Circom external inputs (#91)

* circom: add external_inputs

* adapt new external_inputs interface to the FoldingScheme trait and Nova impl

* adapt examples to new FCircuit external_inputs interface

* add state_len & external_inputs_len params to CircomFCircuit

* add examples/circom_full_flow.rs

* merge the params initializer functions, clippy

* circom: move r1cs reading to FCircuit::new instead of each step

* CI/examples: add circom so it can run the circom_full_flow example
This commit is contained in:
2024-05-06 16:06:08 +02:00
parent 9bbdfc5a85
commit d5c1e5f72a
21 changed files with 632 additions and 261 deletions

View File

@@ -16,15 +16,15 @@ use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::test_nova_setup;
use utils::init_nova_ivc_params;
/// This is the circuit that we want to fold, it implements the FCircuit trait.
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
@@ -38,16 +38,24 @@ pub struct Sha256FCircuit<F: PrimeField> {
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
fn new(_params: Self::Params) -> Result<Self, Error> {
Ok(Self { _f: PhantomData })
}
fn state_len(&self) -> usize {
1
}
fn external_inputs_len(&self) -> usize {
0
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
@@ -60,6 +68,7 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let unit_var = UnitVar::default();
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
@@ -80,14 +89,14 @@ pub mod tests {
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = Sha256FCircuit::<Fr>::new(());
let circuit = Sha256FCircuit::<Fr>::new(()).unwrap();
let z_i = vec![Fr::from(1_u32)];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_i1 = circuit.step_native(0, z_i.clone(), vec![]).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.generate_step_constraints(cs.clone(), 0, z_iVar.clone(), vec![])
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
@@ -98,10 +107,10 @@ fn main() {
let num_steps = 10;
let initial_state = vec![Fr::from(1_u32)];
let F_circuit = Sha256FCircuit::<Fr>::new(());
let F_circuit = Sha256FCircuit::<Fr>::new(()).unwrap();
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) = test_nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
let (prover_params, verifier_params, _) = init_nova_ivc_params::<Sha256FCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
@@ -112,7 +121,7 @@ fn main() {
Projective2,
GVar2,
Sha256FCircuit<Fr>,
Pedersen<Projective>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
>;
@@ -122,7 +131,7 @@ fn main() {
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
folding_scheme.prove_step(vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}