mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-12 00:41:28 +01:00
Implement HyperNova's IVC into the FoldingScheme trait (#116)
- implement the IVC `FoldingScheme` trait for HyperNova
- refactor Nova's preprocess logic to make it simplier to use
- add to Decider trait (& Nova's DeciderEth) a preprocess method
- get rid of the `init_nova_ivc_params` and `init_ivc_and_decider_params` methods in `examples` since this is achieved with the `FS::preprocess` & `Decider::preprocess` methods
- (update the examples code to the simplified interface using
FS::preprocess & Decider::preprocess)
This commit is contained in:
@@ -8,10 +8,7 @@ use ark_std::rand::Rng;
|
||||
|
||||
use super::Witness;
|
||||
use crate::ccs::CCS;
|
||||
use crate::commitment::{
|
||||
pedersen::{Params as PedersenParams, Pedersen},
|
||||
CommitmentScheme,
|
||||
};
|
||||
use crate::commitment::CommitmentScheme;
|
||||
use crate::utils::mle::dense_vec_to_dense_mle;
|
||||
use crate::utils::vec::mat_vec_mul;
|
||||
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, VirtualPolynomial};
|
||||
@@ -27,10 +24,10 @@ pub struct CCCS<C: CurveGroup> {
|
||||
}
|
||||
|
||||
impl<F: PrimeField> CCS<F> {
|
||||
pub fn to_cccs<R: Rng, C: CurveGroup>(
|
||||
pub fn to_cccs<R: Rng, C: CurveGroup, CS: CommitmentScheme<C>>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
pedersen_params: &PedersenParams<C>,
|
||||
cs_params: &CS::ProverParams,
|
||||
z: &[C::ScalarField],
|
||||
) -> Result<(CCCS<C>, Witness<C::ScalarField>), Error>
|
||||
where
|
||||
@@ -38,8 +35,14 @@ impl<F: PrimeField> CCS<F> {
|
||||
C: CurveGroup<ScalarField = F>,
|
||||
{
|
||||
let w: Vec<C::ScalarField> = z[(1 + self.l)..].to_vec();
|
||||
let r_w = C::ScalarField::rand(rng);
|
||||
let C = Pedersen::<C, true>::commit(pedersen_params, &w, &r_w)?;
|
||||
|
||||
// if the commitment scheme is set to be hiding, set the random blinding parameter
|
||||
let r_w = if CS::is_hiding() {
|
||||
C::ScalarField::rand(rng)
|
||||
} else {
|
||||
C::ScalarField::zero()
|
||||
};
|
||||
let C = CS::commit(cs_params, &w, &r_w)?;
|
||||
|
||||
Ok((
|
||||
CCCS::<C> {
|
||||
@@ -95,19 +98,13 @@ impl<C: CurveGroup> CCCS<C> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform the check of the CCCS instance described at section 4.1
|
||||
/// Perform the check of the CCCS instance described at section 4.1,
|
||||
/// notice that this method does not check the commitment correctness
|
||||
pub fn check_relation(
|
||||
&self,
|
||||
pedersen_params: &PedersenParams<C>,
|
||||
ccs: &CCS<C::ScalarField>,
|
||||
w: &Witness<C::ScalarField>,
|
||||
) -> Result<(), Error> {
|
||||
// check that C is the commitment of w. Notice that this is not verifying a Pedersen
|
||||
// opening, but checking that the commitment comes from committing to the witness.
|
||||
if self.C != Pedersen::<C, true>::commit(pedersen_params, &w.w, &w.r_w)? {
|
||||
return Err(Error::NotSatisfied);
|
||||
}
|
||||
|
||||
// check CCCS relation
|
||||
let z: Vec<C::ScalarField> =
|
||||
[vec![C::ScalarField::one()], self.x.clone(), w.w.to_vec()].concat();
|
||||
|
||||
@@ -596,7 +596,7 @@ where
|
||||
|
||||
/// Returns the cs (ConstraintSystem) and the CCS out of the AugmentedFCircuit
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn compute_cs_ccs(
|
||||
pub fn compute_cs_ccs(
|
||||
&self,
|
||||
) -> Result<(ConstraintSystem<C1::ScalarField>, CCS<C1::ScalarField>), Error> {
|
||||
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
|
||||
@@ -720,8 +720,14 @@ where
|
||||
z_0.clone(),
|
||||
z_i1.clone(),
|
||||
)?;
|
||||
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(C1::ScalarField::zero())))?;
|
||||
x.enforce_equal(&u_i1_x)?;
|
||||
let (u_i1_x_base, _) = LCCCSVar::new_constant(cs.clone(), U_dummy)?.hash(
|
||||
&crh_params,
|
||||
FpVar::<CF1<C1>>::one(),
|
||||
z_0.clone(),
|
||||
z_i1.clone(),
|
||||
)?;
|
||||
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
|
||||
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;
|
||||
|
||||
// convert rho_bits to a `NonNativeFieldVar`
|
||||
let rho_nonnat = {
|
||||
@@ -817,15 +823,14 @@ mod tests {
|
||||
utils::{compute_c, compute_sigmas_thetas},
|
||||
Witness,
|
||||
},
|
||||
nova::{
|
||||
get_cm_coordinates, traits::NovaR1CS, CommittedInstance, Witness as NovaWitness,
|
||||
},
|
||||
nova::{traits::NovaR1CS, CommittedInstance, Witness as NovaWitness},
|
||||
},
|
||||
frontend::tests::CubicFCircuit,
|
||||
transcript::{
|
||||
poseidon::{poseidon_canonical_config, PoseidonTranscript, PoseidonTranscriptVar},
|
||||
Transcript,
|
||||
},
|
||||
utils::get_cm_coordinates,
|
||||
};
|
||||
|
||||
#[test]
|
||||
@@ -858,13 +863,17 @@ mod tests {
|
||||
// Create the LCCCS instances out of z_lcccs
|
||||
let mut lcccs_instances = Vec::new();
|
||||
for z_i in z_lcccs.iter() {
|
||||
let (inst, _) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (inst, _) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
lcccs_instances.push(inst);
|
||||
}
|
||||
// Create the CCCS instance out of z_cccs
|
||||
let mut cccs_instances = Vec::new();
|
||||
for z_i in z_cccs.iter() {
|
||||
let (inst, _) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (inst, _) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
cccs_instances.push(inst);
|
||||
}
|
||||
|
||||
@@ -950,7 +959,9 @@ mod tests {
|
||||
let mut lcccs_instances = Vec::new();
|
||||
let mut w_lcccs = Vec::new();
|
||||
for z_i in z_lcccs.iter() {
|
||||
let (running_instance, w) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (running_instance, w) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
lcccs_instances.push(running_instance);
|
||||
w_lcccs.push(w);
|
||||
}
|
||||
@@ -958,7 +969,9 @@ mod tests {
|
||||
let mut cccs_instances = Vec::new();
|
||||
let mut w_cccs = Vec::new();
|
||||
for z_i in z_cccs.iter() {
|
||||
let (new_instance, w) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (new_instance, w) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
cccs_instances.push(new_instance);
|
||||
w_cccs.push(w);
|
||||
}
|
||||
@@ -996,9 +1009,7 @@ mod tests {
|
||||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
||||
|
||||
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
|
||||
folded_lcccs
|
||||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
||||
.unwrap();
|
||||
folded_lcccs.check_relation(&ccs, &folded_witness).unwrap();
|
||||
|
||||
// allocate circuit inputs
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
@@ -1042,7 +1053,9 @@ mod tests {
|
||||
let i = Fr::from(3_u32);
|
||||
let z_0 = vec![Fr::from(3_u32)];
|
||||
let z_i = vec![Fr::from(3_u32)];
|
||||
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let (lcccs, _) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z1)
|
||||
.unwrap();
|
||||
let h = lcccs
|
||||
.clone()
|
||||
.hash(&poseidon_config, i, z_0.clone(), z_i.clone())
|
||||
@@ -1104,11 +1117,11 @@ mod tests {
|
||||
let mut z_i = z_0.clone();
|
||||
|
||||
// prepare the dummy instances
|
||||
let W_dummy = Witness::<Fr>::new(vec![Fr::zero(); ccs.n - ccs.l - 1]);
|
||||
let W_dummy = Witness::<Fr>::dummy(&ccs);
|
||||
let U_dummy = LCCCS::<Projective>::dummy(ccs.l, ccs.t, ccs.s);
|
||||
let w_dummy = W_dummy.clone();
|
||||
let u_dummy = CCCS::<Projective>::dummy(ccs.l);
|
||||
let (cf_w_dummy, cf_u_dummy): (NovaWitness<Projective2>, CommittedInstance<Projective2>) =
|
||||
let (cf_W_dummy, cf_U_dummy): (NovaWitness<Projective2>, CommittedInstance<Projective2>) =
|
||||
cf_r1cs.dummy_instance();
|
||||
|
||||
// set the initial dummy instances
|
||||
@@ -1116,8 +1129,8 @@ mod tests {
|
||||
let mut U_i = U_dummy.clone();
|
||||
let mut w_i = w_dummy.clone();
|
||||
let mut u_i = u_dummy.clone();
|
||||
let mut cf_W_i = cf_w_dummy.clone();
|
||||
let mut cf_U_i = cf_u_dummy.clone();
|
||||
let mut cf_W_i = cf_W_dummy.clone();
|
||||
let mut cf_U_i = cf_U_dummy.clone();
|
||||
u_i.x = vec![
|
||||
U_i.hash(&poseidon_config, Fr::zero(), z_0.clone(), z_i.clone())
|
||||
.unwrap(),
|
||||
@@ -1128,28 +1141,19 @@ mod tests {
|
||||
let mut iFr = Fr::zero();
|
||||
for i in 0..n_steps {
|
||||
let start = Instant::now();
|
||||
let mut transcript_p: PoseidonTranscript<Projective> =
|
||||
PoseidonTranscript::<Projective>::new(&poseidon_config.clone());
|
||||
let (nimfs_proof, U_i1, W_i1, rho_bits) =
|
||||
NIMFS::<Projective, PoseidonTranscript<Projective>>::prove(
|
||||
&mut transcript_p,
|
||||
&ccs,
|
||||
&[U_i.clone()],
|
||||
&[u_i.clone()],
|
||||
&[W_i.clone()],
|
||||
&[w_i.clone()],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// sanity check: check the folded instance relation
|
||||
U_i1.check_relation(&pedersen_params, &ccs, &W_i1).unwrap();
|
||||
|
||||
let z_i1 = F_circuit.step_native(i, z_i.clone(), vec![]).unwrap();
|
||||
let u_i1_x = U_i1
|
||||
.hash(&poseidon_config, iFr + Fr::one(), z_0.clone(), z_i1.clone())
|
||||
.unwrap();
|
||||
|
||||
let (U_i1, W_i1);
|
||||
|
||||
if i == 0 {
|
||||
W_i1 = Witness::<Fr>::dummy(&ccs);
|
||||
U_i1 = LCCCS::dummy(ccs.l, ccs.t, ccs.s);
|
||||
|
||||
let u_i1_x = U_i1
|
||||
.hash(&poseidon_config, Fr::one(), z_0.clone(), z_i1.clone())
|
||||
.unwrap();
|
||||
|
||||
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public
|
||||
// input in the AugmentedFCircuit
|
||||
let cf_u_i1_x = cf_U_i.hash_cyclefold(&poseidon_config).unwrap();
|
||||
@@ -1160,8 +1164,8 @@ mod tests {
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
ccs: ccs.clone(),
|
||||
i: Some(iFr),
|
||||
i_usize: Some(i),
|
||||
i: Some(Fr::zero()),
|
||||
i_usize: Some(0),
|
||||
z_0: Some(z_0.clone()),
|
||||
z_i: Some(z_i.clone()),
|
||||
external_inputs: Some(vec![]),
|
||||
@@ -1170,7 +1174,7 @@ mod tests {
|
||||
U_i1_C: Some(U_i1.C),
|
||||
F: F_circuit,
|
||||
x: Some(u_i1_x),
|
||||
nimfs_proof: Some(nimfs_proof),
|
||||
nimfs_proof: None,
|
||||
|
||||
// cyclefold values
|
||||
cf_u_i_cmW: None,
|
||||
@@ -1179,6 +1183,27 @@ mod tests {
|
||||
cf_cmT: None,
|
||||
};
|
||||
} else {
|
||||
let mut transcript_p: PoseidonTranscript<Projective> =
|
||||
PoseidonTranscript::<Projective>::new(&poseidon_config.clone());
|
||||
let (rho_bits, nimfs_proof);
|
||||
(nimfs_proof, U_i1, W_i1, rho_bits) =
|
||||
NIMFS::<Projective, PoseidonTranscript<Projective>>::prove(
|
||||
&mut transcript_p,
|
||||
&ccs,
|
||||
&[U_i.clone()],
|
||||
&[u_i.clone()],
|
||||
&[W_i.clone()],
|
||||
&[w_i.clone()],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// sanity check: check the folded instance relation
|
||||
U_i1.check_relation(&ccs, &W_i1).unwrap();
|
||||
|
||||
let u_i1_x = U_i1
|
||||
.hash(&poseidon_config, iFr + Fr::one(), z_0.clone(), z_i1.clone())
|
||||
.unwrap();
|
||||
|
||||
let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap();
|
||||
// CycleFold part:
|
||||
// get the vector used as public inputs 'x' in the CycleFold circuit
|
||||
@@ -1260,8 +1285,10 @@ mod tests {
|
||||
let r1cs_z = [vec![Fr::one()], r1cs_x_i1.clone(), r1cs_w_i1.clone()].concat();
|
||||
// compute committed instances, w_{i+1}, u_{i+1}, which will be used as w_i, u_i, so we
|
||||
// assign them directly to w_i, u_i.
|
||||
(u_i, w_i) = ccs.to_cccs(&mut rng, &pedersen_params, &r1cs_z).unwrap();
|
||||
u_i.check_relation(&pedersen_params, &ccs, &w_i).unwrap();
|
||||
(u_i, w_i) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &r1cs_z)
|
||||
.unwrap();
|
||||
u_i.check_relation(&ccs, &w_i).unwrap();
|
||||
|
||||
// sanity checks
|
||||
assert_eq!(w_i.w, r1cs_w_i1);
|
||||
@@ -1284,9 +1311,9 @@ mod tests {
|
||||
W_i = W_i1.clone();
|
||||
|
||||
// check the new LCCCS instance relation
|
||||
U_i.check_relation(&pedersen_params, &ccs, &W_i).unwrap();
|
||||
U_i.check_relation(&ccs, &W_i).unwrap();
|
||||
// check the new CCCS instance relation
|
||||
u_i.check_relation(&pedersen_params, &ccs, &w_i).unwrap();
|
||||
u_i.check_relation(&ccs, &w_i).unwrap();
|
||||
|
||||
// check the CycleFold instance relation
|
||||
cf_r1cs
|
||||
|
||||
@@ -11,10 +11,7 @@ use ark_std::Zero;
|
||||
|
||||
use super::Witness;
|
||||
use crate::ccs::CCS;
|
||||
use crate::commitment::{
|
||||
pedersen::{Params as PedersenParams, Pedersen},
|
||||
CommitmentScheme,
|
||||
};
|
||||
use crate::commitment::CommitmentScheme;
|
||||
use crate::folding::circuits::nonnative::affine::nonnative_affine_to_field_elements;
|
||||
use crate::utils::mle::dense_vec_to_dense_mle;
|
||||
use crate::utils::vec::mat_vec_mul;
|
||||
@@ -36,10 +33,10 @@ pub struct LCCCS<C: CurveGroup> {
|
||||
}
|
||||
|
||||
impl<F: PrimeField> CCS<F> {
|
||||
pub fn to_lcccs<R: Rng, C: CurveGroup>(
|
||||
pub fn to_lcccs<R: Rng, C: CurveGroup, CS: CommitmentScheme<C>>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
pedersen_params: &PedersenParams<C>,
|
||||
cs_params: &CS::ProverParams,
|
||||
z: &[C::ScalarField],
|
||||
) -> Result<(LCCCS<C>, Witness<C::ScalarField>), Error>
|
||||
where
|
||||
@@ -47,8 +44,13 @@ impl<F: PrimeField> CCS<F> {
|
||||
C: CurveGroup<ScalarField = F>,
|
||||
{
|
||||
let w: Vec<C::ScalarField> = z[(1 + self.l)..].to_vec();
|
||||
let r_w = C::ScalarField::rand(rng);
|
||||
let C = Pedersen::<C, true>::commit(pedersen_params, &w, &r_w)?;
|
||||
// if the commitment scheme is set to be hiding, set the random blinding parameter
|
||||
let r_w = if CS::is_hiding() {
|
||||
C::ScalarField::rand(rng)
|
||||
} else {
|
||||
C::ScalarField::zero()
|
||||
};
|
||||
let C = CS::commit(cs_params, &w, &r_w)?;
|
||||
|
||||
let r_x: Vec<C::ScalarField> = (0..self.s).map(|_| C::ScalarField::rand(rng)).collect();
|
||||
|
||||
@@ -91,19 +93,13 @@ impl<C: CurveGroup> LCCCS<C> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform the check of the LCCCS instance described at section 4.2
|
||||
/// Perform the check of the LCCCS instance described at section 4.2,
|
||||
/// notice that this method does not check the commitment correctness
|
||||
pub fn check_relation(
|
||||
&self,
|
||||
pedersen_params: &PedersenParams<C>,
|
||||
ccs: &CCS<C::ScalarField>,
|
||||
w: &Witness<C::ScalarField>,
|
||||
) -> Result<(), Error> {
|
||||
// check that C is the commitment of w. Notice that this is not verifying a Pedersen
|
||||
// opening, but checking that the Commitment comes from committing to the witness.
|
||||
if self.C != Pedersen::<C, true>::commit(pedersen_params, &w.w, &w.r_w)? {
|
||||
return Err(Error::NotSatisfied);
|
||||
}
|
||||
|
||||
// check CCS relation
|
||||
let z: Vec<C::ScalarField> = [vec![self.u], self.x.clone(), w.w.to_vec()].concat();
|
||||
|
||||
@@ -172,6 +168,7 @@ pub mod tests {
|
||||
r1cs::R1CS,
|
||||
tests::{get_test_ccs, get_test_z},
|
||||
};
|
||||
use crate::commitment::pedersen::Pedersen;
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, VirtualPolynomial};
|
||||
|
||||
@@ -206,14 +203,16 @@ pub mod tests {
|
||||
|
||||
let n_rows = 2_u32.pow(5) as usize;
|
||||
let n_cols = 2_u32.pow(5) as usize;
|
||||
let r1cs = R1CS::rand(&mut rng, n_rows, n_cols);
|
||||
let r1cs = R1CS::<Fr>::rand(&mut rng, n_rows, n_cols);
|
||||
let ccs = CCS::from_r1cs(r1cs);
|
||||
let z: Vec<Fr> = (0..n_cols).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
|
||||
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z).unwrap();
|
||||
let (lcccs, _) = ccs
|
||||
.to_lcccs::<_, Projective, Pedersen<Projective>>(&mut rng, &pedersen_params, &z)
|
||||
.unwrap();
|
||||
// with our test vector coming from R1CS, v should have length 3
|
||||
assert_eq!(lcccs.v.len(), 3);
|
||||
|
||||
@@ -245,7 +244,9 @@ pub mod tests {
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
// Compute v_j with the right z
|
||||
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z).unwrap();
|
||||
let (lcccs, _) = ccs
|
||||
.to_lcccs::<_, Projective, Pedersen<Projective>>(&mut rng, &pedersen_params, &z)
|
||||
.unwrap();
|
||||
// with our test vector coming from R1CS, v should have length 3
|
||||
assert_eq!(lcccs.v.len(), 3);
|
||||
|
||||
|
||||
@@ -1,12 +1,42 @@
|
||||
/// Implements the scheme described in [HyperNova](https://eprint.iacr.org/2023/573.pdf)
|
||||
use crate::ccs::CCS;
|
||||
use ark_ff::PrimeField;
|
||||
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
|
||||
use ark_ec::{CurveGroup, Group};
|
||||
use ark_ff::{BigInteger, PrimeField};
|
||||
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
|
||||
use ark_std::rand::RngCore;
|
||||
use ark_std::{One, Zero};
|
||||
use core::marker::PhantomData;
|
||||
use std::fmt::Debug;
|
||||
|
||||
pub mod cccs;
|
||||
pub mod circuits;
|
||||
use circuits::AugmentedFCircuit;
|
||||
pub mod lcccs;
|
||||
pub mod nimfs;
|
||||
pub mod utils;
|
||||
use cccs::CCCS;
|
||||
use lcccs::LCCCS;
|
||||
use nimfs::NIMFS;
|
||||
|
||||
use crate::commitment::CommitmentScheme;
|
||||
use crate::folding::circuits::{
|
||||
cyclefold::{fold_cyclefold_circuit, CycleFoldCircuit},
|
||||
CF2,
|
||||
};
|
||||
use crate::folding::nova::{
|
||||
get_r1cs_from_cs, traits::NovaR1CS, CommittedInstance, Witness as NovaWitness,
|
||||
};
|
||||
use crate::frontend::FCircuit;
|
||||
use crate::utils::get_cm_coordinates;
|
||||
use crate::Error;
|
||||
use crate::FoldingScheme;
|
||||
use crate::{
|
||||
ccs::{
|
||||
r1cs::{extract_w_x, R1CS},
|
||||
CCS,
|
||||
},
|
||||
transcript::{poseidon::PoseidonTranscript, Transcript},
|
||||
};
|
||||
|
||||
/// Witness for the LCCCS & CCCS, containing the w vector, and the r_w used as randomness in the Pedersen commitment.
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
@@ -25,3 +55,556 @@ impl<F: PrimeField> Witness<F> {
|
||||
Witness::<F>::new(vec![F::zero(); ccs.n - ccs.l - 1])
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct PreprocessorParam<C1, C2, FC, CS1, CS2>
|
||||
where
|
||||
C1: CurveGroup,
|
||||
C2: CurveGroup,
|
||||
FC: FCircuit<C1::ScalarField>,
|
||||
CS1: CommitmentScheme<C1>,
|
||||
CS2: CommitmentScheme<C2>,
|
||||
{
|
||||
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
|
||||
pub F: FC,
|
||||
// cs_params & cf_cs_params: if not provided, will be generated at the preprocess method
|
||||
pub cs_params: Option<CS1::ProverParams>,
|
||||
pub cf_cs_params: Option<CS2::ProverParams>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ProverParams<C1, C2, CS1, CS2>
|
||||
where
|
||||
C1: CurveGroup,
|
||||
C2: CurveGroup,
|
||||
CS1: CommitmentScheme<C1>,
|
||||
CS2: CommitmentScheme<C2>,
|
||||
{
|
||||
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
|
||||
pub cs_params: CS1::ProverParams,
|
||||
pub cf_cs_params: CS2::ProverParams,
|
||||
// if ccs is set, it will be used, if not, it will be computed at runtime
|
||||
pub ccs: Option<CCS<C1::ScalarField>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct VerifierParams<
|
||||
C1: CurveGroup,
|
||||
C2: CurveGroup,
|
||||
CS1: CommitmentScheme<C1>,
|
||||
CS2: CommitmentScheme<C2>,
|
||||
> {
|
||||
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
|
||||
pub ccs: CCS<C1::ScalarField>,
|
||||
pub cf_r1cs: R1CS<C2::ScalarField>,
|
||||
pub cs_params: CS1::ProverParams,
|
||||
pub cf_cs_params: CS2::ProverParams,
|
||||
}
|
||||
|
||||
/// Implements HyperNova+CycleFold's IVC, described in
|
||||
/// [HyperNova](https://eprint.iacr.org/2023/573.pdf) and
|
||||
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2>
|
||||
where
|
||||
C1: CurveGroup,
|
||||
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
|
||||
C2: CurveGroup,
|
||||
GC2: CurveVar<C2, CF2<C2>>,
|
||||
FC: FCircuit<C1::ScalarField>,
|
||||
CS1: CommitmentScheme<C1>,
|
||||
CS2: CommitmentScheme<C2>,
|
||||
{
|
||||
_gc1: PhantomData<GC1>,
|
||||
_c2: PhantomData<C2>,
|
||||
_gc2: PhantomData<GC2>,
|
||||
|
||||
/// CCS of the Augmented Function circuit
|
||||
pub ccs: CCS<C1::ScalarField>,
|
||||
/// R1CS of the CycleFold circuit
|
||||
pub cf_r1cs: R1CS<C2::ScalarField>,
|
||||
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
|
||||
/// CommitmentScheme::ProverParams over C1
|
||||
pub cs_params: CS1::ProverParams,
|
||||
/// CycleFold CommitmentScheme::ProverParams, over C2
|
||||
pub cf_cs_params: CS2::ProverParams,
|
||||
/// F circuit, the circuit that is being folded
|
||||
pub F: FC,
|
||||
pub i: C1::ScalarField,
|
||||
/// initial state
|
||||
pub z_0: Vec<C1::ScalarField>,
|
||||
/// current i-th state
|
||||
pub z_i: Vec<C1::ScalarField>,
|
||||
/// HyperNova instances
|
||||
pub W_i: Witness<C1::ScalarField>,
|
||||
pub U_i: LCCCS<C1>,
|
||||
pub w_i: Witness<C1::ScalarField>,
|
||||
pub u_i: CCCS<C1>,
|
||||
|
||||
/// CycleFold running instance
|
||||
pub cf_W_i: NovaWitness<C2>,
|
||||
pub cf_U_i: CommittedInstance<C2>,
|
||||
}
|
||||
|
||||
impl<C1, GC1, C2, GC2, FC, CS1, CS2> FoldingScheme<C1, C2, FC>
|
||||
for HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2>
|
||||
where
|
||||
C1: CurveGroup,
|
||||
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
|
||||
C2: CurveGroup,
|
||||
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
|
||||
FC: FCircuit<C1::ScalarField>,
|
||||
CS1: CommitmentScheme<C1>,
|
||||
CS2: CommitmentScheme<C2>,
|
||||
<C1 as CurveGroup>::BaseField: PrimeField,
|
||||
<C2 as CurveGroup>::BaseField: PrimeField,
|
||||
<C1 as Group>::ScalarField: Absorb,
|
||||
<C2 as Group>::ScalarField: Absorb,
|
||||
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
|
||||
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
|
||||
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
|
||||
{
|
||||
type PreprocessorParam = PreprocessorParam<C1, C2, FC, CS1, CS2>;
|
||||
type ProverParam = ProverParams<C1, C2, CS1, CS2>;
|
||||
type VerifierParam = VerifierParams<C1, C2, CS1, CS2>;
|
||||
type RunningInstance = (LCCCS<C1>, Witness<C1::ScalarField>);
|
||||
type IncomingInstance = (CCCS<C1>, Witness<C1::ScalarField>);
|
||||
type CFInstance = (CommittedInstance<C2>, NovaWitness<C2>);
|
||||
|
||||
fn preprocess(
|
||||
mut rng: impl RngCore,
|
||||
prep_param: &Self::PreprocessorParam,
|
||||
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
|
||||
let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(
|
||||
&prep_param.poseidon_config,
|
||||
prep_param.F.clone(),
|
||||
None,
|
||||
)?;
|
||||
let ccs = augmented_f_circuit.ccs.clone();
|
||||
|
||||
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
|
||||
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
|
||||
|
||||
// if cs_params & cf_cs_params exist, use them, if not, generate new ones
|
||||
let cs_params: CS1::ProverParams;
|
||||
let cf_cs_params: CS2::ProverParams;
|
||||
if prep_param.cs_params.is_some() && prep_param.cf_cs_params.is_some() {
|
||||
cs_params = prep_param.clone().cs_params.unwrap();
|
||||
cf_cs_params = prep_param.clone().cf_cs_params.unwrap();
|
||||
} else {
|
||||
(cs_params, _) = CS1::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
(cf_cs_params, _) = CS2::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1).unwrap();
|
||||
}
|
||||
|
||||
let pp = ProverParams::<C1, C2, CS1, CS2> {
|
||||
poseidon_config: prep_param.poseidon_config.clone(),
|
||||
cs_params: cs_params.clone(),
|
||||
cf_cs_params: cf_cs_params.clone(),
|
||||
ccs: Some(ccs.clone()),
|
||||
};
|
||||
let vp = VerifierParams::<C1, C2, CS1, CS2> {
|
||||
poseidon_config: prep_param.poseidon_config.clone(),
|
||||
ccs,
|
||||
cf_r1cs,
|
||||
cs_params: cs_params.clone(),
|
||||
cf_cs_params: cf_cs_params.clone(),
|
||||
};
|
||||
Ok((pp, vp))
|
||||
}
|
||||
|
||||
/// Initializes the HyperNova+CycleFold's IVC for the given parameters and initial state `z_0`.
|
||||
fn init(pp: &Self::ProverParam, F: FC, z_0: Vec<C1::ScalarField>) -> Result<Self, Error> {
|
||||
// prepare the HyperNova's AugmentedFCircuit and CycleFold's circuits and obtain its CCS
|
||||
// and R1CS respectively
|
||||
let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(
|
||||
&pp.poseidon_config,
|
||||
F.clone(),
|
||||
pp.ccs.clone(),
|
||||
)?;
|
||||
let ccs = augmented_f_circuit.ccs.clone();
|
||||
|
||||
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
|
||||
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
|
||||
|
||||
// setup the dummy instances
|
||||
let W_dummy = Witness::<C1::ScalarField>::dummy(&ccs);
|
||||
let U_dummy = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
|
||||
let w_dummy = W_dummy.clone();
|
||||
let mut u_dummy = CCCS::<C1>::dummy(ccs.l);
|
||||
let (cf_W_dummy, cf_U_dummy): (NovaWitness<C2>, CommittedInstance<C2>) =
|
||||
cf_r1cs.dummy_instance();
|
||||
u_dummy.x = vec![
|
||||
U_dummy.hash(
|
||||
&pp.poseidon_config,
|
||||
C1::ScalarField::zero(),
|
||||
z_0.clone(),
|
||||
z_0.clone(),
|
||||
)?,
|
||||
cf_U_dummy.hash_cyclefold(&pp.poseidon_config)?,
|
||||
];
|
||||
|
||||
// W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the
|
||||
// R1CS that we're working with.
|
||||
Ok(Self {
|
||||
_gc1: PhantomData,
|
||||
_c2: PhantomData,
|
||||
_gc2: PhantomData,
|
||||
ccs,
|
||||
cf_r1cs,
|
||||
poseidon_config: pp.poseidon_config.clone(),
|
||||
cs_params: pp.cs_params.clone(),
|
||||
cf_cs_params: pp.cf_cs_params.clone(),
|
||||
F,
|
||||
i: C1::ScalarField::zero(),
|
||||
z_0: z_0.clone(),
|
||||
z_i: z_0,
|
||||
W_i: W_dummy,
|
||||
U_i: U_dummy,
|
||||
w_i: w_dummy,
|
||||
u_i: u_dummy,
|
||||
// cyclefold running instance
|
||||
cf_W_i: cf_W_dummy,
|
||||
cf_U_i: cf_U_dummy,
|
||||
})
|
||||
}
|
||||
|
||||
/// Implements IVC.P of HyperNova+CycleFold
|
||||
fn prove_step(
|
||||
&mut self,
|
||||
mut rng: impl RngCore,
|
||||
external_inputs: Vec<C1::ScalarField>,
|
||||
) -> Result<(), Error> {
|
||||
let augmented_f_circuit: AugmentedFCircuit<C1, C2, GC2, FC>;
|
||||
|
||||
if self.z_i.len() != self.F.state_len() {
|
||||
return Err(Error::NotSameLength(
|
||||
"z_i.len()".to_string(),
|
||||
self.z_i.len(),
|
||||
"F.state_len()".to_string(),
|
||||
self.F.state_len(),
|
||||
));
|
||||
}
|
||||
if external_inputs.len() != self.F.external_inputs_len() {
|
||||
return Err(Error::NotSameLength(
|
||||
"F.external_inputs_len()".to_string(),
|
||||
self.F.external_inputs_len(),
|
||||
"external_inputs.len()".to_string(),
|
||||
external_inputs.len(),
|
||||
));
|
||||
}
|
||||
|
||||
if self.i > C1::ScalarField::from_le_bytes_mod_order(&usize::MAX.to_le_bytes()) {
|
||||
return Err(Error::MaxStep);
|
||||
}
|
||||
|
||||
let mut i_bytes: [u8; 8] = [0; 8];
|
||||
i_bytes.copy_from_slice(&self.i.into_bigint().to_bytes_le()[..8]);
|
||||
let i_usize: usize = usize::from_le_bytes(i_bytes);
|
||||
|
||||
let z_i1 = self
|
||||
.F
|
||||
.step_native(i_usize, self.z_i.clone(), external_inputs.clone())?;
|
||||
|
||||
// u_{i+1}.x[1] = H(cf_U_{i+1})
|
||||
let cf_u_i1_x: C1::ScalarField;
|
||||
let (U_i1, W_i1);
|
||||
|
||||
if self.i == C1::ScalarField::zero() {
|
||||
W_i1 = Witness::<C1::ScalarField>::dummy(&self.ccs);
|
||||
U_i1 = LCCCS::dummy(self.ccs.l, self.ccs.t, self.ccs.s);
|
||||
|
||||
let u_i1_x = U_i1.hash(
|
||||
&self.poseidon_config,
|
||||
C1::ScalarField::one(),
|
||||
self.z_0.clone(),
|
||||
z_i1.clone(),
|
||||
)?;
|
||||
|
||||
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public
|
||||
// input in the AugmentedFCircuit
|
||||
cf_u_i1_x = self.cf_U_i.hash_cyclefold(&self.poseidon_config)?;
|
||||
|
||||
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
|
||||
_c2: PhantomData,
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: self.poseidon_config.clone(),
|
||||
ccs: self.ccs.clone(),
|
||||
i: Some(C1::ScalarField::zero()),
|
||||
i_usize: Some(0),
|
||||
z_0: Some(self.z_0.clone()),
|
||||
z_i: Some(self.z_i.clone()),
|
||||
external_inputs: Some(external_inputs.clone()),
|
||||
u_i_C: Some(self.u_i.C),
|
||||
U_i: Some(self.U_i.clone()),
|
||||
U_i1_C: Some(U_i1.C),
|
||||
F: self.F.clone(),
|
||||
x: Some(u_i1_x),
|
||||
nimfs_proof: None,
|
||||
|
||||
// cyclefold values
|
||||
cf_u_i_cmW: None,
|
||||
cf_U_i: None,
|
||||
cf_x: Some(cf_u_i1_x),
|
||||
cf_cmT: None,
|
||||
};
|
||||
} else {
|
||||
let mut transcript_p: PoseidonTranscript<C1> =
|
||||
PoseidonTranscript::<C1>::new(&self.poseidon_config);
|
||||
let (rho_bits, nimfs_proof);
|
||||
(nimfs_proof, U_i1, W_i1, rho_bits) = NIMFS::<C1, PoseidonTranscript<C1>>::prove(
|
||||
&mut transcript_p,
|
||||
&self.ccs,
|
||||
&[self.U_i.clone()],
|
||||
&[self.u_i.clone()],
|
||||
&[self.W_i.clone()],
|
||||
&[self.w_i.clone()],
|
||||
)?;
|
||||
|
||||
// sanity check: check the folded instance relation
|
||||
#[cfg(test)]
|
||||
U_i1.check_relation(&self.ccs, &W_i1)?;
|
||||
|
||||
let u_i1_x = U_i1.hash(
|
||||
&self.poseidon_config,
|
||||
self.i + C1::ScalarField::one(),
|
||||
self.z_0.clone(),
|
||||
z_i1.clone(),
|
||||
)?;
|
||||
|
||||
let rho_Fq = C2::ScalarField::from_bigint(BigInteger::from_bits_le(&rho_bits))
|
||||
.ok_or(Error::OutOfBounds)?;
|
||||
// CycleFold part:
|
||||
// get the vector used as public inputs 'x' in the CycleFold circuit
|
||||
// cyclefold circuit for cmW
|
||||
let cf_u_i_x = [
|
||||
vec![rho_Fq],
|
||||
get_cm_coordinates(&self.U_i.C),
|
||||
get_cm_coordinates(&self.u_i.C),
|
||||
get_cm_coordinates(&U_i1.C),
|
||||
]
|
||||
.concat();
|
||||
|
||||
let cf_circuit = CycleFoldCircuit::<C1, GC1> {
|
||||
_gc: PhantomData,
|
||||
r_bits: Some(rho_bits.clone()),
|
||||
p1: Some(self.U_i.clone().C),
|
||||
p2: Some(self.u_i.clone().C),
|
||||
x: Some(cf_u_i_x.clone()),
|
||||
};
|
||||
|
||||
let (_cf_w_i, cf_u_i, cf_W_i1, cf_U_i1, cf_cmT, _) =
|
||||
fold_cyclefold_circuit::<C1, GC1, C2, GC2, FC, CS1, CS2>(
|
||||
&self.poseidon_config,
|
||||
self.cf_r1cs.clone(),
|
||||
self.cf_cs_params.clone(),
|
||||
self.cf_W_i.clone(), // CycleFold running instance witness
|
||||
self.cf_U_i.clone(), // CycleFold running instance
|
||||
cf_u_i_x,
|
||||
cf_circuit,
|
||||
)?;
|
||||
|
||||
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config)?;
|
||||
|
||||
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
|
||||
_c2: PhantomData,
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: self.poseidon_config.clone(),
|
||||
ccs: self.ccs.clone(),
|
||||
i: Some(self.i),
|
||||
i_usize: Some(i_usize),
|
||||
z_0: Some(self.z_0.clone()),
|
||||
z_i: Some(self.z_i.clone()),
|
||||
external_inputs: Some(external_inputs),
|
||||
u_i_C: Some(self.u_i.C),
|
||||
U_i: Some(self.U_i.clone()),
|
||||
U_i1_C: Some(U_i1.C),
|
||||
F: self.F.clone(),
|
||||
x: Some(u_i1_x),
|
||||
nimfs_proof: Some(nimfs_proof),
|
||||
|
||||
// cyclefold values
|
||||
cf_u_i_cmW: Some(cf_u_i.cmW),
|
||||
cf_U_i: Some(self.cf_U_i.clone()),
|
||||
cf_x: Some(cf_u_i1_x),
|
||||
cf_cmT: Some(cf_cmT),
|
||||
};
|
||||
|
||||
// assign the next round instances
|
||||
self.cf_W_i = cf_W_i1;
|
||||
self.cf_U_i = cf_U_i1;
|
||||
}
|
||||
|
||||
let (cs, _) = augmented_f_circuit.compute_cs_ccs()?;
|
||||
|
||||
#[cfg(test)]
|
||||
assert!(cs.is_satisfied()?);
|
||||
|
||||
let (r1cs_w_i1, r1cs_x_i1) = extract_w_x::<C1::ScalarField>(&cs); // includes 1 and public inputs
|
||||
|
||||
let r1cs_z = [
|
||||
vec![C1::ScalarField::one()],
|
||||
r1cs_x_i1.clone(),
|
||||
r1cs_w_i1.clone(),
|
||||
]
|
||||
.concat();
|
||||
// compute committed instances, w_{i+1}, u_{i+1}, which will be used as w_i, u_i, so we
|
||||
// assign them directly to w_i, u_i.
|
||||
let (u_i, w_i) = self
|
||||
.ccs
|
||||
.to_cccs::<_, C1, CS1>(&mut rng, &self.cs_params, &r1cs_z)?;
|
||||
self.u_i = u_i.clone();
|
||||
self.w_i = w_i.clone();
|
||||
|
||||
// set values for next iteration
|
||||
self.i += C1::ScalarField::one();
|
||||
// assign z_{i+1} into z_i
|
||||
self.z_i = z_i1.clone();
|
||||
self.U_i = U_i1.clone();
|
||||
self.W_i = W_i1.clone();
|
||||
|
||||
#[cfg(test)]
|
||||
{
|
||||
// check the new LCCCS instance relation
|
||||
self.U_i.check_relation(&self.ccs, &self.W_i)?;
|
||||
// check the new CCCS instance relation
|
||||
self.u_i.check_relation(&self.ccs, &self.w_i)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn state(&self) -> Vec<C1::ScalarField> {
|
||||
self.z_i.clone()
|
||||
}
|
||||
|
||||
fn instances(
|
||||
&self,
|
||||
) -> (
|
||||
Self::RunningInstance,
|
||||
Self::IncomingInstance,
|
||||
Self::CFInstance,
|
||||
) {
|
||||
(
|
||||
(self.U_i.clone(), self.W_i.clone()),
|
||||
(self.u_i.clone(), self.w_i.clone()),
|
||||
(self.cf_U_i.clone(), self.cf_W_i.clone()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Implements IVC.V of HyperNova+CycleFold. Notice that this method does not include the
|
||||
/// commitments verification, which is done in the Decider.
|
||||
fn verify(
|
||||
vp: Self::VerifierParam,
|
||||
z_0: Vec<C1::ScalarField>, // initial state
|
||||
z_i: Vec<C1::ScalarField>, // last state
|
||||
num_steps: C1::ScalarField,
|
||||
running_instance: Self::RunningInstance,
|
||||
incoming_instance: Self::IncomingInstance,
|
||||
cyclefold_instance: Self::CFInstance,
|
||||
) -> Result<(), Error> {
|
||||
if num_steps == C1::ScalarField::zero() {
|
||||
if z_0 != z_i {
|
||||
return Err(Error::IVCVerificationFail);
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let (U_i, W_i) = running_instance;
|
||||
let (u_i, w_i) = incoming_instance;
|
||||
let (cf_U_i, cf_W_i) = cyclefold_instance;
|
||||
if u_i.x.len() != 2 || U_i.x.len() != 2 {
|
||||
return Err(Error::IVCVerificationFail);
|
||||
}
|
||||
|
||||
// check that u_i's output points to the running instance
|
||||
// u_i.X[0] == H(i, z_0, z_i, U_i)
|
||||
let expected_u_i_x = U_i.hash(&vp.poseidon_config, num_steps, z_0, z_i.clone())?;
|
||||
if expected_u_i_x != u_i.x[0] {
|
||||
return Err(Error::IVCVerificationFail);
|
||||
}
|
||||
// u_i.X[1] == H(cf_U_i)
|
||||
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config)?;
|
||||
if expected_cf_u_i_x != u_i.x[1] {
|
||||
return Err(Error::IVCVerificationFail);
|
||||
}
|
||||
|
||||
// check LCCCS satisfiability
|
||||
U_i.check_relation(&vp.ccs, &W_i)?;
|
||||
// check CCCS satisfiability
|
||||
u_i.check_relation(&vp.ccs, &w_i)?;
|
||||
|
||||
// check CycleFold's RelaxedR1CS satisfiability
|
||||
vp.cf_r1cs
|
||||
.check_relaxed_instance_relation(&cf_W_i, &cf_U_i)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::commitment::kzg::KZG;
|
||||
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
|
||||
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
||||
use super::*;
|
||||
use crate::commitment::pedersen::Pedersen;
|
||||
use crate::frontend::tests::CubicFCircuit;
|
||||
use crate::transcript::poseidon::poseidon_canonical_config;
|
||||
|
||||
#[test]
|
||||
pub fn test_ivc() {
|
||||
let poseidon_config = poseidon_canonical_config::<Fr>();
|
||||
|
||||
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
|
||||
|
||||
// run the test using Pedersen commitments on both sides of the curve cycle
|
||||
test_ivc_opt::<Pedersen<Projective>, Pedersen<Projective2>>(
|
||||
poseidon_config.clone(),
|
||||
F_circuit,
|
||||
);
|
||||
// run the test using KZG for the commitments on the main curve, and Pedersen for the
|
||||
// commitments on the secondary curve
|
||||
test_ivc_opt::<KZG<Bn254>, Pedersen<Projective2>>(poseidon_config, F_circuit);
|
||||
}
|
||||
|
||||
// test_ivc allowing to choose the CommitmentSchemes
|
||||
fn test_ivc_opt<CS1: CommitmentScheme<Projective>, CS2: CommitmentScheme<Projective2>>(
|
||||
poseidon_config: PoseidonConfig<Fr>,
|
||||
F_circuit: CubicFCircuit<Fr>,
|
||||
) {
|
||||
let mut rng = ark_std::test_rng();
|
||||
|
||||
type HN<CS1, CS2> =
|
||||
HyperNova<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>, CS1, CS2>;
|
||||
|
||||
let prep_param = PreprocessorParam::<Projective, Projective2, CubicFCircuit<Fr>, CS1, CS2> {
|
||||
poseidon_config,
|
||||
F: F_circuit,
|
||||
cs_params: None,
|
||||
cf_cs_params: None,
|
||||
};
|
||||
let (prover_params, verifier_params) = HN::preprocess(&mut rng, &prep_param).unwrap();
|
||||
|
||||
let z_0 = vec![Fr::from(3_u32)];
|
||||
let mut hypernova = HN::init(&prover_params, F_circuit, z_0.clone()).unwrap();
|
||||
|
||||
let num_steps: usize = 3;
|
||||
for _ in 0..num_steps {
|
||||
hypernova.prove_step(&mut rng, vec![]).unwrap();
|
||||
}
|
||||
assert_eq!(Fr::from(num_steps as u32), hypernova.i);
|
||||
|
||||
let (running_instance, incoming_instance, cyclefold_instance) = hypernova.instances();
|
||||
HN::verify(
|
||||
verifier_params,
|
||||
z_0,
|
||||
hypernova.z_i,
|
||||
hypernova.i,
|
||||
running_instance,
|
||||
incoming_instance,
|
||||
cyclefold_instance,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -32,19 +32,21 @@ pub struct NIMFSProof<C: CurveGroup> {
|
||||
|
||||
impl<C: CurveGroup> NIMFSProof<C> {
|
||||
pub fn dummy(ccs: &CCS<C::ScalarField>, mu: usize, nu: usize) -> Self {
|
||||
// use 'C::ScalarField::one()' instead of 'zero()' to enforce the NIMFSProof to have the
|
||||
// same in-circuit representation to match the number of constraints of an actual proof.
|
||||
NIMFSProof::<C> {
|
||||
sc_proof: SumCheckProof::<C::ScalarField> {
|
||||
point: vec![C::ScalarField::zero(); ccs.d],
|
||||
point: vec![C::ScalarField::one(); ccs.s],
|
||||
proofs: vec![
|
||||
IOPProverMessage {
|
||||
coeffs: vec![C::ScalarField::zero(); ccs.t + 1]
|
||||
coeffs: vec![C::ScalarField::one(); ccs.t + 1]
|
||||
};
|
||||
ccs.s
|
||||
],
|
||||
},
|
||||
sigmas_thetas: SigmasThetas(
|
||||
vec![vec![C::ScalarField::zero(); ccs.t]; mu],
|
||||
vec![vec![C::ScalarField::zero(); ccs.t]; nu],
|
||||
vec![vec![C::ScalarField::one(); ccs.t]; mu],
|
||||
vec![vec![C::ScalarField::one(); ccs.t]; nu],
|
||||
),
|
||||
}
|
||||
}
|
||||
@@ -432,11 +434,15 @@ pub mod tests {
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
|
||||
let (lcccs, w1) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let (cccs, w2) = ccs.to_cccs(&mut rng, &pedersen_params, &z2).unwrap();
|
||||
let (lcccs, w1) = ccs
|
||||
.to_lcccs::<_, Projective, Pedersen<Projective>>(&mut rng, &pedersen_params, &z1)
|
||||
.unwrap();
|
||||
let (cccs, w2) = ccs
|
||||
.to_cccs::<_, Projective, Pedersen<Projective>>(&mut rng, &pedersen_params, &z2)
|
||||
.unwrap();
|
||||
|
||||
lcccs.check_relation(&pedersen_params, &ccs, &w1).unwrap();
|
||||
cccs.check_relation(&pedersen_params, &ccs, &w2).unwrap();
|
||||
lcccs.check_relation(&ccs, &w1).unwrap();
|
||||
cccs.check_relation(&ccs, &w2).unwrap();
|
||||
|
||||
let mut rng = test_rng();
|
||||
let rho = Fr::rand(&mut rng);
|
||||
@@ -453,9 +459,7 @@ pub mod tests {
|
||||
NIMFS::<Projective, PoseidonTranscript<Projective>>::fold_witness(&[w1], &[w2], rho);
|
||||
|
||||
// check lcccs relation
|
||||
folded
|
||||
.check_relation(&pedersen_params, &ccs, &w_folded)
|
||||
.unwrap();
|
||||
folded.check_relation(&ccs, &w_folded).unwrap();
|
||||
}
|
||||
|
||||
/// Perform multifolding of an LCCCS instance with a CCCS instance (as described in the paper)
|
||||
@@ -474,9 +478,13 @@ pub mod tests {
|
||||
let z_2 = get_test_z(4);
|
||||
|
||||
// Create the LCCCS instance out of z_1
|
||||
let (running_instance, w1) = ccs.to_lcccs(&mut rng, &pedersen_params, &z_1).unwrap();
|
||||
let (running_instance, w1) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z_1)
|
||||
.unwrap();
|
||||
// Create the CCCS instance out of z_2
|
||||
let (new_instance, w2) = ccs.to_cccs(&mut rng, &pedersen_params, &z_2).unwrap();
|
||||
let (new_instance, w2) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z_2)
|
||||
.unwrap();
|
||||
|
||||
// Prover's transcript
|
||||
let poseidon_config = poseidon_canonical_config::<Fr>();
|
||||
@@ -513,9 +521,7 @@ pub mod tests {
|
||||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
||||
|
||||
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
|
||||
folded_lcccs
|
||||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
||||
.unwrap();
|
||||
folded_lcccs.check_relation(&ccs, &folded_witness).unwrap();
|
||||
}
|
||||
|
||||
/// Perform multiple steps of multifolding of an LCCCS instance with a CCCS instance
|
||||
@@ -530,8 +536,9 @@ pub mod tests {
|
||||
|
||||
// LCCCS witness
|
||||
let z_1 = get_test_z(2);
|
||||
let (mut running_instance, mut w1) =
|
||||
ccs.to_lcccs(&mut rng, &pedersen_params, &z_1).unwrap();
|
||||
let (mut running_instance, mut w1) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z_1)
|
||||
.unwrap();
|
||||
|
||||
let poseidon_config = poseidon_canonical_config::<Fr>();
|
||||
|
||||
@@ -548,7 +555,9 @@ pub mod tests {
|
||||
// CCS witness
|
||||
let z_2 = get_test_z(i);
|
||||
|
||||
let (new_instance, w2) = ccs.to_cccs(&mut rng, &pedersen_params, &z_2).unwrap();
|
||||
let (new_instance, w2) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z_2)
|
||||
.unwrap();
|
||||
|
||||
// run the prover side of the multifolding
|
||||
let (proof, folded_lcccs, folded_witness, _) =
|
||||
@@ -574,9 +583,7 @@ pub mod tests {
|
||||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
||||
|
||||
// check that the folded instance with the folded witness holds the LCCCS relation
|
||||
folded_lcccs
|
||||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
||||
.unwrap();
|
||||
folded_lcccs.check_relation(&ccs, &folded_witness).unwrap();
|
||||
|
||||
running_instance = folded_lcccs;
|
||||
w1 = folded_witness;
|
||||
@@ -612,7 +619,9 @@ pub mod tests {
|
||||
let mut lcccs_instances = Vec::new();
|
||||
let mut w_lcccs = Vec::new();
|
||||
for z_i in z_lcccs.iter() {
|
||||
let (running_instance, w) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (running_instance, w) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
lcccs_instances.push(running_instance);
|
||||
w_lcccs.push(w);
|
||||
}
|
||||
@@ -620,7 +629,9 @@ pub mod tests {
|
||||
let mut cccs_instances = Vec::new();
|
||||
let mut w_cccs = Vec::new();
|
||||
for z_i in z_cccs.iter() {
|
||||
let (new_instance, w) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (new_instance, w) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
cccs_instances.push(new_instance);
|
||||
w_cccs.push(w);
|
||||
}
|
||||
@@ -660,9 +671,7 @@ pub mod tests {
|
||||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
||||
|
||||
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
|
||||
folded_lcccs
|
||||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
||||
.unwrap();
|
||||
folded_lcccs.check_relation(&ccs, &folded_witness).unwrap();
|
||||
}
|
||||
|
||||
/// Test that generates mu>1 and nu>1 instances, and folds them in a single multifolding step
|
||||
@@ -710,7 +719,9 @@ pub mod tests {
|
||||
let mut lcccs_instances = Vec::new();
|
||||
let mut w_lcccs = Vec::new();
|
||||
for z_i in z_lcccs.iter() {
|
||||
let (running_instance, w) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (running_instance, w) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
lcccs_instances.push(running_instance);
|
||||
w_lcccs.push(w);
|
||||
}
|
||||
@@ -718,7 +729,9 @@ pub mod tests {
|
||||
let mut cccs_instances = Vec::new();
|
||||
let mut w_cccs = Vec::new();
|
||||
for z_i in z_cccs.iter() {
|
||||
let (new_instance, w) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
|
||||
let (new_instance, w) = ccs
|
||||
.to_cccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, z_i)
|
||||
.unwrap();
|
||||
cccs_instances.push(new_instance);
|
||||
w_cccs.push(w);
|
||||
}
|
||||
@@ -748,9 +761,7 @@ pub mod tests {
|
||||
assert_eq!(folded_lcccs, folded_lcccs_v);
|
||||
|
||||
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
|
||||
folded_lcccs
|
||||
.check_relation(&pedersen_params, &ccs, &folded_witness)
|
||||
.unwrap();
|
||||
folded_lcccs.check_relation(&ccs, &folded_witness).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -239,7 +239,9 @@ pub mod tests {
|
||||
// Initialize a multifolding object
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let (lcccs_instance, _) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z1)
|
||||
.unwrap();
|
||||
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime).unwrap();
|
||||
@@ -287,7 +289,9 @@ pub mod tests {
|
||||
// Initialize a multifolding object
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let (lcccs_instance, _) = ccs
|
||||
.to_lcccs::<_, _, Pedersen<Projective>>(&mut rng, &pedersen_params, &z1)
|
||||
.unwrap();
|
||||
|
||||
// Compute g(x) with that r_x
|
||||
let g = compute_g::<Projective>(
|
||||
|
||||
Reference in New Issue
Block a user