Browse Source

feat: add noname as a frontend to sonobe (#121)

* feat: add noname as a frontend to sonobe

fix: remove extra `rng` usage

Co-authored-by: Carlos Pérez <37264926+CPerezz@users.noreply.github.com>

* Update README.md

Co-authored-by: arnaucube <root@arnaucube.com>

* chore: move ark-noname to dev dependencies in solidity-verifiers cargo

---------

Co-authored-by: Carlos Pérez <37264926+CPerezz@users.noreply.github.com>
Co-authored-by: arnaucube <root@arnaucube.com>
update-nifs-interface
Pierre 4 months ago
committed by GitHub
parent
commit
cc1f6316a7
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
8 changed files with 432 additions and 2 deletions
  1. +1
    -0
      README.md
  2. +158
    -0
      examples/noname_full_flow.rs
  3. +5
    -1
      folding-schemes/Cargo.toml
  4. +1
    -0
      folding-schemes/src/frontend/mod.rs
  5. +201
    -0
      folding-schemes/src/frontend/noname/mod.rs
  6. +58
    -0
      folding-schemes/src/frontend/noname/utils.rs
  7. +3
    -1
      folding-schemes/src/lib.rs
  8. +5
    -0
      solidity-verifiers/Cargo.toml

+ 1
- 0
README.md

@ -33,6 +33,7 @@ Available frontends to define the folded circuit:
- [arkworks](https://github.com/arkworks-rs), arkworks contributors
- [Circom](https://github.com/iden3/circom), iden3, 0Kims Association
- [Noname](https://github.com/zksecurity/noname), zkSecurity
## Usage

+ 158
- 0
examples/noname_full_flow.rs

@ -0,0 +1,158 @@
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use noname::backends::r1cs::R1csBn254Field;
use ark_groth16::Groth16;
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova, PreprocessorParam,
},
frontend::{noname::NonameFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config,
Decider, FoldingScheme,
};
use std::time::Instant;
use solidity_verifiers::{
evm::{compile_solidity, Evm},
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
fn main() {
const NONAME_CIRCUIT_EXTERNAL_INPUTS: &str =
"fn main(pub ivc_inputs: [Field; 2], external_inputs: [Field; 2]) -> [Field; 2] {
let xx = external_inputs[0] + ivc_inputs[0];
let yy = external_inputs[1] * ivc_inputs[1];
assert_eq(yy, xx);
return [xx, yy];
}";
// set the initial state
let z_0 = vec![Fr::from(2), Fr::from(5)];
// set the external inputs to be used at each step of the IVC, it has length of 10 since this
// is the number of steps that we will do
let external_inputs = vec![
vec![Fr::from(8u32), Fr::from(2u32)],
vec![Fr::from(40), Fr::from(5)],
];
// initialize the noname circuit
let f_circuit_params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
let f_circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(f_circuit_params).unwrap();
pub type N = Nova<
G1,
GVar,
G2,
GVar2,
NonameFCircuit<Fr, R1csBn254Field>,
KZG<'static, Bn254>,
Pedersen<G2>,
>;
pub type D = DeciderEth<
G1,
GVar,
G2,
GVar2,
NonameFCircuit<Fr, R1csBn254Field>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(nova_params.clone(), f_circuit.clone(), z_0).unwrap();
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
// run n steps of the folding iteration
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
let start = Instant::now();
nova.prove_step(rng, external_inputs_at_step.clone())
.unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// Now, let's generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
// verify the proof against the solidity code in the EVM
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::write(
"./examples/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
}

+ 5
- 1
folding-schemes/Cargo.toml

@ -24,8 +24,12 @@ color-eyre = "=0.6.2"
ark-bn254 = {version="0.4.0"}
ark-groth16 = { version = "^0.4.0" }
sha3 = "0.10"
ark-noname = { git = "https://github.com/dmpierre/ark-noname", branch="feat/sonobe-integration" }
noname = { git = "https://github.com/dmpierre/noname" }
serde_json = "1.0.85" # to (de)serialize JSON
serde = "1.0.203"
# tmp imports for espresso's sumcheck
# tmp import for espresso's sumcheck
espresso_subroutines = {git="https://github.com/EspressoSystems/hyperplonk", package="subroutines"}
[dev-dependencies]

+ 1
- 0
folding-schemes/src/frontend/mod.rs

@ -5,6 +5,7 @@ use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::fmt::Debug;
pub mod circom;
pub mod noname;
/// FCircuit defines the trait of the circuit of the F function, which is the one being folded (ie.
/// inside the agmented F' function).

+ 201
- 0
folding-schemes/src/frontend/noname/mod.rs

@ -0,0 +1,201 @@
use crate::Error;
use ark_noname::sonobe::NonameSonobeCircuit;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, SynthesisError};
use num_bigint::BigUint;
use std::marker::PhantomData;
use self::utils::NonameInputs;
use super::FCircuit;
use ark_ff::PrimeField;
use ark_noname::utils::compile_source_code;
use noname::backends::{r1cs::R1CS as R1CSNoname, BackendField};
use noname::witness::CompiledCircuit;
pub mod utils;
#[derive(Debug, Clone)]
pub struct NonameFCircuit<F: PrimeField, BF: BackendField> {
pub state_len: usize,
pub external_inputs_len: usize,
pub circuit: CompiledCircuit<R1CSNoname<BF>>,
_f: PhantomData<F>,
}
impl<F: PrimeField, BF: BackendField> FCircuit<F> for NonameFCircuit<F, BF> {
type Params = (String, usize, usize);
fn new(params: Self::Params) -> Result<Self, crate::Error> {
let (code, state_len, external_inputs_len) = params;
let compiled_circuit = compile_source_code::<BF>(&code).map_err(|_| {
Error::Other("Encountered an error while compiling a noname circuit".to_owned())
})?;
Ok(NonameFCircuit {
state_len,
external_inputs_len,
circuit: compiled_circuit,
_f: PhantomData,
})
}
fn state_len(&self) -> usize {
self.state_len
}
fn external_inputs_len(&self) -> usize {
self.external_inputs_len
}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
external_inputs: Vec<F>,
) -> Result<Vec<F>, crate::Error> {
let wtns_external_inputs =
NonameInputs::from((&external_inputs, "external_inputs".to_string()));
let wtns_ivc_inputs = NonameInputs::from((&z_i, "ivc_inputs".to_string()));
let noname_witness = self
.circuit
.generate_witness(wtns_ivc_inputs.0, wtns_external_inputs.0)
.map_err(|e| Error::WitnessCalculationError(e.to_string()))?;
let z_i1_end_index = z_i.len() + 1;
let assigned_z_i1 = (1..z_i1_end_index)
.map(|idx| {
let value: BigUint = Into::into(noname_witness.witness[idx]);
F::from(value)
})
.collect();
Ok(assigned_z_i1)
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let wtns_external_inputs =
NonameInputs::from_fpvars((&external_inputs, "external_inputs".to_string()))?;
let wtns_ivc_inputs = NonameInputs::from_fpvars((&z_i, "ivc_inputs".to_string()))?;
let noname_witness = self
.circuit
.generate_witness(wtns_ivc_inputs.0, wtns_external_inputs.0)
.map_err(|_| SynthesisError::Unsatisfiable)?;
let z_i1_end_index = z_i.len() + 1;
let assigned_z_i1: Vec<FpVar<F>> = (1..z_i1_end_index)
.map(|idx| -> Result<FpVar<F>, SynthesisError> {
// the assigned zi1 is of the same size than the initial zi and is located in the
// output of the witness vector
// we prefer to assign z_i1 here since (1) we have to return it, (2) we cant return
// anything with the `generate_constraints` method used below
let value: BigUint = Into::into(noname_witness.witness[idx]);
let field_element = F::from(value);
FpVar::<F>::new_witness(cs.clone(), || Ok(field_element))
})
.collect::<Result<Vec<FpVar<F>>, SynthesisError>>()?;
let noname_circuit = NonameSonobeCircuit {
compiled_circuit: self.circuit.clone(),
witness: noname_witness,
assigned_z_i: &z_i,
assigned_external_inputs: &external_inputs,
assigned_z_i1: &assigned_z_i1,
};
noname_circuit.generate_constraints(cs.clone())?;
Ok(assigned_z_i1)
}
}
#[cfg(test)]
mod tests {
use ark_bn254::Fr;
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
use noname::backends::r1cs::R1csBn254Field;
use crate::frontend::FCircuit;
use super::NonameFCircuit;
use ark_relations::r1cs::ConstraintSystem;
const NONAME_CIRCUIT_EXTERNAL_INPUTS: &str =
"fn main(pub ivc_inputs: [Field; 2], external_inputs: [Field; 2]) -> [Field; 2] {
let xx = external_inputs[0] + ivc_inputs[0];
let yy = external_inputs[1] * ivc_inputs[1];
assert_eq(yy, xx);
return [xx, yy];
}";
const NONAME_CIRCUIT_NO_EXTERNAL_INPUTS: &str =
"fn main(pub ivc_inputs: [Field; 2]) -> [Field; 2] {
let out = ivc_inputs[0] * ivc_inputs[1];
return [out, ivc_inputs[1]];
}";
#[test]
fn test_step_native() {
let cs = ConstraintSystem::<Fr>::new_ref();
let params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
let circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
let inputs_public = vec![Fr::from(2), Fr::from(5)];
let inputs_private = vec![Fr::from(8), Fr::from(2)];
let ivc_inputs_var =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public.clone())).unwrap();
let external_inputs_var =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_private.clone())).unwrap();
let z_i1 = circuit
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, external_inputs_var)
.unwrap();
let z_i1_native = circuit
.step_native(0, inputs_public, inputs_private)
.unwrap();
assert_eq!(z_i1[0].value().unwrap(), z_i1_native[0]);
assert_eq!(z_i1[1].value().unwrap(), z_i1_native[1]);
}
#[test]
fn test_step_constraints() {
let cs = ConstraintSystem::<Fr>::new_ref();
let params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
let circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
let inputs_public = vec![Fr::from(2), Fr::from(5)];
let inputs_private = vec![Fr::from(8), Fr::from(2)];
let ivc_inputs_var =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public)).unwrap();
let external_inputs_var =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_private)).unwrap();
let z_i1 = circuit
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, external_inputs_var)
.unwrap();
assert!(cs.is_satisfied().unwrap());
assert_eq!(z_i1[0].value().unwrap(), Fr::from(10_u8));
assert_eq!(z_i1[1].value().unwrap(), Fr::from(10_u8));
}
#[test]
fn test_generate_constraints_no_external_inputs() {
let cs = ConstraintSystem::<Fr>::new_ref();
let params = (NONAME_CIRCUIT_NO_EXTERNAL_INPUTS.to_owned(), 2, 0);
let inputs_public = vec![Fr::from(2), Fr::from(5)];
let ivc_inputs_var =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(inputs_public)).unwrap();
let f_circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(params).unwrap();
f_circuit
.generate_step_constraints(cs.clone(), 0, ivc_inputs_var, vec![])
.unwrap();
assert!(cs.is_satisfied().unwrap());
}
}

+ 58
- 0
folding-schemes/src/frontend/noname/utils.rs

@ -0,0 +1,58 @@
use std::collections::HashMap;
use ark_ff::PrimeField;
use ark_r1cs_std::{fields::fp::FpVar, R1CSVar};
use ark_relations::r1cs::SynthesisError;
use noname::inputs::JsonInputs;
use serde_json::json;
pub struct NonameInputs(pub JsonInputs);
impl<F: PrimeField> From<(&Vec<F>, String)> for NonameInputs {
fn from(value: (&Vec<F>, String)) -> Self {
let (values, key) = value;
let mut inputs = HashMap::new();
if values.is_empty() {
NonameInputs(JsonInputs(inputs))
} else {
let field_elements: Vec<String> = values
.iter()
.map(|value| {
if value.is_zero() {
"0".to_string()
} else {
value.to_string()
}
})
.collect();
inputs.insert(key, json!(field_elements));
NonameInputs(JsonInputs(inputs))
}
}
}
impl NonameInputs {
pub fn from_fpvars<F: PrimeField>(
value: (&Vec<FpVar<F>>, String),
) -> Result<Self, SynthesisError> {
let (values, key) = value;
let mut inputs = HashMap::new();
if values.is_empty() {
Ok(NonameInputs(JsonInputs(inputs)))
} else {
let field_elements: Vec<String> = values
.iter()
.map(|var| {
let value = var.value()?;
if value.is_zero() {
Ok("0".to_string())
} else {
Ok(value.to_string())
}
})
.collect::<Result<Vec<String>, SynthesisError>>()?;
inputs.insert(key, json!(field_elements));
Ok(NonameInputs(JsonInputs(inputs)))
}
}
}

+ 3
- 1
folding-schemes/src/lib.rs

@ -91,10 +91,12 @@ pub enum Error {
NotSupported(String),
#[error("max i-th step reached (usize limit reached)")]
MaxStep,
#[error("Circom Witness calculation error: {0}")]
#[error("Witness calculation error: {0}")]
WitnessCalculationError(String),
#[error("BigInt to PrimeField conversion error: {0}")]
BigIntConversionError(String),
#[error("Failed to serde: {0}")]
JSONSerdeError(String),
}
/// FoldingScheme defines trait that is implemented by the diverse folding schemes. It is defined

+ 5
- 0
solidity-verifiers/Cargo.toml

@ -29,6 +29,7 @@ ark-bn254 = {version="0.4.0", features=["r1cs"]}
ark-grumpkin = {version="0.4.0", features=["r1cs"]}
rand = "0.8.5"
folding-schemes = { path = "../folding-schemes/", features=["light-test"]}
noname = { git = "https://github.com/dmpierre/noname" }
[features]
default = ["parallel"]
@ -47,3 +48,7 @@ path = "../examples/full_flow.rs"
[[example]]
name = "circom_full_flow"
path = "../examples/circom_full_flow.rs"
[[example]]
name = "noname_full_flow"
path = "../examples/noname_full_flow.rs"

Loading…
Cancel
Save