mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-07 14:31:31 +01:00
Full flow example (#90)
* expose params & structs for external usage * add full_flow example, move examples into 'examples' dir
This commit is contained in:
4
.github/workflows/ci.yml
vendored
4
.github/workflows/ci.yml
vendored
@@ -79,6 +79,10 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions-rs/toolchain@v1
|
||||
- name: Download solc
|
||||
run: |
|
||||
curl -sSfL https://github.com/ethereum/solidity/releases/download/v0.8.4/solc-static-linux -o /usr/local/bin/solc
|
||||
chmod +x /usr/local/bin/solc
|
||||
- name: Run examples tests
|
||||
run: cargo test --examples
|
||||
- name: Run examples
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -7,3 +7,6 @@ folding-schemes/src/frontend/circom/test_folder/cubic_circuit_js/
|
||||
|
||||
# generated contracts at test time
|
||||
solidity-verifiers/generated
|
||||
examples/*.sol
|
||||
examples/*.calldata
|
||||
examples/*.inputs
|
||||
|
||||
222
examples/full_flow.rs
Normal file
222
examples/full_flow.rs
Normal file
@@ -0,0 +1,222 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
///
|
||||
/// This example performs the full flow:
|
||||
/// - define the circuit to be folded
|
||||
/// - fold the circuit with Nova+CycleFold's IVC
|
||||
/// - generate a DeciderEthCircuit final proof
|
||||
/// - generate the Solidity contract that verifies the proof
|
||||
/// - verify the proof in the EVM
|
||||
///
|
||||
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
||||
use ark_crypto_primitives::snark::SNARK;
|
||||
use ark_ff::PrimeField;
|
||||
use ark_groth16::VerifyingKey as G16VerifierKey;
|
||||
use ark_groth16::{Groth16, ProvingKey};
|
||||
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
||||
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_r1cs_std::fields::fp::FpVar;
|
||||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
use ark_std::Zero;
|
||||
use std::marker::PhantomData;
|
||||
use std::time::Instant;
|
||||
|
||||
use folding_schemes::{
|
||||
commitment::{
|
||||
kzg::{ProverKey as KZGProverKey, KZG},
|
||||
pedersen::Pedersen,
|
||||
CommitmentScheme,
|
||||
},
|
||||
folding::nova::{
|
||||
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
||||
decider_eth_circuit::DeciderEthCircuit,
|
||||
get_cs_params_len, Nova, ProverParams,
|
||||
},
|
||||
frontend::FCircuit,
|
||||
transcript::poseidon::poseidon_test_config,
|
||||
Decider, Error, FoldingScheme,
|
||||
};
|
||||
use solidity_verifiers::{
|
||||
evm::{compile_solidity, Evm},
|
||||
utils::get_function_selector_for_nova_cyclefold_verifier,
|
||||
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
||||
NovaCycleFoldVerifierKey,
|
||||
};
|
||||
|
||||
/// Test circuit to be folded
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CubicFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for CubicFCircuit<F> {
|
||||
type Params = ();
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
|
||||
}
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
|
||||
let z_i = z_i[0].clone();
|
||||
|
||||
Ok(vec![&z_i * &z_i * &z_i + &z_i + &five])
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn init_test_prover_params<FC: FCircuit<Fr, Params = ()>>() -> (
|
||||
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
||||
KZGVerifierKey<Bn254>,
|
||||
) {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
let f_circuit = FC::new(());
|
||||
let (cs_len, cf_cs_len) =
|
||||
get_cs_params_len::<G1, GVar, G2, GVar2, FC>(&poseidon_config, f_circuit).unwrap();
|
||||
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
|
||||
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
|
||||
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
|
||||
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
cs_params: kzg_pk.clone(),
|
||||
cf_cs_params: cf_pedersen_params,
|
||||
};
|
||||
(fs_prover_params, kzg_vk)
|
||||
}
|
||||
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn init_params<FC: FCircuit<Fr, Params = ()>>() -> (
|
||||
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
||||
KZGVerifierKey<Bn254>,
|
||||
ProvingKey<Bn254>,
|
||||
G16VerifierKey<Bn254>,
|
||||
) {
|
||||
let mut rng = rand::rngs::OsRng;
|
||||
let start = Instant::now();
|
||||
let (fs_prover_params, kzg_vk) = init_test_prover_params::<FC>();
|
||||
println!("generated Nova folding params: {:?}", start.elapsed());
|
||||
let f_circuit = FC::new(());
|
||||
|
||||
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
|
||||
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
|
||||
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
|
||||
|
||||
let decider_circuit =
|
||||
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
|
||||
nova.clone(),
|
||||
)
|
||||
.unwrap();
|
||||
let start = Instant::now();
|
||||
let (g16_pk, g16_vk) =
|
||||
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
|
||||
println!(
|
||||
"generated G16 (Decider circuit) params: {:?}",
|
||||
start.elapsed()
|
||||
);
|
||||
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let n_steps = 10;
|
||||
// set the initial state
|
||||
let z_0 = vec![Fr::from(3_u32)];
|
||||
|
||||
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) = init_params::<CubicFCircuit<Fr>>();
|
||||
|
||||
pub type NOVA = Nova<G1, GVar, G2, GVar2, CubicFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
|
||||
pub type DECIDERETH_FCircuit = DeciderEth<
|
||||
G1,
|
||||
GVar,
|
||||
G2,
|
||||
GVar2,
|
||||
CubicFCircuit<Fr>,
|
||||
KZG<'static, Bn254>,
|
||||
Pedersen<G2>,
|
||||
Groth16<Bn254>,
|
||||
NOVA,
|
||||
>;
|
||||
let f_circuit = CubicFCircuit::<Fr>::new(());
|
||||
|
||||
// initialize the folding scheme engine, in our case we use Nova
|
||||
let mut nova = NOVA::init(&fs_prover_params, f_circuit, z_0).unwrap();
|
||||
// run n steps of the folding iteration
|
||||
for i in 0..n_steps {
|
||||
let start = Instant::now();
|
||||
nova.prove_step().unwrap();
|
||||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
||||
}
|
||||
|
||||
let rng = rand::rngs::OsRng;
|
||||
let start = Instant::now();
|
||||
let proof = DECIDERETH_FCircuit::prove(
|
||||
(g16_pk, fs_prover_params.cs_params.clone()),
|
||||
rng,
|
||||
nova.clone(),
|
||||
)
|
||||
.unwrap();
|
||||
println!("generated Decider proof: {:?}", start.elapsed());
|
||||
|
||||
let verified = DECIDERETH_FCircuit::verify(
|
||||
(g16_vk.clone(), kzg_vk.clone()),
|
||||
nova.i,
|
||||
nova.z_0.clone(),
|
||||
nova.z_i.clone(),
|
||||
&nova.U_i,
|
||||
&nova.u_i,
|
||||
&proof,
|
||||
)
|
||||
.unwrap();
|
||||
assert!(verified);
|
||||
println!("Decider proof verification: {}", verified);
|
||||
|
||||
// Now, let's generate the Solidity code that verifies this Decider final proof
|
||||
let function_selector =
|
||||
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
||||
|
||||
let calldata: Vec<u8> = prepare_calldata(
|
||||
function_selector,
|
||||
nova.i,
|
||||
nova.z_0,
|
||||
nova.z_i,
|
||||
&nova.U_i,
|
||||
&nova.u_i,
|
||||
proof,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// prepare the setup params for the solidity verifier
|
||||
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
|
||||
|
||||
// generate the solidity code
|
||||
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
||||
|
||||
// verify the proof against the solidity code in the EVM
|
||||
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
|
||||
let mut evm = Evm::default();
|
||||
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
||||
let (_, output) = evm.call(verifier_address, calldata.clone());
|
||||
assert_eq!(*output.last().unwrap(), 1);
|
||||
|
||||
// save smart contract and the calldata
|
||||
println!("storing nova-verifier.sol and the calldata into files");
|
||||
use std::fs;
|
||||
fs::write(
|
||||
"./examples/nova-verifier.sol",
|
||||
decider_solidity_code.clone(),
|
||||
)
|
||||
.unwrap();
|
||||
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
||||
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
||||
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
||||
}
|
||||
@@ -11,7 +11,7 @@ use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
|
||||
// This method computes the Prover & Verifier parameters for the example.
|
||||
// This method computes the Nova's Prover & Verifier parameters for the example.
|
||||
// Warning: this method is only for testing purposes. For a real world use case those parameters
|
||||
// should be generated carefully (both the PoseidonConfig and the PedersenParams).
|
||||
#[allow(clippy::type_complexity)]
|
||||
@@ -47,3 +47,16 @@ parallel = [
|
||||
"ark-crypto-primitives/parallel",
|
||||
"ark-r1cs-std/parallel",
|
||||
]
|
||||
|
||||
|
||||
[[example]]
|
||||
name = "sha256"
|
||||
path = "../examples/sha256.rs"
|
||||
|
||||
[[example]]
|
||||
name = "multi_inputs"
|
||||
path = "../examples/multi_inputs.rs"
|
||||
|
||||
[[example]]
|
||||
name = "external_inputs"
|
||||
path = "../examples/external_inputs.rs"
|
||||
|
||||
@@ -83,7 +83,7 @@ impl<F: PrimeField> FCircuit<F> for CircomFCircuit<F> {
|
||||
let circom_circuit = CircomCircuit {
|
||||
r1cs,
|
||||
witness: witness.clone(),
|
||||
inputs_already_computed: true,
|
||||
inputs_already_allocated: true,
|
||||
};
|
||||
|
||||
// Generates the constraints for the circom_circuit.
|
||||
|
||||
@@ -140,7 +140,7 @@ mod tests {
|
||||
let circom_circuit = CircomCircuit {
|
||||
r1cs,
|
||||
witness,
|
||||
inputs_already_computed: false,
|
||||
inputs_already_allocated: false,
|
||||
};
|
||||
|
||||
circom_circuit.generate_constraints(cs.clone()).unwrap();
|
||||
|
||||
@@ -52,10 +52,9 @@ pub mod tests {
|
||||
use core::marker::PhantomData;
|
||||
|
||||
/// CubicFCircuit is a struct that implements the FCircuit trait, for the R1CS example circuit
|
||||
/// from https://www.vitalik.ca/general/2016/12/10/qap.html, which checks `x^3 + x + 5 = y`. It
|
||||
/// has 2 public inputs which are used as the state. `z_i` is used as `x`, and `z_{i+1}` is
|
||||
/// used as `y`, and at the next step, `z_{i+1}` will be assigned to `z_i`, and a new `z+{i+1}`
|
||||
/// will be computted.
|
||||
/// from https://www.vitalik.ca/general/2016/12/10/qap.html, which checks `x^3 + x + 5 = y`.
|
||||
/// `z_i` is used as `x`, and `z_{i+1}` is used as `y`, and at the next step, `z_{i+1}` will be
|
||||
/// assigned to `z_i`, and a new `z+{i+1}` will be computted.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct CubicFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
|
||||
@@ -40,4 +40,7 @@ parallel = [
|
||||
]
|
||||
|
||||
|
||||
|
||||
[[example]]
|
||||
name = "full_flow"
|
||||
path = "../examples/full_flow.rs"
|
||||
# required-features = ["light-test"]
|
||||
|
||||
@@ -11,19 +11,19 @@ use super::PRAGMA_GROTH16_VERIFIER;
|
||||
|
||||
#[derive(Template, Default)]
|
||||
#[template(path = "groth16_verifier.askama.sol", ext = "sol")]
|
||||
pub(crate) struct Groth16Verifier {
|
||||
pub struct Groth16Verifier {
|
||||
/// The `alpha * G`, where `G` is the generator of `G1`.
|
||||
pub(crate) vkey_alpha_g1: G1Repr,
|
||||
pub vkey_alpha_g1: G1Repr,
|
||||
/// The `alpha * H`, where `H` is the generator of `G2`.
|
||||
pub(crate) vkey_beta_g2: G2Repr,
|
||||
pub vkey_beta_g2: G2Repr,
|
||||
/// The `gamma * H`, where `H` is the generator of `G2`.
|
||||
pub(crate) vkey_gamma_g2: G2Repr,
|
||||
pub vkey_gamma_g2: G2Repr,
|
||||
/// The `delta * H`, where `H` is the generator of `G2`.
|
||||
pub(crate) vkey_delta_g2: G2Repr,
|
||||
pub vkey_delta_g2: G2Repr,
|
||||
/// Length of the `gamma_abc_g1` vector.
|
||||
pub(crate) gamma_abc_len: usize,
|
||||
pub gamma_abc_len: usize,
|
||||
/// The `gamma^{-1} * (beta * a_i + alpha * b_i + c_i) * H`, where `H` is the generator of `E::G1`.
|
||||
pub(crate) gamma_abc_g1: Vec<G1Repr>,
|
||||
pub gamma_abc_g1: Vec<G1Repr>,
|
||||
}
|
||||
|
||||
impl From<Groth16VerifierKey> for Groth16Verifier {
|
||||
|
||||
@@ -11,7 +11,7 @@ use super::PRAGMA_KZG10_VERIFIER;
|
||||
|
||||
#[derive(Template, Default)]
|
||||
#[template(path = "kzg10_verifier.askama.sol", ext = "sol")]
|
||||
pub(crate) struct KZG10Verifier {
|
||||
pub struct KZG10Verifier {
|
||||
/// The generator of `G1`.
|
||||
pub(crate) g1: G1Repr,
|
||||
/// The generator of `G2`.
|
||||
@@ -42,8 +42,8 @@ impl From<KZG10VerifierKey> for KZG10Verifier {
|
||||
|
||||
#[derive(CanonicalDeserialize, CanonicalSerialize, Clone, PartialEq, Debug)]
|
||||
pub struct KZG10VerifierKey {
|
||||
pub(crate) vk: VerifierKey<Bn254>,
|
||||
pub(crate) g1_crs_batch_points: Vec<G1Affine>,
|
||||
pub vk: VerifierKey<Bn254>,
|
||||
pub g1_crs_batch_points: Vec<G1Affine>,
|
||||
}
|
||||
|
||||
impl From<(VerifierKey<Bn254>, Vec<G1Affine>)> for KZG10VerifierKey {
|
||||
|
||||
@@ -2,17 +2,17 @@
|
||||
//! We use askama for templating and define which variables are required for each template.
|
||||
|
||||
// Pragma statements for verifiers
|
||||
pub(crate) const PRAGMA_GROTH16_VERIFIER: &str = "pragma solidity >=0.7.0 <0.9.0;"; // from snarkjs, avoid changing
|
||||
pub(crate) const PRAGMA_KZG10_VERIFIER: &str = "pragma solidity >=0.8.1 <=0.8.4;";
|
||||
pub const PRAGMA_GROTH16_VERIFIER: &str = "pragma solidity >=0.7.0 <0.9.0;"; // from snarkjs, avoid changing
|
||||
pub const PRAGMA_KZG10_VERIFIER: &str = "pragma solidity >=0.8.1 <=0.8.4;";
|
||||
|
||||
/// Default SDPX License identifier
|
||||
pub(crate) const GPL3_SDPX_IDENTIFIER: &str = "// SPDX-License-Identifier: GPL-3.0";
|
||||
pub(crate) const MIT_SDPX_IDENTIFIER: &str = "// SPDX-License-Identifier: MIT";
|
||||
pub const GPL3_SDPX_IDENTIFIER: &str = "// SPDX-License-Identifier: GPL-3.0";
|
||||
pub const MIT_SDPX_IDENTIFIER: &str = "// SPDX-License-Identifier: MIT";
|
||||
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
|
||||
|
||||
mod g16;
|
||||
mod kzg;
|
||||
mod nova_cyclefold;
|
||||
pub mod g16;
|
||||
pub mod kzg;
|
||||
pub mod nova_cyclefold;
|
||||
|
||||
pub use g16::Groth16VerifierKey;
|
||||
pub use kzg::KZG10VerifierKey;
|
||||
|
||||
@@ -26,7 +26,7 @@ pub fn get_decider_template_for_cyclefold_decider(
|
||||
|
||||
#[derive(Template, Default)]
|
||||
#[template(path = "nova_cyclefold_decider.askama.sol", ext = "sol")]
|
||||
pub(crate) struct NovaCycleFoldDecider {
|
||||
pub struct NovaCycleFoldDecider {
|
||||
groth16_verifier: Groth16Verifier,
|
||||
kzg10_verifier: KZG10Verifier,
|
||||
// z_len denotes the FCircuit state (z_i) length
|
||||
|
||||
Reference in New Issue
Block a user