Implement HyperNova's IVC into the FoldingScheme trait (#116)

- implement the IVC `FoldingScheme` trait for HyperNova
- refactor Nova's preprocess logic to make it simplier to use
- add to Decider trait (& Nova's DeciderEth) a preprocess method
- get rid of the `init_nova_ivc_params` and `init_ivc_and_decider_params` methods in `examples` since this is achieved with the `FS::preprocess` & `Decider::preprocess` methods
  - (update the examples code to the simplified interface using
    FS::preprocess & Decider::preprocess)
This commit is contained in:
2024-07-04 11:14:31 +02:00
committed by GitHub
parent 456dc9f7a1
commit b5667968f4
25 changed files with 1144 additions and 465 deletions

View File

@@ -21,9 +21,10 @@ use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova,
Nova, PreprocessorParam,
},
frontend::{circom::CircomFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config,
Decider, FoldingScheme,
};
use solidity_verifiers::{
@@ -33,9 +34,6 @@ use solidity_verifiers::{
NovaCycleFoldVerifierKey,
};
mod utils;
use utils::init_ivc_and_decider_params;
fn main() {
// set the initial state
let z_0 = vec![Fr::from(3_u32)];
@@ -66,12 +64,8 @@ fn main() {
let f_circuit_params = (r1cs_path, wasm_path, 1, 2);
let f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) =
init_ivc_and_decider_params::<CircomFCircuit<Fr>>(f_circuit.clone());
pub type NOVA =
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type DECIDERETH_FCircuit = DeciderEth<
pub type N = Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type D = DeciderEth<
G1,
GVar,
G2,
@@ -80,30 +74,36 @@ fn main() {
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let (fs_pp, fs_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = NOVA::init(&fs_prover_params, f_circuit.clone(), z_0).unwrap();
let mut nova = N::init(&fs_pp, f_circuit.clone(), z_0).unwrap();
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &(fs_pp, fs_vp), nova.clone()).unwrap();
// run n steps of the folding iteration
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
let start = Instant::now();
nova.prove_step(external_inputs_at_step.clone()).unwrap();
nova.prove_step(rng, external_inputs_at_step.clone())
.unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = DECIDERETH_FCircuit::prove(
(g16_pk, fs_prover_params.cs_params.clone()),
rng,
nova.clone(),
)
.unwrap();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = DECIDERETH_FCircuit::verify(
(g16_vk.clone(), kzg_vk.clone()),
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
@@ -131,7 +131,7 @@ fn main() {
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);

View File

@@ -21,12 +21,10 @@ use core::marker::PhantomData;
use std::time::Instant;
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::Nova;
use folding_schemes::folding::nova::{Nova, PreprocessorParam};
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
use utils::init_nova_ivc_params;
use folding_schemes::{Error, FoldingScheme};
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 1 element, and z_{i+1} denotes the next state which we
@@ -65,14 +63,14 @@ use utils::init_nova_ivc_params;
/// The last state z_i is used together with the external input w_i as inputs to compute the new
/// state z_{i+1}.
#[derive(Clone, Debug)]
pub struct ExternalInputsCircuits<F: PrimeField>
pub struct ExternalInputsCircuit<F: PrimeField>
where
F: Absorb,
{
_f: PhantomData<F>,
poseidon_config: PoseidonConfig<F>,
}
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuit<F>
where
F: Absorb,
{
@@ -128,14 +126,14 @@ pub mod tests {
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
// test to check that the ExternalInputsCircuit computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let poseidon_config = poseidon_canonical_config::<Fr>();
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = ExternalInputsCircuits::<Fr>::new(poseidon_config).unwrap();
let circuit = ExternalInputsCircuit::<Fr>::new(poseidon_config).unwrap();
let z_i = vec![Fr::from(1_u32)];
let external_inputs = vec![Fr::from(3_u32)];
@@ -170,33 +168,35 @@ fn main() {
assert_eq!(external_inputs.len(), num_steps);
let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = ExternalInputsCircuits::<Fr>::new(poseidon_config).unwrap();
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params, _) =
init_nova_ivc_params::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
let F_circuit = ExternalInputsCircuit::<Fr>::new(poseidon_config.clone()).unwrap();
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// `type N = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
type N = Nova<
Projective,
GVar,
Projective2,
GVar2,
ExternalInputsCircuits<Fr>,
ExternalInputsCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
>;
let mut rng = rand::rngs::OsRng;
println!("Prepare Nova's ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit.clone());
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
let start = Instant::now();
folding_scheme
.prove_step(external_inputs_at_step.clone())
.prove_step(rng, external_inputs_at_step.clone())
.unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
@@ -209,8 +209,8 @@ fn main() {
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
N::verify(
nova_vp,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),

View File

@@ -19,16 +19,14 @@ use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use std::marker::PhantomData;
use std::time::Instant;
mod utils;
use utils::init_ivc_and_decider_params;
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova,
Nova, PreprocessorParam,
},
frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config,
Decider, Error, FoldingScheme,
};
use solidity_verifiers::{
@@ -82,11 +80,9 @@ fn main() {
let z_0 = vec![Fr::from(3_u32)];
let f_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) =
init_ivc_and_decider_params::<CubicFCircuit<Fr>>(f_circuit);
pub type NOVA = Nova<G1, GVar, G2, GVar2, CubicFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type DECIDERETH_FCircuit = DeciderEth<
pub type N = Nova<G1, GVar, G2, GVar2, CubicFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type D = DeciderEth<
G1,
GVar,
G2,
@@ -95,30 +91,35 @@ fn main() {
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config.clone(), f_circuit);
let (fs_pp, fs_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = NOVA::init(&fs_prover_params, f_circuit, z_0).unwrap();
let mut nova = N::init(&fs_pp, f_circuit, z_0).unwrap();
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &(fs_pp, fs_vp), nova.clone()).unwrap();
// run n steps of the folding iteration
for i in 0..n_steps {
let start = Instant::now();
nova.prove_step(vec![]).unwrap();
nova.prove_step(rng, vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = DECIDERETH_FCircuit::prove(
(g16_pk, fs_prover_params.cs_params.clone()),
rng,
nova.clone(),
)
.unwrap();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = DECIDERETH_FCircuit::verify(
(g16_vk.clone(), kzg_vk.clone()),
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
@@ -146,7 +147,7 @@ fn main() {
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);

View File

@@ -14,11 +14,10 @@ use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::Nova;
use folding_schemes::folding::nova::{Nova, PreprocessorParam};
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::init_nova_ivc_params;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
@@ -124,14 +123,13 @@ fn main() {
let F_circuit = MultiInputsFCircuit::<Fr>::new(()).unwrap();
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params, _) =
init_nova_ivc_params::<MultiInputsFCircuit<Fr>>(F_circuit);
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// `type N = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
type N = Nova<
Projective,
GVar,
Projective2,
@@ -141,21 +139,25 @@ fn main() {
Pedersen<Projective2>,
>;
println!("Prepare Nova ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step(vec![]).unwrap();
folding_scheme.prove_step(rng, vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
N::verify(
nova_vp,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),

View File

@@ -20,11 +20,10 @@ use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::Nova;
use folding_schemes::folding::nova::{Nova, PreprocessorParam};
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::init_nova_ivc_params;
/// This is the circuit that we want to fold, it implements the FCircuit trait.
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
@@ -109,13 +108,10 @@ fn main() {
let F_circuit = Sha256FCircuit::<Fr>::new(()).unwrap();
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params, _) = init_nova_ivc_params::<Sha256FCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// `type N = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
type N = Nova<
Projective,
GVar,
Projective2,
@@ -125,21 +121,27 @@ fn main() {
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
println!("Prepare Nova ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme");
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step(vec![]).unwrap();
folding_scheme.prove_step(rng, vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
N::verify(
nova_vp,
initial_state,
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),

View File

@@ -1,99 +0,0 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)]
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_crypto_primitives::snark::SNARK;
use ark_groth16::{Groth16, ProvingKey, VerifyingKey as G16VerifierKey};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use ark_std::Zero;
use std::time::Instant;
use folding_schemes::{
commitment::{
kzg::{ProverKey as KZGProverKey, KZG},
pedersen::Pedersen,
CommitmentScheme,
},
folding::nova::{
decider_eth_circuit::DeciderEthCircuit, get_r1cs, Nova, ProverParams, VerifierParams,
},
frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config,
FoldingScheme,
};
// This method computes the Nova's Prover & Verifier parameters for the example.
// Warning: this method is only for testing purposes. For a real world use case those parameters
// should be generated carefully (both the PoseidonConfig and the PedersenParams).
#[allow(clippy::type_complexity)]
pub(crate) fn init_nova_ivc_params<FC: FCircuit<Fr>>(
F_circuit: FC,
) -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
VerifierParams<G1, G2>,
KZGVerifierKey<Bn254>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
// get the CM & CF_CM len
let (r1cs, cf_r1cs) = get_r1cs::<G1, GVar, G2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
let cs_len = r1cs.A.n_rows;
let cf_cs_len = cf_r1cs.A.n_rows;
// let (pedersen_params, _) = Pedersen::<G1>::setup(&mut rng, cf_len).unwrap();
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
poseidon_config: poseidon_config.clone(),
cs_params: kzg_pk.clone(),
cf_cs_params: cf_pedersen_params,
};
let fs_verifier_params = VerifierParams::<G1, G2> {
poseidon_config: poseidon_config.clone(),
r1cs,
cf_r1cs,
};
(fs_prover_params, fs_verifier_params, kzg_vk)
}
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
#[allow(clippy::type_complexity)]
pub(crate) fn init_ivc_and_decider_params<FC: FCircuit<Fr>>(
f_circuit: FC,
) -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
ProvingKey<Bn254>,
G16VerifierKey<Bn254>,
) {
let mut rng = rand::rngs::OsRng;
let start = Instant::now();
let (fs_prover_params, _, kzg_vk) = init_nova_ivc_params::<FC>(f_circuit.clone());
println!("generated Nova folding params: {:?}", start.elapsed());
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
let decider_circuit =
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
nova.clone(),
)
.unwrap();
let start = Instant::now();
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
println!(
"generated G16 (Decider circuit) params: {:?}",
start.elapsed()
);
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
}
fn main() {}