* feat: add noname as a frontend to sonobe fix: remove extra `rng` usage Co-authored-by: Carlos Pérez <37264926+CPerezz@users.noreply.github.com> * Update README.md Co-authored-by: arnaucube <root@arnaucube.com> * chore: move ark-noname to dev dependencies in solidity-verifiers cargo --------- Co-authored-by: Carlos Pérez <37264926+CPerezz@users.noreply.github.com> Co-authored-by: arnaucube <root@arnaucube.com>update-nifs-interface
@ -0,0 +1,158 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(non_camel_case_types)]
|
|||
#![allow(clippy::upper_case_acronyms)]
|
|||
///
|
|||
/// This example performs the full flow:
|
|||
/// - define the circuit to be folded
|
|||
/// - fold the circuit with Nova+CycleFold's IVC
|
|||
/// - generate a DeciderEthCircuit final proof
|
|||
/// - generate the Solidity contract that verifies the proof
|
|||
/// - verify the proof in the EVM
|
|||
///
|
|||
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|||
use noname::backends::r1cs::R1csBn254Field;
|
|||
|
|||
use ark_groth16::Groth16;
|
|||
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|||
|
|||
use folding_schemes::{
|
|||
commitment::{kzg::KZG, pedersen::Pedersen},
|
|||
folding::nova::{
|
|||
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|||
Nova, PreprocessorParam,
|
|||
},
|
|||
frontend::{noname::NonameFCircuit, FCircuit},
|
|||
transcript::poseidon::poseidon_canonical_config,
|
|||
Decider, FoldingScheme,
|
|||
};
|
|||
use std::time::Instant;
|
|||
|
|||
use solidity_verifiers::{
|
|||
evm::{compile_solidity, Evm},
|
|||
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|||
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|||
NovaCycleFoldVerifierKey,
|
|||
};
|
|||
|
|||
fn main() {
|
|||
const NONAME_CIRCUIT_EXTERNAL_INPUTS: &str =
|
|||
"fn main(pub ivc_inputs: [Field; 2], external_inputs: [Field; 2]) -> [Field; 2] {
|
|||
let xx = external_inputs[0] + ivc_inputs[0];
|
|||
let yy = external_inputs[1] * ivc_inputs[1];
|
|||
assert_eq(yy, xx);
|
|||
return [xx, yy];
|
|||
}";
|
|||
|
|||
// set the initial state
|
|||
let z_0 = vec![Fr::from(2), Fr::from(5)];
|
|||
|
|||
// set the external inputs to be used at each step of the IVC, it has length of 10 since this
|
|||
// is the number of steps that we will do
|
|||
let external_inputs = vec![
|
|||
vec![Fr::from(8u32), Fr::from(2u32)],
|
|||
vec![Fr::from(40), Fr::from(5)],
|
|||
];
|
|||
|
|||
// initialize the noname circuit
|
|||
let f_circuit_params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
|
|||
let f_circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(f_circuit_params).unwrap();
|
|||
|
|||
pub type N = Nova<
|
|||
G1,
|
|||
GVar,
|
|||
G2,
|
|||
GVar2,
|
|||
NonameFCircuit<Fr, R1csBn254Field>,
|
|||
KZG<'static, Bn254>,
|
|||
Pedersen<G2>,
|
|||
>;
|
|||
pub type D = DeciderEth<
|
|||
G1,
|
|||
GVar,
|
|||
G2,
|
|||
GVar2,
|
|||
NonameFCircuit<Fr, R1csBn254Field>,
|
|||
KZG<'static, Bn254>,
|
|||
Pedersen<G2>,
|
|||
Groth16<Bn254>,
|
|||
N,
|
|||
>;
|
|||
|
|||
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|||
let mut rng = rand::rngs::OsRng;
|
|||
|
|||
// prepare the Nova prover & verifier params
|
|||
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
|
|||
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
|
|||
|
|||
// initialize the folding scheme engine, in our case we use Nova
|
|||
let mut nova = N::init(nova_params.clone(), f_circuit.clone(), z_0).unwrap();
|
|||
|
|||
// prepare the Decider prover & verifier params
|
|||
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
|
|||
|
|||
// run n steps of the folding iteration
|
|||
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
|
|||
let start = Instant::now();
|
|||
nova.prove_step(rng, external_inputs_at_step.clone())
|
|||
.unwrap();
|
|||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|||
}
|
|||
|
|||
let start = Instant::now();
|
|||
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
|
|||
println!("generated Decider proof: {:?}", start.elapsed());
|
|||
|
|||
let verified = D::verify(
|
|||
decider_vp.clone(),
|
|||
nova.i,
|
|||
nova.z_0.clone(),
|
|||
nova.z_i.clone(),
|
|||
&nova.U_i,
|
|||
&nova.u_i,
|
|||
&proof,
|
|||
)
|
|||
.unwrap();
|
|||
assert!(verified);
|
|||
println!("Decider proof verification: {}", verified);
|
|||
|
|||
// Now, let's generate the Solidity code that verifies this Decider final proof
|
|||
let function_selector =
|
|||
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|||
|
|||
let calldata: Vec<u8> = prepare_calldata(
|
|||
function_selector,
|
|||
nova.i,
|
|||
nova.z_0,
|
|||
nova.z_i,
|
|||
&nova.U_i,
|
|||
&nova.u_i,
|
|||
proof,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
// prepare the setup params for the solidity verifier
|
|||
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
|
|||
|
|||
// generate the solidity code
|
|||
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|||
|
|||
// verify the proof against the solidity code in the EVM
|
|||
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
|
|||
let mut evm = Evm::default();
|
|||
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|||
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|||
assert_eq!(*output.last().unwrap(), 1);
|
|||
|
|||
// save smart contract and the calldata
|
|||
println!("storing nova-verifier.sol and the calldata into files");
|
|||
use std::fs;
|
|||
fs::write(
|
|||
"./examples/nova-verifier.sol",
|
|||
decider_solidity_code.clone(),
|
|||
)
|
|||
.unwrap();
|
|||
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|||
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|||
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|||
}
|
@ -0,0 +1,201 @@ |
|||
use crate::Error;
|
|||
use ark_noname::sonobe::NonameSonobeCircuit;
|
|||
use ark_r1cs_std::alloc::AllocVar;
|
|||
use ark_r1cs_std::fields::fp::FpVar;
|
|||
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, SynthesisError};
|
|||
use num_bigint::BigUint;
|
|||
use std::marker::PhantomData;
|
|||
|
|||
use self::utils::NonameInputs;
|
|||
|
|||
use super::FCircuit;
|
|||
use ark_ff::PrimeField;
|
|||
use ark_noname::utils::compile_source_code;
|
|||
use noname::backends::{r1cs::R1CS as R1CSNoname, BackendField};
|
|||
use noname::witness::CompiledCircuit;
|
|||
pub mod utils;
|
|||
#[derive(Debug, Clone)]
|
|||
pub struct NonameFCircuit<F: PrimeField, BF: BackendField> {
|
|||
pub state_len: usize,
|
|||
pub external_inputs_len: usize,
|
|||
pub circuit: CompiledCircuit<R1CSNoname<BF>>,
|
|||
_f: PhantomData<F>,
|
|||
}
|
|||
|
|||
impl<F: PrimeField, BF: BackendField> FCircuit<F> for NonameFCircuit<F, BF> {
|
|||
type Params = (String, usize, usize);
|
|||
|
|||
fn new(params: Self::Params) -> Result<Self, crate::Error> {
|
|||
let (code, state_len, external_inputs_len) = params;
|
|||
let compiled_circuit = compile_source_code::<BF>(&code).map_err(|_| {
|
|||
Error::Other("Encountered an error while compiling a noname circuit".to_owned())
|
|||
})?;
|
|||
Ok(NonameFCircuit {
|
|||
state_len,
|
|||
external_inputs_len,
|
|||
circuit: compiled_circuit,
|
|||
_f: PhantomData,
|
|||
})
|
|||
}
|
|||
|
|||
fn state_len(&self) -> usize {
|
|||
self.state_len
|
|||
}
|
|||
|
|||
fn external_inputs_len(&self) -> usize {
|
|||
self.external_inputs_len
|
|||
}
|
|||
|
|||
fn step_native(
|
|||
&self,
|
|||
_i: usize,
|
|||
z_i: Vec<F>,
|
|||
external_inputs: Vec<F>,
|
|||
) -> Result<Vec<F>, crate::Error> {
|
|||
let wtns_external_inputs =
|
|||
NonameInputs::from((&external_inputs, "external_inputs".to_string()));
|
|||
let wtns_ivc_inputs = NonameInputs::from((&z_i, "ivc_inputs".to_string()));
|
|||
|
|||
let noname_witness = self
|
|||
.circuit
|
|||
.generate_witness(wtns_ivc_inputs.0, wtns_external_inputs.0)
|
|||
.map_err(|e| Error::WitnessCalculationError(e.to_string()))?;
|
|||
|
|||
let z_i1_end_index = z_i.len() + 1;
|
|||
let assigned_z_i1 = (1..z_i1_end_index)
|
|||
.map(|idx| {
|
|||
let value: BigUint = Into::into(noname_witness.witness[idx]);
|
|||
F::from(value)
|
|||
})
|
|||
.collect();
|
|||
|
|||
Ok(assigned_z_i1)
|
|||
}
|
|||
|
|||
fn generate_step_constraints(
|
|||
&self,
|
|||
cs: ConstraintSystemRef<F>,
|
|||
_i: usize,
|
|||
z_i: Vec<FpVar<F>>,
|
|||
external_inputs: Vec<FpVar<F>>,
|
|||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|||
let wtns_external_inputs =
|
|||
NonameInputs::from_fpvars((&external_inputs, "external_inputs".to_string()))?;
|
|||
let wtns_ivc_inputs = NonameInputs::from_fpvars((&z_i, "ivc_inputs".to_string()))?;
|
|||
let noname_witness = self
|
|||
.circuit
|
|||
.generate_witness(wtns_ivc_inputs.0, wtns_external_inputs.0)
|
|||
.map_err(|_| SynthesisError::Unsatisfiable)?;
|
|||
let z_i1_end_index = z_i.len() + 1;
|
|||
let assigned_z_i1: Vec<FpVar<F>> = (1..z_i1_end_index)
|
|||
.map(|idx| -> Result<FpVar<F>, SynthesisError> {
|
|||
// the assigned zi1 is of the same size than the initial zi and is located in the
|
|||
// output of the witness vector
|
|||
// we prefer to assign z_i1 here since (1) we have to return it, (2) we cant return
|
|||
// anything with the `generate_constraints` method used below
|
|||
let value: BigUint = Into::into(noname_witness.witness[idx]);
|
|||
let field_element = F::from(value);
|
|||
FpVar::<F>::new_witness(cs.clone(), || Ok(field_element))
|
|||
})
|
|||
.collect::<Result<Vec<FpVar<F>>, SynthesisError>>()?;
|
|||
|
|||
let noname_circuit = NonameSonobeCircuit {
|
|||
compiled_circuit: self.circuit.clone(),
|
|||
witness: noname_witness,
|
|||
assigned_z_i: &z_i,
|
|||
assigned_external_inputs: &external_inputs,
|
|||
assigned_z_i1: &assigned_z_i1,
|
|||
};
|
|||
noname_circuit.generate_constraints(cs.clone())?;
|
|||
|
|||
Ok(assigned_z_i1)
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
|
|||
use ark_bn254::Fr;
|
|||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
|||
use noname::backends::r1cs::R1csBn254Field;
|
|||
|
|||
use crate::frontend::FCircuit;
|
|||
|
|||
use super::NonameFCircuit;
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
|
|||
const NONAME_CIRCUIT_EXTERNAL_INPUTS: &str =
|
|||
"fn main(pub ivc_inputs: [Field; 2], external_inputs: [Field; 2]) -> [Field; 2] {
|
|||
let xx = external_inputs[0] + ivc_inputs[0];
|
|||
let yy = external_inputs[1] * ivc_inputs[1];
|
|||
assert_eq(yy, xx);
|
|||
return [xx, yy];
|
|||
}";
|
|||
|
|||
const NONAME_CIRCUIT_NO_EXTERNAL_INPUTS: &str =
|
|||
"fn main(pub ivc_inputs: [Field; 2]) -> [Field; 2] {
|
|||
let out = ivc_inputs[0] * ivc_inputs[1];
|
|||
return [out, ivc_inputs[1]];
|
|||
}";
|
|||
|
|||
#[test]
|
|||
fn test_step_native() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
|
|||
let circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
|
|||
let inputs_public = vec![Fr::from(2), Fr::from(5)];
|
|||
let inputs_private = vec![Fr::from(8), Fr::from(2)];
|
|||
|
|||
let ivc_inputs_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public.clone())).unwrap();
|
|||
let external_inputs_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_private.clone())).unwrap();
|
|||
|
|||
let z_i1 = circuit
|
|||
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, external_inputs_var)
|
|||
.unwrap();
|
|||
let z_i1_native = circuit
|
|||
.step_native(0, inputs_public, inputs_private)
|
|||
.unwrap();
|
|||
|
|||
assert_eq!(z_i1[0].value().unwrap(), z_i1_native[0]);
|
|||
assert_eq!(z_i1[1].value().unwrap(), z_i1_native[1]);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_step_constraints() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
|
|||
let circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
|
|||
let inputs_public = vec![Fr::from(2), Fr::from(5)];
|
|||
let inputs_private = vec![Fr::from(8), Fr::from(2)];
|
|||
|
|||
let ivc_inputs_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public)).unwrap();
|
|||
let external_inputs_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_private)).unwrap();
|
|||
|
|||
let z_i1 = circuit
|
|||
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, external_inputs_var)
|
|||
.unwrap();
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(z_i1[0].value().unwrap(), Fr::from(10_u8));
|
|||
assert_eq!(z_i1[1].value().unwrap(), Fr::from(10_u8));
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_generate_constraints_no_external_inputs() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let params = (NONAME_CIRCUIT_NO_EXTERNAL_INPUTS.to_owned(), 2, 0);
|
|||
let inputs_public = vec![Fr::from(2), Fr::from(5)];
|
|||
|
|||
let ivc_inputs_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public)).unwrap();
|
|||
|
|||
let f_circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
|
|||
f_circuit
|
|||
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, vec![])
|
|||
.unwrap();
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
@ -0,0 +1,58 @@ |
|||
use std::collections::HashMap;
|
|||
|
|||
use ark_ff::PrimeField;
|
|||
use ark_r1cs_std::{fields::fp::FpVar, R1CSVar};
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use noname::inputs::JsonInputs;
|
|||
use serde_json::json;
|
|||
|
|||
pub struct NonameInputs(pub JsonInputs);
|
|||
|
|||
impl<F: PrimeField> From<(&Vec<F>, String)> for NonameInputs {
|
|||
fn from(value: (&Vec<F>, String)) -> Self {
|
|||
let (values, key) = value;
|
|||
let mut inputs = HashMap::new();
|
|||
if values.is_empty() {
|
|||
NonameInputs(JsonInputs(inputs))
|
|||
} else {
|
|||
let field_elements: Vec<String> = values
|
|||
.iter()
|
|||
.map(|value| {
|
|||
if value.is_zero() {
|
|||
"0".to_string()
|
|||
} else {
|
|||
value.to_string()
|
|||
}
|
|||
})
|
|||
.collect();
|
|||
inputs.insert(key, json!(field_elements));
|
|||
NonameInputs(JsonInputs(inputs))
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl NonameInputs {
|
|||
pub fn from_fpvars<F: PrimeField>(
|
|||
value: (&Vec<FpVar<F>>, String),
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let (values, key) = value;
|
|||
let mut inputs = HashMap::new();
|
|||
if values.is_empty() {
|
|||
Ok(NonameInputs(JsonInputs(inputs)))
|
|||
} else {
|
|||
let field_elements: Vec<String> = values
|
|||
.iter()
|
|||
.map(|var| {
|
|||
let value = var.value()?;
|
|||
if value.is_zero() {
|
|||
Ok("0".to_string())
|
|||
} else {
|
|||
Ok(value.to_string())
|
|||
}
|
|||
})
|
|||
.collect::<Result<Vec<String>, SynthesisError>>()?;
|
|||
inputs.insert(key, json!(field_elements));
|
|||
Ok(NonameInputs(JsonInputs(inputs)))
|
|||
}
|
|||
}
|
|||
}
|