nova variants (Nova,Mova,Ova). The relevant
  change is instead of passing the challenge as input, now it passes the
  transcript and computes the challenges internally (Nova & Ova still compute a
  single challenge, but Mova computes multiple while absorbing at different
  steps).

* port Mova impl to the NIFSTrait

* remove unnecessary wrappers in the nova/zk.rs

* remove Nova NIFS methods that are no longer needed after the refactor

* put together the different NIFS implementations (Nova, Mova, Ova) so
  that they can interchanged at usage.

The idea is that Nova and its variants (Ova & Mova) share most of the
logic for the circuits & IVC & Deciders, so with the abstracted NIFS
interface we will be able to reuse most of the already existing Nova
code for having the Mova & Ova circuits, IVC, and Decider.

* adapt Nova's DeciderEth prepare_calldata & update examples to it

* small update to fix solidity tests

---------

Co-authored-by: Togzhan Barakbayeva <45527668+btogzhan2000@users.noreply.github.com>
Co-authored-by: Ilia Vlasov <5365540+elijahvlasov@users.noreply.github.com>
Co-authored-by: matthew-a-klein <96837318+matthew-a-klein@users.noreply.github.com>
Co-authored-by: arnaucube <root@arnaucube.com>
Co-authored-by: arnaucube <git@arnaucube.com>
main
Nick Dimitriou 1 month ago
committed by GitHub
parent
commit
6d8f297f11
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
19 changed files with 1239 additions and 485 deletions
  1. +2
    -0
      examples/circom_full_flow.rs
  2. +2
    -0
      examples/full_flow.rs
  3. +2
    -0
      examples/noir_full_flow.rs
  4. +2
    -0
      examples/noname_full_flow.rs
  5. +97
    -17
      folding-schemes/src/folding/circuits/cyclefold.rs
  6. +13
    -4
      folding-schemes/src/folding/nova/circuits.rs
  7. +18
    -7
      folding-schemes/src/folding/nova/decider.rs
  8. +6
    -14
      folding-schemes/src/folding/nova/decider_circuits.rs
  9. +38
    -9
      folding-schemes/src/folding/nova/decider_eth.rs
  10. +5
    -15
      folding-schemes/src/folding/nova/decider_eth_circuit.rs
  11. +30
    -52
      folding-schemes/src/folding/nova/mod.rs
  12. +152
    -0
      folding-schemes/src/folding/nova/nifs/mod.rs
  13. +411
    -0
      folding-schemes/src/folding/nova/nifs/mova.rs
  14. +84
    -168
      folding-schemes/src/folding/nova/nifs/nova.rs
  15. +58
    -37
      folding-schemes/src/folding/nova/nifs/ova.rs
  16. +282
    -0
      folding-schemes/src/folding/nova/nifs/pointvsline.rs
  17. +0
    -73
      folding-schemes/src/folding/nova/traits.rs
  18. +35
    -89
      folding-schemes/src/folding/nova/zk.rs
  19. +2
    -0
      solidity-verifiers/src/verifiers/nova_cyclefold.rs

+ 2
- 0
examples/circom_full_flow.rs

@ -83,6 +83,7 @@ fn main() {
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let pp_hash = nova_params.1.pp_hash().unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0).unwrap();
@ -130,6 +131,7 @@ fn main() {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

+ 2
- 0
examples/full_flow.rs

@ -101,6 +101,7 @@ fn main() {
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config.clone(), f_circuit);
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let pp_hash = nova_params.1.pp_hash().unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit, z_0).unwrap();
@ -138,6 +139,7 @@ fn main() {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

+ 2
- 0
examples/noir_full_flow.rs

@ -72,6 +72,7 @@ fn main() {
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let pp_hash = nova_params.1.pp_hash().unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0).unwrap();
@ -117,6 +118,7 @@ fn main() {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

+ 2
- 0
examples/noname_full_flow.rs

@ -85,6 +85,7 @@ fn main() {
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let pp_hash = nova_params.1.pp_hash().unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0).unwrap();
@ -132,6 +133,7 @@ fn main() {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

+ 97
- 17
folding-schemes/src/folding/circuits/cyclefold.rs

@ -24,9 +24,10 @@ use super::{nonnative::uint::NonNativeUintVar, CF1, CF2};
use crate::arith::r1cs::{extract_w_x, R1CS};
use crate::commitment::CommitmentScheme;
use crate::constants::NOVA_N_BITS_RO;
use crate::folding::nova::{nifs::NIFS, traits::NIFSTrait};
use crate::folding::nova::nifs::{nova::NIFS, NIFSTrait};
use crate::transcript::{AbsorbNonNative, AbsorbNonNativeGadget, Transcript, TranscriptVar};
use crate::Error;
use ark_crypto_primitives::sponge::poseidon::PoseidonSponge;
/// Re-export the Nova committed instance as `CycleFoldCommittedInstance` and
/// witness as `CycleFoldWitness`, for clarity and consistency
@ -493,6 +494,72 @@ where
}
}
/// CycleFoldNIFS is a wrapper on top of Nova's NIFS, which just replaces the `prove` and `verify`
/// methods to use a different ChallengeGadget, but internally reuses the other Nova's NIFS
/// methods.
/// It is a custom implementation that does not follow the NIFSTrait because it needs to work over
/// different fields than the main NIFS impls (Nova, Mova, Ova). Could be abstracted, but it's a
/// tradeoff between overcomplexity at the NIFSTrait and the (not much) need of generalization at
/// the CycleFoldNIFS.
pub struct CycleFoldNIFS<
C1: CurveGroup,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
CS2: CommitmentScheme<C2, H>,
const H: bool = false,
> where
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
_c1: PhantomData<C1>,
_c2: PhantomData<C2>,
_gc2: PhantomData<GC2>,
_cs: PhantomData<CS2>,
}
impl<C1: CurveGroup, C2: CurveGroup, GC2, CS2: CommitmentScheme<C2, H>, const H: bool>
CycleFoldNIFS<C1, C2, GC2, CS2, H>
where
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
fn prove(
cf_r_Fq: C2::ScalarField, // C2::Fr==C1::Fq
cf_W_i: &CycleFoldWitness<C2>,
cf_U_i: &CycleFoldCommittedInstance<C2>,
cf_w_i: &CycleFoldWitness<C2>,
cf_u_i: &CycleFoldCommittedInstance<C2>,
aux_p: &[C2::ScalarField], // = cf_T
aux_v: C2, // = cf_cmT
) -> Result<(CycleFoldWitness<C2>, CycleFoldCommittedInstance<C2>), Error> {
let w = NIFS::<C2, CS2, PoseidonSponge<C2::ScalarField>, H>::fold_witness(
cf_r_Fq,
cf_W_i,
cf_w_i,
&aux_p.to_vec(),
)?;
let ci = Self::verify(cf_r_Fq, cf_U_i, cf_u_i, &aux_v)?;
Ok((w, ci))
}
fn verify(
r: C2::ScalarField,
U_i: &CycleFoldCommittedInstance<C2>,
u_i: &CycleFoldCommittedInstance<C2>,
cmT: &C2, // VerifierAux
) -> Result<CycleFoldCommittedInstance<C2>, Error> {
Ok(
NIFS::<C2, CS2, PoseidonSponge<C2::ScalarField>, H>::fold_committed_instances(
r, U_i, u_i, cmT,
),
)
}
}
/// Folds the given cyclefold circuit and its instances. This method is abstracted from any folding
/// scheme struct because it is used both by Nova & HyperNova's CycleFold.
#[allow(clippy::type_complexity)]
@ -551,14 +618,15 @@ where
cf_w_i.commit::<CS2, H>(&cf_cs_params, cf_x_i.clone())?;
// compute T* and cmT* for CycleFoldCircuit
let (cf_T, cf_cmT) = NIFS::<C2, CS2, H>::compute_cyclefold_cmT(
&cf_cs_params,
&cf_r1cs,
&cf_w_i,
&cf_u_i,
&cf_W_i,
&cf_U_i,
)?;
let (cf_T, cf_cmT) =
NIFS::<C2, CS2, PoseidonSponge<C2::ScalarField>, H>::compute_cyclefold_cmT(
&cf_cs_params,
&cf_r1cs,
&cf_w_i,
&cf_u_i,
&cf_W_i,
&cf_U_i,
)?;
let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_native(
transcript,
@ -570,8 +638,11 @@ where
let cf_r_Fq = C1::BaseField::from_bigint(BigInteger::from_bits_le(&cf_r_bits))
.expect("cf_r_bits out of bounds");
let (cf_W_i1, cf_U_i1) =
NIFS::<C2, CS2, H>::prove(cf_r_Fq, &cf_W_i, &cf_U_i, &cf_w_i, &cf_u_i, &cf_T, &cf_cmT)?;
let (cf_W_i1, cf_U_i1) = CycleFoldNIFS::<C1, C2, GC2, CS2, H>::prove(
cf_r_Fq, &cf_W_i, &cf_U_i, &cf_w_i, &cf_u_i, &cf_T, cf_cmT,
)?;
let cf_r_Fq = C1::BaseField::from_bigint(BigInteger::from_bits_le(&cf_r_bits))
.expect("cf_r_bits out of bounds");
Ok((cf_w_i, cf_u_i, cf_W_i1, cf_U_i1, cf_cmT, cf_r_Fq))
}
@ -671,6 +742,10 @@ pub mod tests {
fn test_nifs_full_gadget() {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript_v = PoseidonSponge::<Fr>::new(&poseidon_config);
let pp_hash = Fr::rand(&mut rng);
// prepare the committed instances to test in-circuit
let ci: Vec<CommittedInstance<Projective>> = (0..2)
.into_iter()
@ -685,11 +760,16 @@ pub mod tests {
// make the 2nd instance a 'fresh' instance (ie. cmE=0, u=1)
ci2.cmE = Projective::zero();
ci2.u = Fr::one();
let r_bits: Vec<bool> =
Fr::rand(&mut rng).into_bigint().to_bits_le()[..NOVA_N_BITS_RO].to_vec();
let r_Fr = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
let cmT = Projective::rand(&mut rng);
let ci3 = NIFS::<Projective, Pedersen<Projective>>::verify(r_Fr, &ci1, &ci2, &cmT);
let cmT = Projective::rand(&mut rng); // random only for testing
let (ci3, r_bits) = NIFS::<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>::verify(
&mut transcript_v,
pp_hash,
&ci1,
&ci2,
&cmT,
)
.unwrap();
let cs = ConstraintSystem::<Fq>::new_ref();
let r_bitsVar = Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(r_bits)).unwrap();
@ -737,7 +817,7 @@ pub mod tests {
.take(TestCycleFoldConfig::<Projective, 2>::IO_LEN)
.collect(),
};
let cmT = Projective::rand(&mut rng);
let cmT = Projective::rand(&mut rng); // random only for testing
// compute the challenge natively
let pp_hash = Fq::from(42u32); // only for test

+ 13
- 4
folding-schemes/src/folding/nova/circuits.rs

@ -529,8 +529,7 @@ pub mod tests {
use ark_std::UniformRand;
use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::nifs::NIFS;
use crate::folding::nova::traits::NIFSTrait;
use crate::folding::nova::nifs::{nova::NIFS, NIFSTrait};
use crate::folding::traits::CommittedInstanceOps;
use crate::transcript::poseidon::poseidon_canonical_config;
@ -570,9 +569,19 @@ pub mod tests {
})
.collect();
let (ci1, ci2) = (ci[0].clone(), ci[1].clone());
let r_Fr = Fr::rand(&mut rng);
let pp_hash = Fr::rand(&mut rng);
let cmT = Projective::rand(&mut rng);
let ci3 = NIFS::<Projective, Pedersen<Projective>>::verify(r_Fr, &ci1, &ci2, &cmT);
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript = PoseidonSponge::<Fr>::new(&poseidon_config);
let (ci3, r_bits) = NIFS::<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>::verify(
&mut transcript,
pp_hash,
&ci1,
&ci2,
&cmT,
)
.unwrap();
let r_Fr = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
let cs = ConstraintSystem::<Fr>::new_ref();

+ 18
- 7
folding-schemes/src/folding/nova/decider.rs

@ -2,7 +2,7 @@
/// DeciderEth from decider_eth.rs file.
/// More details can be found at the documentation page:
/// https://privacy-scaling-explorations.github.io/sonobe-docs/design/nova-decider-offchain.html
use ark_crypto_primitives::sponge::Absorb;
use ark_crypto_primitives::sponge::{poseidon::PoseidonSponge, Absorb, CryptographicSponge};
use ark_ec::{AffineRepr, CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
@ -13,7 +13,10 @@ use ark_std::{One, Zero};
use core::marker::PhantomData;
use super::decider_circuits::{DeciderCircuit1, DeciderCircuit2};
use super::{nifs::NIFS, traits::NIFSTrait, CommittedInstance, Nova};
use super::{
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova,
};
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::{
cyclefold::CycleFoldCommittedInstance,
@ -21,6 +24,7 @@ use crate::folding::circuits::{
CF2,
};
use crate::frontend::FCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
use crate::Error;
use crate::{Decider as DeciderTrait, FoldingScheme};
@ -41,7 +45,6 @@ where
// cmT and r are values for the last fold, U_{i+1}=NIFS.V(r, U_i, u_i, cmT), and they are
// checked in-circuit
cmT: C1,
r: C1::ScalarField,
// cyclefold committed instance
cf_U_i: CycleFoldCommittedInstance<C2>,
// the CS challenges are provided by the prover, but in-circuit they are checked to match the
@ -209,7 +212,6 @@ where
.map_err(|e| Error::Other(e.to_string()))?;
let cmT = circuit1.cmT.unwrap();
let r_Fr = circuit1.r.unwrap();
let W_i1 = circuit1.W_i1.unwrap();
let cf_W_i = circuit2.cf_W_i.unwrap();
@ -265,7 +267,6 @@ where
cs1_proofs: [U_cmW_proof, U_cmE_proof],
cs2_proofs: [cf_cmW_proof, cf_cmE_proof],
cmT,
r: r_Fr,
cf_U_i: circuit1.cf_U_i.unwrap(),
cs1_challenges: [challenge_W, challenge_E],
cs2_challenges: [c2_challenge_W, c2_challenge_E],
@ -286,7 +287,17 @@ where
}
// compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT)
let U = NIFS::<C1, CS1>::verify(proof.r, running_instance, incoming_instance, &proof.cmT);
let poseidon_config = poseidon_canonical_config::<C1::ScalarField>();
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&poseidon_config);
let (U, r_bits) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>>::verify(
&mut transcript,
vp.pp_hash,
running_instance,
incoming_instance,
&proof.cmT,
)?;
let r = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let (cmE_x, cmE_y) = NonNativeAffineVar::inputize(U.cmE)?;
let (cmW_x, cmW_y) = NonNativeAffineVar::inputize(U.cmW)?;
@ -332,7 +343,7 @@ where
// NIFS values:
cmT_x,
cmT_y,
vec![proof.r],
vec![r],
]
.concat();

+ 6
- 14
folding-schemes/src/folding/nova/decider_circuits.rs

@ -28,8 +28,7 @@ use super::{
decider_eth_circuit::{
evaluate_gadget, KZGChallengesGadget, R1CSVar, RelaxedR1CSGadget, WitnessVar,
},
nifs::NIFS,
traits::NIFSTrait,
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova, Witness,
};
use crate::arith::r1cs::R1CS;
@ -114,28 +113,21 @@ where
CS2: CommitmentScheme<C2, H>,
{
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&nova.poseidon_config);
// pp_hash is absorbed to transcript at the ChallengeGadget::get_challenge_native call
// pp_hash is absorbed to transcript at the NIFS::prove call
// compute the U_{i+1}, W_{i+1}
let (T, cmT) = NIFS::<C1, CS1, H>::compute_cmT(
let (W_i1, U_i1, cmT, r_bits) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, H>::prove(
&nova.cs_pp,
&nova.r1cs.clone(),
&nova.w_i.clone(),
&nova.u_i.clone(),
&nova.W_i.clone(),
&nova.U_i.clone(),
)?;
let r_bits = NIFS::<C1, CS1, H>::get_challenge(
&mut transcript,
nova.pp_hash,
&nova.W_i,
&nova.U_i,
&nova.w_i,
&nova.u_i,
&cmT,
);
)?;
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let (W_i1, U_i1) =
NIFS::<C1, CS1, H>::prove(r_Fr, &nova.W_i, &nova.U_i, &nova.w_i, &nova.u_i, &T, &cmT)?;
// compute the commitment scheme challenges used as inputs in the circuit
let (cs_challenge_W, cs_challenge_E) =

+ 38
- 9
folding-schemes/src/folding/nova/decider_eth.rs

@ -3,7 +3,7 @@
/// More details can be found at the documentation page:
/// https://privacy-scaling-explorations.github.io/sonobe-docs/design/nova-decider-onchain.html
use ark_bn254::Bn254;
use ark_crypto_primitives::sponge::Absorb;
use ark_crypto_primitives::sponge::{poseidon::PoseidonSponge, Absorb, CryptographicSponge};
use ark_ec::{AffineRepr, CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField};
use ark_groth16::Groth16;
@ -15,15 +15,19 @@ use ark_std::{One, Zero};
use core::marker::PhantomData;
pub use super::decider_eth_circuit::DeciderEthCircuit;
use super::traits::NIFSTrait;
use super::{nifs::NIFS, CommittedInstance, Nova};
use super::{
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova,
};
use crate::commitment::{
kzg::{Proof as KZGProof, KZG},
pedersen::Params as PedersenParams,
CommitmentScheme,
};
use crate::folding::circuits::{nonnative::affine::NonNativeAffineVar, CF2};
use crate::folding::nova::circuits::ChallengeGadget;
use crate::frontend::FCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
use crate::Error;
use crate::{Decider as DeciderTrait, FoldingScheme};
@ -39,7 +43,6 @@ where
// cmT and r are values for the last fold, U_{i+1}=NIFS.V(r, U_i, u_i, cmT), and they are
// checked in-circuit
cmT: C1,
r: C1::ScalarField,
// the KZG challenges are provided by the prover, but in-circuit they are checked to match
// the in-circuit computed computed ones.
kzg_challenges: [C1::ScalarField; 2],
@ -161,7 +164,6 @@ where
.map_err(|e| Error::Other(e.to_string()))?;
let cmT = circuit.cmT.unwrap();
let r_Fr = circuit.r.unwrap();
let W_i1 = circuit.W_i1.unwrap();
// get the challenges that have been already computed when preparing the circuit inputs in
@ -193,7 +195,6 @@ where
snark_proof,
kzg_proofs: [U_cmW_proof, U_cmE_proof],
cmT,
r: r_Fr,
kzg_challenges: [challenge_W, challenge_E],
})
}
@ -212,7 +213,17 @@ where
}
// compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT)
let U = NIFS::<C1, CS1>::verify(proof.r, running_instance, incoming_instance, &proof.cmT);
let poseidon_config = poseidon_canonical_config::<C1::ScalarField>();
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&poseidon_config);
let (U, r_bits) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>>::verify(
&mut transcript,
vp.pp_hash,
running_instance,
incoming_instance,
&proof.cmT,
)?;
let r = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let (cmE_x, cmE_y) = NonNativeAffineVar::inputize(U.cmE)?;
let (cmW_x, cmW_y) = NonNativeAffineVar::inputize(U.cmW)?;
@ -235,7 +246,7 @@ where
],
cmT_x,
cmT_y,
vec![proof.r],
vec![r],
]
.concat();
@ -264,8 +275,10 @@ where
}
/// Prepares solidity calldata for calling the NovaDecider contract
#[allow(clippy::too_many_arguments)]
pub fn prepare_calldata(
function_signature_check: [u8; 4],
pp_hash: ark_bn254::Fr,
i: ark_bn254::Fr,
z_0: Vec<ark_bn254::Fr>,
z_i: Vec<ark_bn254::Fr>,
@ -273,6 +286,22 @@ pub fn prepare_calldata(
incoming_instance: &CommittedInstance<ark_bn254::G1Projective>,
proof: Proof<ark_bn254::G1Projective, KZG<'static, Bn254>, Groth16<Bn254>>,
) -> Result<Vec<u8>, Error> {
// compute the challenge r
let poseidon_config = poseidon_canonical_config::<ark_bn254::Fr>();
let mut transcript = PoseidonSponge::<ark_bn254::Fr>::new(&poseidon_config);
let r_bits = ChallengeGadget::<
ark_bn254::G1Projective,
CommittedInstance<ark_bn254::G1Projective>,
>::get_challenge_native(
&mut transcript,
pp_hash,
running_instance,
incoming_instance,
Some(&proof.cmT),
);
let r =
ark_bn254::Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).ok_or(Error::OutOfBounds)?;
Ok(vec![
function_signature_check.to_vec(),
i.into_bigint().to_bytes_be(), // i
@ -286,7 +315,7 @@ pub fn prepare_calldata(
point_to_eth_format(running_instance.cmE.into_affine())?, // U_i_cmE
running_instance.u.into_bigint().to_bytes_be(), // U_i_u
incoming_instance.u.into_bigint().to_bytes_be(), // u_i_u
proof.r.into_bigint().to_bytes_be(), // r
r.into_bigint().to_bytes_be(), // r
running_instance
.x
.iter()

+ 5
- 15
folding-schemes/src/folding/nova/decider_eth_circuit.rs

@ -26,8 +26,7 @@ use core::{borrow::Borrow, marker::PhantomData};
use super::{
circuits::{ChallengeGadget, CommittedInstanceVar},
nifs::NIFS,
traits::NIFSTrait,
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova, Witness,
};
use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme};
@ -246,27 +245,18 @@ where
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&nova.poseidon_config);
// compute the U_{i+1}, W_{i+1}
let (aux_p, aux_v) = NIFS::<C1, CS1, H>::compute_aux(
let (W_i1, U_i1, cmT, r_bits) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, H>::prove(
&nova.cs_pp,
&nova.r1cs.clone(),
&nova.w_i.clone(),
&nova.u_i.clone(),
&nova.W_i.clone(),
&nova.U_i.clone(),
)?;
let cmT = aux_v;
let r_bits = ChallengeGadget::<C1, CommittedInstance<C1>>::get_challenge_native(
&mut transcript,
nova.pp_hash,
&nova.W_i,
&nova.U_i,
&nova.w_i,
&nova.u_i,
Some(&cmT),
);
)?;
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let (W_i1, U_i1) = NIFS::<C1, CS1, H>::prove(
r_Fr, &nova.W_i, &nova.U_i, &nova.w_i, &nova.u_i, &aux_p, &aux_v,
)?;
// compute the KZG challenges used as inputs in the circuit
let (kzg_challenge_W, kzg_challenge_E) =

+ 30
- 52
folding-schemes/src/folding/nova/mod.rs

@ -1,5 +1,9 @@
/// Implements the scheme described in [Nova](https://eprint.iacr.org/2021/370.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf).
///
/// The structure of the Nova code is the following:
/// - NIFS implementation for Nova (nifs.rs), Mova (mova.rs), Ova (ova.rs)
/// - IVC and the Decider (offchain Decider & onchain Decider) implementations for Nova
use ark_crypto_primitives::sponge::{
poseidon::{PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
@ -36,14 +40,14 @@ use crate::{
use crate::{arith::Arith, commitment::CommitmentScheme};
pub mod circuits;
pub mod nifs;
pub mod ova;
pub mod traits;
pub mod zk;
use circuits::{AugmentedFCircuit, ChallengeGadget, CommittedInstanceVar};
use nifs::NIFS;
use traits::NIFSTrait;
// NIFS related:
pub mod nifs;
use circuits::{AugmentedFCircuit, CommittedInstanceVar};
use nifs::{nova::NIFS, NIFSTrait};
// offchain decider
pub mod decider;
@ -714,28 +718,21 @@ where
.F
.step_native(i_usize, self.z_i.clone(), external_inputs.clone())?;
// compute T and cmT for AugmentedFCircuit
let (aux_p, aux_v) = self.compute_cmT()?;
let cmT = aux_v;
// r_bits is the r used to the RLC of the F' instances
let r_bits = ChallengeGadget::<C1, CommittedInstance<C1>>::get_challenge_native(
&mut transcript,
self.pp_hash,
&self.U_i,
&self.u_i,
Some(&cmT),
);
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
// fold Nova instances
let (W_i1, U_i1, cmT, r_bits): (Witness<C1>, CommittedInstance<C1>, C1, Vec<bool>) =
NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, H>::prove(
&self.cs_pp,
&self.r1cs,
&mut transcript,
self.pp_hash,
&self.W_i,
&self.U_i,
&self.w_i,
&self.u_i,
)?;
let r_Fq = C1::BaseField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
// fold Nova instances
let (W_i1, U_i1): (Witness<C1>, CommittedInstance<C1>) = NIFS::<C1, CS1, H>::prove(
r_Fr, &self.W_i, &self.U_i, &self.w_i, &self.u_i, &aux_p, &aux_v,
)?;
// folded instance output (public input, x)
// u_{i+1}.x[0] = H(i+1, z_0, z_{i+1}, U_{i+1})
let u_i1_x = U_i1.hash(
@ -776,7 +773,15 @@ where
};
#[cfg(test)]
NIFS::<C1, CS1, H>::verify_folded_instance(r_Fr, &self.U_i, &self.u_i, &U_i1, &cmT)?;
{
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let expected =
NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, H>::fold_committed_instances(
r_Fr, &self.U_i, &self.u_i, &cmT,
);
assert_eq!(U_i1, expected);
}
} else {
// CycleFold part:
// get the vector used as public inputs 'x' in the CycleFold circuit
@ -1037,33 +1042,6 @@ where
}
}
impl<C1, GC1, C2, GC2, FC, CS1, CS2, const H: bool> Nova<C1, GC1, C2, GC2, FC, CS1, CS2, H>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1, H>,
CS2: CommitmentScheme<C2, H>,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
{
// computes T and cmT for the AugmentedFCircuit
fn compute_cmT(&self) -> Result<(Vec<C1::ScalarField>, C1), Error> {
NIFS::<C1, CS1, H>::compute_aux(
&self.cs_pp,
&self.r1cs,
&self.w_i,
&self.u_i,
&self.W_i,
&self.U_i,
)
}
}
impl<C1, GC1, C2, GC2, FC, CS1, CS2, const H: bool> Nova<C1, GC1, C2, GC2, FC, CS1, CS2, H>
where
C1: CurveGroup,

+ 152
- 0
folding-schemes/src/folding/nova/nifs/mod.rs

@ -0,0 +1,152 @@
/// This module defines the NIFSTrait, which is set to implement the NIFS (Non-Interactive Folding
/// Scheme) by the various schemes (Nova, Mova, Ova).
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::CurveGroup;
use ark_std::fmt::Debug;
use ark_std::rand::RngCore;
use crate::arith::r1cs::R1CS;
use crate::commitment::CommitmentScheme;
use crate::transcript::Transcript;
use crate::Error;
pub mod mova;
pub mod nova;
pub mod ova;
pub mod pointvsline;
/// Defines the NIFS (Non-Interactive Folding Scheme) trait, initially defined in
/// [Nova](https://eprint.iacr.org/2021/370.pdf), and it's variants
/// [Ova](https://hackmd.io/V4838nnlRKal9ZiTHiGYzw) and
/// [Mova](https://eprint.iacr.org/2024/1220.pdf).
/// `H` specifies whether the NIFS will use a blinding factor.
pub trait NIFSTrait<
C: CurveGroup,
CS: CommitmentScheme<C, H>,
T: Transcript<C::ScalarField>,
const H: bool = false,
>
{
type CommittedInstance: Debug + Clone + Absorb;
type Witness: Debug + Clone;
type ProverAux: Debug + Clone; // Prover's aux params. eg. in Nova is T
type Proof: Debug + Clone; // proof. eg. in Nova is cmT
fn new_witness(w: Vec<C::ScalarField>, e_len: usize, rng: impl RngCore) -> Self::Witness;
fn new_instance(
rng: impl RngCore,
params: &CS::ProverParams,
w: &Self::Witness,
x: Vec<C::ScalarField>,
aux: Vec<C::ScalarField>, // t_or_e in Ova, empty for Nova
) -> Result<Self::CommittedInstance, Error>;
fn fold_witness(
r: C::ScalarField,
W: &Self::Witness, // running witness
w: &Self::Witness, // incoming witness
aux: &Self::ProverAux,
) -> Result<Self::Witness, Error>;
/// NIFS.P. Returns a tuple containing the folded Witness, the folded CommittedInstance, and
/// the used challenge `r` as a vector of bits, so that it can be reused in other methods.
#[allow(clippy::type_complexity)]
#[allow(clippy::too_many_arguments)]
fn prove(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>,
transcript: &mut T,
pp_hash: C::ScalarField,
W_i: &Self::Witness, // running witness
U_i: &Self::CommittedInstance, // running committed instance
w_i: &Self::Witness, // incoming witness
u_i: &Self::CommittedInstance, // incoming committed instance
) -> Result<
(
Self::Witness,
Self::CommittedInstance,
Self::Proof,
Vec<bool>,
),
Error,
>;
/// NIFS.V. Returns the folded CommittedInstance and the used challenge `r` as a vector of
/// bits, so that it can be reused in other methods.
fn verify(
transcript: &mut T,
pp_hash: C::ScalarField,
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
proof: &Self::Proof,
) -> Result<(Self::CommittedInstance, Vec<bool>), Error>;
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::transcript::poseidon::poseidon_canonical_config;
use ark_crypto_primitives::sponge::{poseidon::PoseidonSponge, CryptographicSponge};
use ark_pallas::{Fr, Projective};
use ark_std::{test_rng, UniformRand};
use super::NIFSTrait;
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::commitment::pedersen::Pedersen;
/// Test method used to test the different implementations of the NIFSTrait (ie. Nova, Mova,
/// Ova). Runs a loop using the NIFS trait, and returns the last Witness and CommittedInstance
/// so that their relation can be checked.
pub(crate) fn test_nifs_opt<
N: NIFSTrait<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>,
>() -> (N::Witness, N::CommittedInstance) {
let r1cs = get_test_r1cs();
let z = get_test_z(3);
let (w, x) = r1cs.split_z(&z);
let mut rng = ark_std::test_rng();
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, r1cs.A.n_cols).unwrap();
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript_p = PoseidonSponge::<Fr>::new(&poseidon_config);
let mut transcript_v = PoseidonSponge::<Fr>::new(&poseidon_config);
let pp_hash = Fr::rand(&mut rng);
// prepare the running instance
let mut W_i = N::new_witness(w.clone(), r1cs.A.n_rows, test_rng());
let mut U_i = N::new_instance(&mut rng, &pedersen_params, &W_i, x, vec![]).unwrap();
let num_iters = 10;
for i in 0..num_iters {
// prepare the incoming instance
let incoming_instance_z = get_test_z(i + 4);
let (w, x) = r1cs.split_z(&incoming_instance_z);
let w_i = N::new_witness(w.clone(), r1cs.A.n_rows, test_rng());
let u_i = N::new_instance(&mut rng, &pedersen_params, &w_i, x, vec![]).unwrap();
// NIFS.P
let (folded_witness, _, proof, _) = N::prove(
&pedersen_params,
&r1cs,
&mut transcript_p,
pp_hash,
&W_i,
&U_i,
&w_i,
&u_i,
)
.unwrap();
// NIFS.V
let (folded_committed_instance, _) =
N::verify(&mut transcript_v, pp_hash, &U_i, &u_i, &proof).unwrap();
// set running_instance for next loop iteration
W_i = folded_witness;
U_i = folded_committed_instance;
}
(W_i, U_i)
}
}

+ 411
- 0
folding-schemes/src/folding/nova/nifs/mova.rs

@ -0,0 +1,411 @@
/// This module contains the implementation the NIFSTrait for the
/// [Mova](https://eprint.iacr.org/2024/1220.pdf) NIFS (Non-Interactive Folding Scheme).
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_poly::MultilinearExtension;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::log2;
use ark_std::rand::RngCore;
use ark_std::{One, UniformRand, Zero};
use std::marker::PhantomData;
use super::{
nova::NIFS as NovaNIFS,
pointvsline::{PointVsLine, PointVsLineProof, PointvsLineEvaluationClaim},
NIFSTrait,
};
use crate::arith::{r1cs::R1CS, Arith};
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::CF1;
use crate::folding::traits::Dummy;
use crate::transcript::AbsorbNonNative;
use crate::transcript::Transcript;
use crate::utils::{
mle::dense_vec_to_dense_mle,
vec::{is_zero_vec, vec_add, vec_scalar_mul},
};
use crate::Error;
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct CommittedInstance<C: CurveGroup> {
// Random evaluation point for the E
pub rE: Vec<C::ScalarField>,
// mleE is the evaluation of the MLE of E at r_E
pub mleE: C::ScalarField,
pub u: C::ScalarField,
pub cmW: C,
pub x: Vec<C::ScalarField>,
}
impl<C: CurveGroup> Absorb for CommittedInstance<C>
where
C::ScalarField: Absorb,
{
fn to_sponge_bytes(&self, _dest: &mut Vec<u8>) {
// This is never called
unimplemented!()
}
fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) {
self.u.to_sponge_field_elements(dest);
self.x.to_sponge_field_elements(dest);
self.rE.to_sponge_field_elements(dest);
self.mleE.to_sponge_field_elements(dest);
// We cannot call `to_native_sponge_field_elements(dest)` directly, as
// `to_native_sponge_field_elements` needs `F` to be `C::ScalarField`,
// but here `F` is a generic `PrimeField`.
self.cmW
.to_native_sponge_field_elements_as_vec()
.to_sponge_field_elements(dest);
}
}
impl<C: CurveGroup> Dummy<usize> for CommittedInstance<C> {
fn dummy(io_len: usize) -> Self {
Self {
rE: vec![C::ScalarField::zero(); io_len],
mleE: C::ScalarField::zero(),
u: C::ScalarField::zero(),
cmW: C::zero(),
x: vec![C::ScalarField::zero(); io_len],
}
}
}
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct Witness<C: CurveGroup> {
pub E: Vec<C::ScalarField>,
pub W: Vec<C::ScalarField>,
pub rW: C::ScalarField,
}
impl<C: CurveGroup> Dummy<&R1CS<C::ScalarField>> for Witness<C> {
fn dummy(r1cs: &R1CS<C::ScalarField>) -> Self {
Self {
E: vec![C::ScalarField::zero(); r1cs.A.n_rows],
W: vec![C::ScalarField::zero(); r1cs.A.n_cols - 1 - r1cs.l],
rW: C::ScalarField::zero(),
}
}
}
impl<C: CurveGroup> Witness<C> {
pub fn new<const H: bool>(w: Vec<C::ScalarField>, e_len: usize, mut rng: impl RngCore) -> Self {
let rW = if H {
C::ScalarField::rand(&mut rng)
} else {
C::ScalarField::zero()
};
Self {
E: vec![C::ScalarField::zero(); e_len],
W: w,
rW,
}
}
pub fn commit<CS: CommitmentScheme<C, H>, const H: bool>(
&self,
params: &CS::ProverParams,
x: Vec<C::ScalarField>,
rE: Vec<C::ScalarField>,
) -> Result<CommittedInstance<C>, Error> {
let mut mleE = C::ScalarField::zero();
if !is_zero_vec::<C::ScalarField>(&self.E) {
let E = dense_vec_to_dense_mle(log2(self.E.len()) as usize, &self.E);
mleE = E.evaluate(&rE).ok_or(Error::NotExpectedLength(
rE.len(),
log2(self.E.len()) as usize,
))?;
}
let cmW = CS::commit(params, &self.W, &self.rW)?;
Ok(CommittedInstance {
rE,
mleE,
u: C::ScalarField::one(),
cmW,
x,
})
}
}
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct Proof<C: CurveGroup> {
pub h_proof: PointVsLineProof<C>,
pub mleE1_prime: C::ScalarField,
pub mleE2_prime: C::ScalarField,
pub mleT: C::ScalarField,
}
/// Implements the Non-Interactive Folding Scheme described in section 4 of
/// [Mova](https://eprint.iacr.org/2024/1220.pdf).
/// `H` specifies whether the NIFS will use a blinding factor
pub struct NIFS<
C: CurveGroup,
CS: CommitmentScheme<C, H>,
T: Transcript<C::ScalarField>,
const H: bool = false,
> {
_c: PhantomData<C>,
_cp: PhantomData<CS>,
_ct: PhantomData<T>,
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, T: Transcript<C::ScalarField>, const H: bool>
NIFSTrait<C, CS, T, H> for NIFS<C, CS, T, H>
where
<C as Group>::ScalarField: Absorb,
<C as CurveGroup>::BaseField: PrimeField,
{
type CommittedInstance = CommittedInstance<C>;
type Witness = Witness<C>;
type ProverAux = Vec<C::ScalarField>; // T in Mova's notation
type Proof = Proof<C>;
fn new_witness(w: Vec<C::ScalarField>, e_len: usize, rng: impl RngCore) -> Self::Witness {
Witness::new::<H>(w, e_len, rng)
}
fn new_instance(
mut rng: impl RngCore,
params: &CS::ProverParams,
W: &Self::Witness,
x: Vec<C::ScalarField>,
aux: Vec<C::ScalarField>, // = r_E
) -> Result<Self::CommittedInstance, Error> {
let mut rE = aux.clone();
if is_zero_vec(&rE) {
// means that we're in a fresh instance, so generate random value
rE = (0..log2(W.E.len()))
.map(|_| C::ScalarField::rand(&mut rng))
.collect();
}
W.commit::<CS, H>(params, x, rE)
}
// Protocol 7 - point 3 (16)
fn fold_witness(
a: C::ScalarField,
W_i: &Witness<C>,
w_i: &Witness<C>,
aux: &Vec<C::ScalarField>, // T in Mova's notation
) -> Result<Witness<C>, Error> {
let a2 = a * a;
let E: Vec<C::ScalarField> = vec_add(
&vec_add(&W_i.E, &vec_scalar_mul(aux, &a))?,
&vec_scalar_mul(&w_i.E, &a2),
)?;
let W: Vec<C::ScalarField> = W_i
.W
.iter()
.zip(&w_i.W)
.map(|(i1, i2)| *i1 + (a * i2))
.collect();
let rW = W_i.rW + a * w_i.rW;
Ok(Witness::<C> { E, W, rW })
}
/// [Mova](https://eprint.iacr.org/2024/1220.pdf)'s section 4. Protocol 8
/// Returns a proof for the pt-vs-line operations along with the folded committed instance
/// instances and witness
#[allow(clippy::type_complexity)]
fn prove(
_cs_prover_params: &CS::ProverParams, // not used in Mova since we don't commit to T
r1cs: &R1CS<C::ScalarField>,
transcript: &mut T,
pp_hash: C::ScalarField,
W_i: &Witness<C>,
U_i: &CommittedInstance<C>,
w_i: &Witness<C>,
u_i: &CommittedInstance<C>,
) -> Result<
(
Self::Witness,
Self::CommittedInstance,
Self::Proof,
Vec<bool>,
),
Error,
> {
transcript.absorb(&pp_hash);
// Protocol 5 is pre-processing
transcript.absorb(U_i);
transcript.absorb(u_i);
// Protocol 6
let (
h_proof,
PointvsLineEvaluationClaim {
mleE1_prime,
mleE2_prime,
rE_prime,
},
) = PointVsLine::<C, T>::prove(transcript, U_i, u_i, W_i, w_i)?;
// Protocol 7
transcript.absorb(&mleE1_prime);
transcript.absorb(&mleE2_prime);
// compute the cross terms
let z1: Vec<C::ScalarField> = [vec![U_i.u], U_i.x.to_vec(), W_i.W.to_vec()].concat();
let z2: Vec<C::ScalarField> = [vec![u_i.u], u_i.x.to_vec(), w_i.W.to_vec()].concat();
let T = NovaNIFS::<C, CS, T, H>::compute_T(r1cs, U_i.u, u_i.u, &z1, &z2)?;
let n_vars: usize = log2(W_i.E.len()) as usize;
if log2(T.len()) as usize != n_vars {
return Err(Error::NotExpectedLength(T.len(), n_vars));
}
let mleT = dense_vec_to_dense_mle(n_vars, &T);
let mleT_evaluated = mleT.evaluate(&rE_prime).ok_or(Error::EvaluationFail)?;
transcript.absorb(&mleT_evaluated);
let alpha: C::ScalarField = transcript.get_challenge();
let ci = Self::fold_committed_instance(
alpha,
U_i,
u_i,
&rE_prime,
&mleE1_prime,
&mleE2_prime,
&mleT_evaluated,
)?;
let w = Self::fold_witness(alpha, W_i, w_i, &T)?;
let proof = Self::Proof {
h_proof,
mleE1_prime,
mleE2_prime,
mleT: mleT_evaluated,
};
Ok((
w,
ci,
proof,
vec![], // r_bits, returned to be passed as inputs to the circuit, not used at the
// current impl status
))
}
/// [Mova](https://eprint.iacr.org/2024/1220.pdf)'s section 4. It verifies the results from the proof
/// Both the folding and the pt-vs-line proof
/// returns the folded committed instance
fn verify(
transcript: &mut T,
pp_hash: C::ScalarField,
U_i: &CommittedInstance<C>,
u_i: &CommittedInstance<C>,
proof: &Proof<C>,
) -> Result<(Self::CommittedInstance, Vec<bool>), Error> {
transcript.absorb(&pp_hash);
transcript.absorb(U_i);
transcript.absorb(u_i);
let rE_prime = PointVsLine::<C, T>::verify(
transcript,
U_i,
u_i,
&proof.h_proof,
&proof.mleE1_prime,
&proof.mleE2_prime,
)?;
transcript.absorb(&proof.mleE1_prime);
transcript.absorb(&proof.mleE2_prime);
transcript.absorb(&proof.mleT);
let alpha: C::ScalarField = transcript.get_challenge();
Ok((
Self::fold_committed_instance(
alpha,
U_i,
u_i,
&rE_prime,
&proof.mleE1_prime,
&proof.mleE2_prime,
&proof.mleT,
)?,
vec![],
))
}
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, T: Transcript<C::ScalarField>, const H: bool>
NIFS<C, CS, T, H>
{
// Protocol 7 - point 3 (15)
fn fold_committed_instance(
a: C::ScalarField,
U_i: &CommittedInstance<C>,
u_i: &CommittedInstance<C>,
rE_prime: &[C::ScalarField],
mleE1_prime: &C::ScalarField,
mleE2_prime: &C::ScalarField,
mleT: &C::ScalarField,
) -> Result<CommittedInstance<C>, Error> {
let a2 = a * a;
let mleE = *mleE1_prime + a * mleT + a2 * mleE2_prime;
let u = U_i.u + a * u_i.u;
let cmW = U_i.cmW + u_i.cmW.mul(a);
let x = U_i
.x
.iter()
.zip(&u_i.x)
.map(|(i1, i2)| *i1 + (a * i2))
.collect::<Vec<C::ScalarField>>();
Ok(CommittedInstance::<C> {
rE: rE_prime.to_vec(),
mleE,
u,
cmW,
x,
})
}
}
impl<C: CurveGroup> Arith<Witness<C>, CommittedInstance<C>> for R1CS<CF1<C>> {
type Evaluation = Vec<CF1<C>>;
fn eval_relation(
&self,
w: &Witness<C>,
u: &CommittedInstance<C>,
) -> Result<Self::Evaluation, Error> {
self.eval_at_z(&[&[u.u][..], &u.x, &w.W].concat())
}
fn check_evaluation(
w: &Witness<C>,
_u: &CommittedInstance<C>,
e: Self::Evaluation,
) -> Result<(), Error> {
(w.E == e).then_some(()).ok_or(Error::NotSatisfied)
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_crypto_primitives::sponge::poseidon::PoseidonSponge;
use ark_pallas::{Fr, Projective};
use crate::arith::{r1cs::tests::get_test_r1cs, Arith};
use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::nifs::tests::test_nifs_opt;
#[test]
fn test_nifs_mova() {
let (W, U) = test_nifs_opt::<NIFS<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>>();
// check the last folded instance relation
let r1cs = get_test_r1cs();
r1cs.check_relation(&W, &U).unwrap();
}
}

folding-schemes/src/folding/nova/nifs.rs → folding-schemes/src/folding/nova/nifs/nova.rs

@ -1,46 +1,56 @@
/// This module contains the implementation the NIFSTrait for the
/// [Nova](https://eprint.iacr.org/2021/370.pdf) NIFS (Non-Interactive Folding Scheme).
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_ff::{BigInteger, PrimeField};
use ark_std::rand::RngCore;
use ark_std::Zero;
use std::marker::PhantomData;
use super::circuits::ChallengeGadget;
use super::traits::NIFSTrait;
use super::{CommittedInstance, Witness};
use super::NIFSTrait;
use crate::arith::r1cs::R1CS;
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness};
use crate::folding::nova::circuits::ChallengeGadget;
use crate::folding::nova::{CommittedInstance, Witness};
use crate::transcript::Transcript;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, vec_sub};
use crate::Error;
/// Implements the Non-Interactive Folding Scheme described in section 4 of
/// [Nova](https://eprint.iacr.org/2021/370.pdf)
/// [Nova](https://eprint.iacr.org/2021/370.pdf).
/// `H` specifies whether the NIFS will use a blinding factor
pub struct NIFS<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool = false> {
pub struct NIFS<
C: CurveGroup,
CS: CommitmentScheme<C, H>,
T: Transcript<C::ScalarField>,
const H: bool = false,
> {
_c: PhantomData<C>,
_cp: PhantomData<CS>,
_t: PhantomData<T>,
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool> NIFSTrait<C, CS, H>
for NIFS<C, CS, H>
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, T: Transcript<C::ScalarField>, const H: bool>
NIFSTrait<C, CS, T, H> for NIFS<C, CS, T, H>
where
<C as Group>::ScalarField: Absorb,
<C as CurveGroup>::BaseField: PrimeField,
<C as Group>::ScalarField: PrimeField,
{
type CommittedInstance = CommittedInstance<C>;
type Witness = Witness<C>;
type ProverAux = Vec<C::ScalarField>;
type VerifierAux = C;
type Proof = C;
fn new_witness(w: Vec<C::ScalarField>, e_len: usize, rng: impl RngCore) -> Self::Witness {
Witness::new::<H>(w, e_len, rng)
}
fn new_instance(
W: &Self::Witness,
_rng: impl RngCore,
params: &CS::ProverParams,
W: &Self::Witness,
x: Vec<C::ScalarField>,
_aux: Vec<C::ScalarField>,
) -> Result<Self::CommittedInstance, Error> {
@ -51,7 +61,7 @@ where
r: C::ScalarField,
W_i: &Self::Witness,
w_i: &Self::Witness,
aux: &Self::ProverAux,
aux: &Self::ProverAux, // T in Nova's notation
) -> Result<Self::Witness, Error> {
let r2 = r * r;
let E: Vec<C::ScalarField> = vec_add(
@ -72,65 +82,72 @@ where
Ok(Self::Witness { E, rE, W, rW })
}
fn compute_aux(
fn prove(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>,
transcript: &mut T,
pp_hash: C::ScalarField,
W_i: &Self::Witness,
U_i: &Self::CommittedInstance,
w_i: &Self::Witness,
u_i: &Self::CommittedInstance,
) -> Result<(Self::ProverAux, Self::VerifierAux), Error> {
) -> Result<
(
Self::Witness,
Self::CommittedInstance,
Self::Proof,
Vec<bool>,
),
Error,
> {
// compute the cross terms
let z1: Vec<C::ScalarField> = [vec![U_i.u], U_i.x.to_vec(), W_i.W.to_vec()].concat();
let z2: Vec<C::ScalarField> = [vec![u_i.u], u_i.x.to_vec(), w_i.W.to_vec()].concat();
// compute cross terms
let T = Self::compute_T(r1cs, U_i.u, u_i.u, &z1, &z2)?;
// use r_T=0 since we don't need hiding property for cm(T)
let cmT = CS::commit(cs_prover_params, &T, &C::ScalarField::zero())?;
Ok((T, cmT))
}
fn get_challenge<T: Transcript<C::ScalarField>>(
transcript: &mut T,
pp_hash: C::ScalarField, // public params hash
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
aux: &Self::VerifierAux, // cmT
) -> Vec<bool> {
ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
let r_bits = ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
transcript,
pp_hash,
U_i,
u_i,
Some(aux),
)
}
Some(&cmT),
);
let r_Fr = C::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let w = Self::fold_witness(r_Fr, W_i, w_i, &T)?;
// Notice: `prove` method is implemented at the trait level.
let ci = Self::fold_committed_instances(r_Fr, U_i, u_i, &cmT);
Ok((w, ci, cmT, r_bits))
}
fn verify(
// r comes from the transcript, and is a n-bit (N_BITS_CHALLENGE) element
r: C::ScalarField,
transcript: &mut T,
pp_hash: C::ScalarField,
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
cmT: &C, // VerifierAux
) -> Self::CommittedInstance {
let r2 = r * r;
let cmE = U_i.cmE + cmT.mul(r) + u_i.cmE.mul(r2);
let u = U_i.u + r * u_i.u;
let cmW = U_i.cmW + u_i.cmW.mul(r);
let x = U_i
.x
.iter()
.zip(&u_i.x)
.map(|(a, b)| *a + (r * b))
.collect::<Vec<C::ScalarField>>();
cmT: &C, // Proof
) -> Result<(Self::CommittedInstance, Vec<bool>), Error> {
let r_bits = ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
transcript,
pp_hash,
U_i,
u_i,
Some(cmT),
);
let r = C::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
Self::CommittedInstance { cmE, u, cmW, x }
Ok((Self::fold_committed_instances(r, U_i, u_i, cmT), r_bits))
}
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool> NIFS<C, CS, H>
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, T: Transcript<C::ScalarField>, const H: bool>
NIFS<C, CS, T, H>
where
<C as Group>::ScalarField: Absorb,
<C as CurveGroup>::BaseField: PrimeField,
@ -161,26 +178,6 @@ where
vec_sub(&vec_sub(&vec_add(&Az1_Bz2, &Az2_Bz1)?, &u1Cz2)?, &u2Cz1)
}
/// In Nova, NIFS.P is the consecutive combination of compute_cmT with fold_instances,
/// ie. compute_cmT is part of the NIFS.P logic.
pub fn compute_cmT(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>,
w1: &Witness<C>,
ci1: &CommittedInstance<C>,
w2: &Witness<C>,
ci2: &CommittedInstance<C>,
) -> Result<(Vec<C::ScalarField>, C), Error> {
let z1: Vec<C::ScalarField> = [vec![ci1.u], ci1.x.to_vec(), w1.W.to_vec()].concat();
let z2: Vec<C::ScalarField> = [vec![ci2.u], ci2.x.to_vec(), w2.W.to_vec()].concat();
// compute cross terms
let T = Self::compute_T(r1cs, ci1.u, ci2.u, &z1, &z2)?;
// use r_T=0 since we don't need hiding property for cm(T)
let cmT = CS::commit(cs_prover_params, &T, &C::ScalarField::zero())?;
Ok((T, cmT))
}
pub fn compute_cyclefold_cmT(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>, // R1CS over C2.Fr=C1.Fq (here C=C2)
@ -202,25 +199,26 @@ where
Ok((T, cmT))
}
/// Verify committed folded instance (ci) relations. Notice that this method does not open the
/// commitments, but just checks that the given committed instances (ci1, ci2) when folded
/// result in the folded committed instance (ci3) values.
pub fn verify_folded_instance(
/// folds two committed instances with the given r and cmT. This method is used by
/// Nova::verify, but also by Nova::prove and the CycleFoldNIFS::verify.
pub fn fold_committed_instances(
r: C::ScalarField,
ci1: &CommittedInstance<C>,
ci2: &CommittedInstance<C>,
ci3: &CommittedInstance<C>,
U_i: &CommittedInstance<C>,
u_i: &CommittedInstance<C>,
cmT: &C,
) -> Result<(), Error> {
let expected = Self::verify(r, ci1, ci2, cmT);
if ci3.cmE != expected.cmE
|| ci3.u != expected.u
|| ci3.cmW != expected.cmW
|| ci3.x != expected.x
{
return Err(Error::NotSatisfied);
}
Ok(())
) -> CommittedInstance<C> {
let r2 = r * r;
let cmE = U_i.cmE + cmT.mul(r) + u_i.cmE.mul(r2);
let u = U_i.u + r * u_i.u;
let cmW = U_i.cmW + u_i.cmW.mul(r);
let x = U_i
.x
.iter()
.zip(&u_i.x)
.map(|(a, b)| *a + (r * b))
.collect::<Vec<C::ScalarField>>();
CommittedInstance { cmE, u, cmW, x }
}
pub fn prove_commitments(
@ -241,101 +239,19 @@ where
#[cfg(test)]
pub mod tests {
use super::*;
use crate::transcript::poseidon::poseidon_canonical_config;
use ark_crypto_primitives::sponge::{poseidon::PoseidonSponge, CryptographicSponge};
use ark_ff::{BigInteger, PrimeField};
use ark_crypto_primitives::sponge::poseidon::PoseidonSponge;
use ark_pallas::{Fr, Projective};
use ark_std::{test_rng, UniformRand};
use crate::arith::{
r1cs::tests::{get_test_r1cs, get_test_z},
Arith,
};
use crate::arith::{r1cs::tests::get_test_r1cs, Arith};
use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::traits::NIFSTrait;
use crate::folding::nova::nifs::tests::test_nifs_opt;
#[test]
fn test_nifs_nova() {
let (W, U) = test_nifs_opt::<NIFS<Projective, Pedersen<Projective>>>();
let (W, U) = test_nifs_opt::<NIFS<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>>();
// check the last folded instance relation
let r1cs = get_test_r1cs();
r1cs.check_relation(&W, &U).unwrap();
}
/// runs a loop using the NIFS trait, and returns the last Witness and CommittedInstance so
/// that their relation can be checked.
pub(crate) fn test_nifs_opt<N: NIFSTrait<Projective, Pedersen<Projective>>>(
) -> (N::Witness, N::CommittedInstance) {
let r1cs = get_test_r1cs();
let z = get_test_z(3);
let (w, x) = r1cs.split_z(&z);
let mut rng = ark_std::test_rng();
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, r1cs.A.n_cols).unwrap();
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript = PoseidonSponge::<Fr>::new(&poseidon_config);
let pp_hash = Fr::rand(&mut rng);
// prepare the running instance
let mut running_witness = N::new_witness(w.clone(), r1cs.A.n_rows, test_rng());
let mut running_committed_instance =
N::new_instance(&running_witness, &pedersen_params, x, vec![]).unwrap();
let num_iters = 10;
for i in 0..num_iters {
// prepare the incoming instance
let incoming_instance_z = get_test_z(i + 4);
let (w, x) = r1cs.split_z(&incoming_instance_z);
let incoming_witness = N::new_witness(w.clone(), r1cs.A.n_rows, test_rng());
let incoming_committed_instance =
N::new_instance(&incoming_witness, &pedersen_params, x, vec![]).unwrap();
let (aux_p, aux_v) = N::compute_aux(
&pedersen_params,
&r1cs,
&running_witness,
&running_committed_instance,
&incoming_witness,
&incoming_committed_instance,
)
.unwrap();
let r_bits = N::get_challenge(
&mut transcript,
pp_hash,
&running_committed_instance,
&incoming_committed_instance,
&aux_v,
);
let r = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
// NIFS.P
let (folded_witness, _) = N::prove(
r,
&running_witness,
&running_committed_instance,
&incoming_witness,
&incoming_committed_instance,
&aux_p,
&aux_v,
)
.unwrap();
// NIFS.V
let folded_committed_instance = N::verify(
r,
&running_committed_instance,
&incoming_committed_instance,
&aux_v,
);
// set running_instance for next loop iteration
running_witness = folded_witness;
running_committed_instance = folded_committed_instance;
}
(running_witness, running_committed_instance)
}
}

folding-schemes/src/folding/nova/ova.rs → folding-schemes/src/folding/nova/nifs/ova.rs

@ -1,19 +1,18 @@
/// This module contains the implementation the NIFSTrait for the
/// [Ova](https://hackmd.io/V4838nnlRKal9ZiTHiGYzw) NIFS (Non-Interactive Folding Scheme) as
/// outlined in the protocol description doc:
/// <https://hackmd.io/V4838nnlRKal9ZiTHiGYzw#Construction> authored by Benedikt Bünz.
/// [Ova](https://hackmd.io/V4838nnlRKal9ZiTHiGYzw) NIFS (Non-Interactive Folding Scheme).
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_ff::{BigInteger, PrimeField};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::fmt::Debug;
use ark_std::rand::RngCore;
use ark_std::{One, UniformRand, Zero};
use std::marker::PhantomData;
use super::{circuits::ChallengeGadget, traits::NIFSTrait};
use super::NIFSTrait;
use crate::arith::r1cs::R1CS;
use crate::commitment::CommitmentScheme;
use crate::folding::nova::circuits::ChallengeGadget;
use crate::folding::{circuits::CF1, traits::Dummy};
use crate::transcript::{AbsorbNonNative, Transcript};
use crate::utils::vec::{hadamard, mat_vec_mul, vec_scalar_mul, vec_sub};
@ -51,7 +50,6 @@ where
}
}
// #[allow(dead_code)] // Clippy flag needed for now.
/// A Witness in Ova is represented by `w`. It also contains a blinder which can or not be used
/// when committing to the witness itself.
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
@ -103,13 +101,19 @@ impl Dummy<&R1CS>> for Witness {
}
/// Implements the NIFS (Non-Interactive Folding Scheme) trait for Ova.
pub struct NIFS<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool = false> {
pub struct NIFS<
C: CurveGroup,
CS: CommitmentScheme<C, H>,
T: Transcript<C::ScalarField>,
const H: bool = false,
> {
_c: PhantomData<C>,
_cp: PhantomData<CS>,
_t: PhantomData<T>,
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool> NIFSTrait<C, CS, H>
for NIFS<C, CS, H>
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, T: Transcript<C::ScalarField>, const H: bool>
NIFSTrait<C, CS, T, H> for NIFS<C, CS, T, H>
where
<C as Group>::ScalarField: Absorb,
<C as CurveGroup>::BaseField: PrimeField,
@ -117,15 +121,16 @@ where
type CommittedInstance = CommittedInstance<C>;
type Witness = Witness<C>;
type ProverAux = ();
type VerifierAux = ();
type Proof = ();
fn new_witness(w: Vec<C::ScalarField>, _e_len: usize, rng: impl RngCore) -> Self::Witness {
Witness::new::<H>(w, rng)
}
fn new_instance(
W: &Self::Witness,
_rng: impl RngCore,
params: &CS::ProverParams,
W: &Self::Witness,
x: Vec<C::ScalarField>,
aux: Vec<C::ScalarField>, // t_or_e
) -> Result<Self::CommittedInstance, Error> {
@ -149,40 +154,55 @@ where
Ok(Self::Witness { w, rW })
}
fn compute_aux(
fn prove(
_cs_prover_params: &CS::ProverParams,
_r1cs: &R1CS<C::ScalarField>,
_W_i: &Self::Witness,
_U_i: &Self::CommittedInstance,
_w_i: &Self::Witness,
_u_i: &Self::CommittedInstance,
) -> Result<(Self::ProverAux, Self::VerifierAux), Error> {
Ok(((), ()))
}
fn get_challenge<T: Transcript<C::ScalarField>>(
transcript: &mut T,
pp_hash: C::ScalarField, // public params hash
pp_hash: C::ScalarField,
W_i: &Self::Witness,
U_i: &Self::CommittedInstance,
w_i: &Self::Witness,
u_i: &Self::CommittedInstance,
_aux: &Self::VerifierAux,
) -> Vec<bool> {
// reuse Nova's get_challenge method
ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
transcript, pp_hash, U_i, u_i, None, // empty in Ova's case
)
}
) -> Result<
(
Self::Witness,
Self::CommittedInstance,
Self::Proof,
Vec<bool>,
),
Error,
> {
let mut transcript_v = transcript.clone();
// Notice: `prove` method is implemented at the trait level.
let r_bits = ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
transcript, pp_hash, U_i, u_i, None, // cmT not used in Ova
);
let r_Fr = C::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let w = Self::fold_witness(r_Fr, W_i, w_i, &())?;
let (ci, _r_bits_v) = Self::verify(&mut transcript_v, pp_hash, U_i, u_i, &())?;
#[cfg(test)]
assert_eq!(_r_bits_v, r_bits);
Ok((w, ci, (), r_bits))
}
fn verify(
// r comes from the transcript, and is a n-bit (N_BITS_CHALLENGE) element
r: C::ScalarField,
transcript: &mut T,
pp_hash: C::ScalarField,
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
_aux: &Self::VerifierAux,
) -> Self::CommittedInstance {
// recall that r <==> alpha, and u <==> mu between Nova and Ova respectively
_proof: &Self::Proof, // unused in Ova
) -> Result<(Self::CommittedInstance, Vec<bool>), Error> {
let r_bits = ChallengeGadget::<C, Self::CommittedInstance>::get_challenge_native(
transcript, pp_hash, U_i, u_i, None, // cmT not used in Ova
);
let r = C::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
// recall that r=alpha, and u=mu between Nova and Ova respectively
let u = U_i.u + r; // u_i.u is always 1 IN ova as we just can do sequential IVC.
let cmWE = U_i.cmWE + u_i.cmWE.mul(r);
let x = U_i
@ -192,7 +212,7 @@ where
.map(|(a, b)| *a + (r * b))
.collect::<Vec<C::ScalarField>>();
Self::CommittedInstance { cmWE, u, x }
Ok((Self::CommittedInstance { cmWE, u, x }, r_bits))
}
}
@ -224,6 +244,7 @@ pub mod tests {
use crate::arith::{r1cs::tests::get_test_r1cs, Arith};
use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::nifs::tests::test_nifs_opt;
use ark_crypto_primitives::sponge::poseidon::PoseidonSponge;
// Simple auxiliary structure mainly used to help pass a witness for which we can check
// easily an R1CS relation.
@ -257,7 +278,7 @@ pub mod tests {
#[test]
fn test_nifs_ova() {
let (W, U) = test_nifs_opt::<NIFS<Projective, Pedersen<Projective>>>();
let (W, U) = test_nifs_opt::<NIFS<Projective, Pedersen<Projective>, PoseidonSponge<Fr>>>();
// check the last folded instance relation
let r1cs = get_test_r1cs();

+ 282
- 0
folding-schemes/src/folding/nova/nifs/pointvsline.rs

@ -0,0 +1,282 @@
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::{One, PrimeField};
use ark_poly::univariate::DensePolynomial;
use ark_poly::{DenseMultilinearExtension, DenseUVPolynomial, Polynomial};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{log2, Zero};
use super::mova::{CommittedInstance, Witness};
use crate::transcript::Transcript;
use crate::utils::mle::dense_vec_to_dense_mle;
use crate::Error;
/// Implements the Points vs Line as described in
/// [Mova](https://eprint.iacr.org/2024/1220.pdf) and Section 4.5.2 from Thaler’s book
/// Claim from step 3 protocol 6
pub struct PointvsLineEvaluationClaim<C: CurveGroup> {
pub mleE1_prime: C::ScalarField,
pub mleE2_prime: C::ScalarField,
pub rE_prime: Vec<C::ScalarField>,
}
/// Proof from step 1 protocol 6
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct PointVsLineProof<C: CurveGroup> {
pub h1: DensePolynomial<C::ScalarField>,
pub h2: DensePolynomial<C::ScalarField>,
}
#[derive(Clone, Debug, Default)]
pub struct PointVsLine<C: CurveGroup, T: Transcript<C::ScalarField>> {
_phantom_C: std::marker::PhantomData<C>,
_phantom_T: std::marker::PhantomData<T>,
}
/// Protocol 6 from Mova
impl<C: CurveGroup, T: Transcript<C::ScalarField>> PointVsLine<C, T>
where
<C as Group>::ScalarField: Absorb,
{
pub fn prove(
transcript: &mut T,
ci1: &CommittedInstance<C>,
ci2: &CommittedInstance<C>,
w1: &Witness<C>,
w2: &Witness<C>,
) -> Result<(PointVsLineProof<C>, PointvsLineEvaluationClaim<C>), Error> {
let n_vars: usize = log2(w1.E.len()) as usize;
let mleE1 = dense_vec_to_dense_mle(n_vars, &w1.E);
let mleE2 = dense_vec_to_dense_mle(n_vars, &w2.E);
// We have l(0) = r1, l(1) = r2 so we know that l(x) = r1 + x(r2-r1) thats why we need r2-r1
let r1_sub_r2: Vec<<C>::ScalarField> = ci1
.rE
.iter()
.zip(&ci2.rE)
.map(|(&r1, r2)| r1 - r2)
.collect();
let h1 = compute_h(&mleE1, &ci1.rE, &r1_sub_r2)?;
let h2 = compute_h(&mleE2, &ci1.rE, &r1_sub_r2)?;
transcript.absorb(&h1.coeffs());
transcript.absorb(&h2.coeffs());
let beta_scalar = C::ScalarField::from_le_bytes_mod_order(b"beta");
transcript.absorb(&beta_scalar);
let beta = transcript.get_challenge();
let mleE1_prime = h1.evaluate(&beta);
let mleE2_prime = h2.evaluate(&beta);
let rE_prime = compute_l(&ci1.rE, &r1_sub_r2, beta)?;
Ok((
PointVsLineProof { h1, h2 },
PointvsLineEvaluationClaim {
mleE1_prime,
mleE2_prime,
rE_prime,
},
))
}
pub fn verify(
transcript: &mut T,
ci1: &CommittedInstance<C>,
ci2: &CommittedInstance<C>,
proof: &PointVsLineProof<C>,
mleE1_prime: &<C>::ScalarField,
mleE2_prime: &<C>::ScalarField,
) -> Result<
Vec<<C>::ScalarField>, // rE=rE1'=rE2'.
Error,
> {
if proof.h1.evaluate(&C::ScalarField::zero()) != ci1.mleE {
return Err(Error::NotEqual);
}
if proof.h2.evaluate(&C::ScalarField::one()) != ci2.mleE {
return Err(Error::NotEqual);
}
transcript.absorb(&proof.h1.coeffs());
transcript.absorb(&proof.h2.coeffs());
let beta_scalar = C::ScalarField::from_le_bytes_mod_order(b"beta");
transcript.absorb(&beta_scalar);
let beta = transcript.get_challenge();
if *mleE1_prime != proof.h1.evaluate(&beta) {
return Err(Error::NotEqual);
}
if *mleE2_prime != proof.h2.evaluate(&beta) {
return Err(Error::NotEqual);
}
let r1_sub_r2: Vec<<C>::ScalarField> = ci1
.rE
.iter()
.zip(&ci2.rE)
.map(|(&r1, r2)| r1 - r2)
.collect();
let rE_prime = compute_l(&ci1.rE, &r1_sub_r2, beta)?;
Ok(rE_prime)
}
}
fn compute_h<F: PrimeField>(
mle: &DenseMultilinearExtension<F>,
r1: &[F],
r1_sub_r2: &[F],
) -> Result<DensePolynomial<F>, Error> {
let n_vars: usize = mle.num_vars;
if r1.len() != r1_sub_r2.len() || r1.len() != n_vars {
return Err(Error::NotEqual);
}
// Initialize the polynomial vector from the evaluations in the multilinear extension.
// Each evaluation is turned into a constant polynomial.
let mut poly: Vec<DensePolynomial<F>> = mle
.evaluations
.iter()
.map(|&x| DensePolynomial::from_coefficients_slice(&[x]))
.collect();
for (i, (&r1_i, &r1_sub_r2_i)) in r1.iter().zip(r1_sub_r2.iter()).enumerate().take(n_vars) {
// Create a linear polynomial r(X) = r1_i + (r1_sub_r2_i) * X (basically l)
let r = DensePolynomial::from_coefficients_slice(&[r1_i, r1_sub_r2_i]);
let half_len = 1 << (n_vars - i - 1);
for b in 0..half_len {
let left = &poly[b << 1];
let right = &poly[(b << 1) + 1];
poly[b] = left + &(&r * &(right - left));
}
}
// After the loop, we should be left with a single polynomial, so return it.
Ok(poly.swap_remove(0))
}
fn compute_l<F: PrimeField>(r1: &[F], r1_sub_r2: &[F], x: F) -> Result<Vec<F>, Error> {
if r1.len() != r1_sub_r2.len() {
return Err(Error::NotEqual);
}
// we have l(x) = r1 + x(r2-r1) so return the result
Ok(r1
.iter()
.zip(r1_sub_r2)
.map(|(&r1, &r1_sub_r0)| r1 + x * r1_sub_r0)
.collect())
}
#[cfg(test)]
mod tests {
use super::{compute_h, compute_l};
use ark_pallas::Fq;
use ark_poly::{DenseMultilinearExtension, DenseUVPolynomial};
#[test]
fn test_compute_h() {
let mle = DenseMultilinearExtension::from_evaluations_slice(1, &[Fq::from(1), Fq::from(2)]);
let r0 = [Fq::from(5)];
let r1 = [Fq::from(6)];
let r1_sub_r0: Vec<Fq> = r1.iter().zip(&r0).map(|(&x, y)| x - y).collect();
let result = compute_h(&mle, &r0, &r1_sub_r0).unwrap();
assert_eq!(
result,
DenseUVPolynomial::from_coefficients_slice(&[Fq::from(6), Fq::from(1)])
);
let mle = DenseMultilinearExtension::from_evaluations_slice(1, &[Fq::from(1), Fq::from(2)]);
let r0 = [Fq::from(4)];
let r1 = [Fq::from(7)];
let r1_sub_r0: Vec<Fq> = r1.iter().zip(&r0).map(|(&x, y)| x - y).collect();
let result = compute_h(&mle, &r0, &r1_sub_r0).unwrap();
assert_eq!(
result,
DenseUVPolynomial::from_coefficients_slice(&[Fq::from(5), Fq::from(3)])
);
let mle = DenseMultilinearExtension::from_evaluations_slice(
2,
&[Fq::from(1), Fq::from(2), Fq::from(3), Fq::from(4)],
);
let r0 = [Fq::from(5), Fq::from(4)];
let r1 = [Fq::from(2), Fq::from(7)];
let r1_sub_r0: Vec<Fq> = r1.iter().zip(&r0).map(|(&x, y)| x - y).collect();
let result = compute_h(&mle, &r0, &r1_sub_r0).unwrap();
assert_eq!(
result,
DenseUVPolynomial::from_coefficients_slice(&[Fq::from(14), Fq::from(3)])
);
let mle = DenseMultilinearExtension::from_evaluations_slice(
3,
&[
Fq::from(1),
Fq::from(2),
Fq::from(3),
Fq::from(4),
Fq::from(5),
Fq::from(6),
Fq::from(7),
Fq::from(8),
],
);
let r0 = [Fq::from(1), Fq::from(2), Fq::from(3)];
let r1 = [Fq::from(5), Fq::from(6), Fq::from(7)];
let r1_sub_r0: Vec<Fq> = r1.iter().zip(&r0).map(|(&x, y)| x - y).collect();
let result = compute_h(&mle, &r0, &r1_sub_r0).unwrap();
assert_eq!(
result,
DenseUVPolynomial::from_coefficients_slice(&[Fq::from(18), Fq::from(28)])
);
}
#[test]
fn test_compute_h_errors() {
let mle = DenseMultilinearExtension::from_evaluations_slice(1, &[Fq::from(1), Fq::from(2)]);
let r0 = [Fq::from(5)];
let r1_sub_r0 = [];
let result = compute_h(&mle, &r0, &r1_sub_r0);
assert!(result.is_err());
let mle = DenseMultilinearExtension::from_evaluations_slice(
2,
&[Fq::from(1), Fq::from(2), Fq::from(1), Fq::from(2)],
);
let r0 = [Fq::from(4)];
let r1 = [Fq::from(7)];
let r1_sub_r0: Vec<Fq> = r1.iter().zip(&r0).map(|(&x, y)| x - y).collect();
let result = compute_h(&mle, &r0, &r1_sub_r0);
assert!(result.is_err())
}
#[test]
fn test_compute_l() {
// Test with simple non-zero values
let r1 = vec![Fq::from(1), Fq::from(2), Fq::from(3)];
let r1_sub_r2 = vec![Fq::from(4), Fq::from(5), Fq::from(6)];
let x = Fq::from(2);
let expected = vec![
Fq::from(1) + Fq::from(2) * Fq::from(4),
Fq::from(2) + Fq::from(2) * Fq::from(5),
Fq::from(3) + Fq::from(2) * Fq::from(6),
];
let result = compute_l(&r1, &r1_sub_r2, x).unwrap();
assert_eq!(result, expected);
}
}

+ 0
- 73
folding-schemes/src/folding/nova/traits.rs

@ -1,6 +1,4 @@
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::CurveGroup;
use ark_std::fmt::Debug;
use ark_std::{rand::RngCore, UniformRand};
use super::{CommittedInstance, Witness};
@ -8,79 +6,8 @@ use crate::arith::ArithSampler;
use crate::arith::{r1cs::R1CS, Arith};
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::CF1;
use crate::transcript::Transcript;
use crate::Error;
/// Defines the NIFS (Non-Interactive Folding Scheme) trait, initially defined in
/// [Nova](https://eprint.iacr.org/2021/370.pdf), and it's variants
/// [Ova](https://hackmd.io/V4838nnlRKal9ZiTHiGYzw) and
/// [Mova](https://eprint.iacr.org/2024/1220.pdf).
/// `H` specifies whether the NIFS will use a blinding factor.
pub trait NIFSTrait<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool = false> {
type CommittedInstance: Debug + Clone + Absorb;
type Witness: Debug + Clone;
type ProverAux: Debug + Clone; // Prover's aux params
type VerifierAux: Debug + Clone; // Verifier's aux params
fn new_witness(w: Vec<C::ScalarField>, e_len: usize, rng: impl RngCore) -> Self::Witness;
fn new_instance(
w: &Self::Witness,
params: &CS::ProverParams,
x: Vec<C::ScalarField>,
aux: Vec<C::ScalarField>, // t_or_e in Ova, empty for Nova
) -> Result<Self::CommittedInstance, Error>;
fn fold_witness(
r: C::ScalarField,
W: &Self::Witness, // running witness
w: &Self::Witness, // incoming witness
aux: &Self::ProverAux,
) -> Result<Self::Witness, Error>;
/// computes the auxiliary parameters, eg. in Nova: (T, cmT), in Ova: T
fn compute_aux(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>,
W_i: &Self::Witness,
U_i: &Self::CommittedInstance,
w_i: &Self::Witness,
u_i: &Self::CommittedInstance,
) -> Result<(Self::ProverAux, Self::VerifierAux), Error>;
fn get_challenge<T: Transcript<C::ScalarField>>(
transcript: &mut T,
pp_hash: C::ScalarField, // public params hash
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
aux: &Self::VerifierAux, // ie. in Nova wouild be cmT, in Ova it's empty
) -> Vec<bool>;
/// NIFS.P. Notice that this method is implemented at the trait level, and depends on the other
/// two methods `fold_witness` and `verify`.
fn prove(
r: C::ScalarField,
W_i: &Self::Witness, // running witness
U_i: &Self::CommittedInstance, // running committed instance
w_i: &Self::Witness, // incoming witness
u_i: &Self::CommittedInstance, // incoming committed instance
aux_p: &Self::ProverAux,
aux_v: &Self::VerifierAux,
) -> Result<(Self::Witness, Self::CommittedInstance), Error> {
let w = Self::fold_witness(r, W_i, w_i, aux_p)?;
let ci = Self::verify(r, U_i, u_i, aux_v);
Ok((w, ci))
}
/// NIFS.V
fn verify(
// r comes from the transcript, and is a n-bit (N_BITS_CHALLENGE) element
r: C::ScalarField,
U_i: &Self::CommittedInstance,
u_i: &Self::CommittedInstance,
aux: &Self::VerifierAux,
) -> Self::CommittedInstance;
}
/// Implements `Arith` for R1CS, where the witness is of type [`Witness`], and
/// the committed instance is of type [`CommittedInstance`].
///

+ 35
- 89
folding-schemes/src/folding/nova/zk.rs

@ -30,8 +30,7 @@
/// paper).
/// And the Use-case-2 would require a modified version of the Decider circuits.
///
use ark_crypto_primitives::sponge::CryptographicSponge;
use ark_ff::{BigInteger, PrimeField};
use ark_ff::PrimeField;
use ark_std::{One, Zero};
use crate::{
@ -41,7 +40,7 @@ use crate::{
};
use ark_crypto_primitives::sponge::{
poseidon::{PoseidonConfig, PoseidonSponge},
Absorb,
Absorb, CryptographicSponge,
};
use ark_ec::{CurveGroup, Group};
use ark_r1cs_std::{
@ -52,21 +51,16 @@ use ark_r1cs_std::{
use crate::{commitment::CommitmentScheme, folding::circuits::CF2, frontend::FCircuit, Error};
use super::{
circuits::ChallengeGadget, nifs::NIFS, traits::NIFSTrait, CommittedInstance, Nova, Witness,
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova, Witness,
};
// We use the same definition of a folding proof as in https://eprint.iacr.org/2023/969.pdf
// It consists in the commitment to the T term
pub struct FoldingProof<C: CurveGroup> {
cmT: C,
}
pub struct RandomizedIVCProof<C1: CurveGroup, C2: CurveGroup> {
pub U_i: CommittedInstance<C1>,
pub u_i: CommittedInstance<C1>,
pub U_r: CommittedInstance<C1>,
pub pi: FoldingProof<C1>,
pub pi_prime: FoldingProof<C1>,
pub pi: C1, // proof = cmT
pub pi_prime: C1, // proof' = cmT'
pub W_i_prime: Witness<C1>,
pub cf_U_i: CommittedInstance<C2>,
pub cf_W_i: Witness<C2>,
@ -77,24 +71,6 @@ where
<C1 as Group>::ScalarField: Absorb,
<C1 as CurveGroup>::BaseField: PrimeField,
{
/// Computes challenge required before folding instances
fn get_folding_challenge(
sponge: &mut PoseidonSponge<C1::ScalarField>,
pp_hash: C1::ScalarField,
U_i: CommittedInstance<C1>,
u_i: CommittedInstance<C1>,
cmT: C1,
) -> Result<C1::ScalarField, Error> {
let r_bits = ChallengeGadget::<C1, CommittedInstance<C1>>::get_challenge_native(
sponge,
pp_hash,
&U_i,
&u_i,
Some(&cmT),
);
C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits)).ok_or(Error::OutOfBounds)
}
/// Compute a zero-knowledge proof of a Nova IVC proof
/// It implements the prover of appendix D.4.in https://eprint.iacr.org/2023/573.pdf
/// For further details on why folding is hiding, see lemma 9
@ -118,68 +94,45 @@ where
GC2: ToConstraintFieldGadget<<C2 as CurveGroup>::BaseField>,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
{
let mut challenges_sponge = PoseidonSponge::<C1::ScalarField>::new(&nova.poseidon_config);
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&nova.poseidon_config);
// I. Compute proof for 'regular' instances
// 1. Fold the instance-witness pairs (U_i, W_i) with (u_i, w_i)
// a. Compute T
let (T, cmT) = NIFS::<C1, CS1, true>::compute_cmT(
let (W_f, U_f, cmT, _) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, true>::prove(
&nova.cs_pp,
&nova.r1cs,
&mut transcript,
nova.pp_hash,
&nova.w_i,
&nova.u_i,
&nova.W_i,
&nova.U_i,
)?;
// b. Compute folding challenge
let r = RandomizedIVCProof::<C1, C2>::get_folding_challenge(
&mut challenges_sponge,
nova.pp_hash,
nova.U_i.clone(),
nova.u_i.clone(),
cmT,
)?;
// c. Compute fold
let (W_f, U_f) =
NIFS::<C1, CS1, true>::prove(r, &nova.w_i, &nova.u_i, &nova.W_i, &nova.U_i, &T, &cmT)?;
// d. Store folding proof
let pi = FoldingProof { cmT };
// 2. Sample a satisfying relaxed R1CS instance-witness pair (W_r, U_r)
let (W_r, U_r) = nova
.r1cs
.sample_witness_instance::<CS1>(&nova.cs_pp, &mut rng)?;
// 3. Fold the instance-witness pair (U_f, W_f) with (U_r, W_r)
// a. Compute T
let (T_i_prime, cmT_i_prime) =
NIFS::<C1, CS1, true>::compute_cmT(&nova.cs_pp, &nova.r1cs, &W_f, &U_f, &W_r, &U_r)?;
// b. Compute folding challenge
let r_2 = RandomizedIVCProof::<C1, C2>::get_folding_challenge(
&mut challenges_sponge,
nova.pp_hash,
U_f.clone(),
U_r.clone(),
cmT_i_prime,
)?;
// c. Compute fold
let (W_i_prime, _) =
NIFS::<C1, CS1, true>::prove(r_2, &W_f, &U_f, &W_r, &U_r, &T_i_prime, &cmT_i_prime)?;
// d. Store folding proof
let pi_prime = FoldingProof { cmT: cmT_i_prime };
let (W_i_prime, _, cmT_i_prime, _) =
NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, true>::prove(
&nova.cs_pp,
&nova.r1cs,
&mut transcript,
nova.pp_hash,
&W_f,
&U_f,
&W_r,
&U_r,
)?;
Ok(RandomizedIVCProof {
U_i: nova.U_i.clone(),
u_i: nova.u_i.clone(),
U_r,
pi,
pi_prime,
pi: cmT,
pi_prime: cmT_i_prime,
W_i_prime,
cf_U_i: nova.cf_U_i.clone(),
cf_W_i: nova.cf_W_i.clone(),
@ -228,7 +181,7 @@ where
}
// b. Check computed hashes are correct
let mut sponge = PoseidonSponge::<C1::ScalarField>::new(poseidon_config);
let sponge = PoseidonSponge::<C1::ScalarField>::new(poseidon_config);
let expected_u_i_x = proof.U_i.hash(&sponge, pp_hash, i, &z_0, &z_i);
if expected_u_i_x != proof.u_i.x[0] {
return Err(Error::zkIVCVerificationFail);
@ -244,32 +197,25 @@ where
return Err(Error::zkIVCVerificationFail);
}
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(poseidon_config);
// 3. Obtain the U_f folded instance
// a. Compute folding challenge
let r = RandomizedIVCProof::<C1, C2>::get_folding_challenge(
&mut sponge,
let (U_f, _) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, true>::verify(
&mut transcript,
pp_hash,
proof.U_i.clone(),
proof.u_i.clone(),
proof.pi.cmT,
&proof.u_i,
&proof.U_i,
&proof.pi,
)?;
// b. Get the U_f instance
let U_f = NIFS::<C1, CS1, true>::verify(r, &proof.u_i, &proof.U_i, &proof.pi.cmT);
// 4. Obtain the U^{\prime}_i folded instance
// a. Compute folding challenge
let r_2 = RandomizedIVCProof::<C1, C2>::get_folding_challenge(
&mut sponge,
let (U_i_prime, _) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>, true>::verify(
&mut transcript,
pp_hash,
U_f.clone(),
proof.U_r.clone(),
proof.pi_prime.cmT,
&U_f,
&proof.U_r,
&proof.pi_prime,
)?;
// b. Compute fold
let U_i_prime = NIFS::<C1, CS1, true>::verify(r_2, &U_f, &proof.U_r, &proof.pi_prime.cmT);
// 5. Check that W^{\prime}_i is a satisfying witness
r1cs.check_relation(&proof.W_i_prime, &U_i_prime)?;

+ 2
- 0
solidity-verifiers/src/verifiers/nova_cyclefold.rs

@ -366,6 +366,7 @@ mod tests {
n_steps: usize,
) {
let (decider_pp, decider_vp) = decider_params;
let pp_hash = fs_params.1.pp_hash().unwrap();
let f_circuit = FC::new(()).unwrap();
@ -400,6 +401,7 @@ mod tests {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

Loading…
Cancel
Save