#![allow(non_snake_case)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
///
|
|
/// This example performs the full flow:
|
|
/// - define the circuit to be folded
|
|
/// - fold the circuit with Nova+CycleFold's IVC
|
|
/// - generate a DeciderEthCircuit final proof
|
|
/// - generate the Solidity contract that verifies the proof
|
|
/// - verify the proof in the EVM
|
|
///
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|
use ark_crypto_primitives::snark::SNARK;
|
|
use ark_ff::PrimeField;
|
|
use ark_groth16::VerifyingKey as G16VerifierKey;
|
|
use ark_groth16::{Groth16, ProvingKey};
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use ark_std::Zero;
|
|
use std::marker::PhantomData;
|
|
use std::time::Instant;
|
|
|
|
use folding_schemes::{
|
|
commitment::{
|
|
kzg::{ProverKey as KZGProverKey, KZG},
|
|
pedersen::Pedersen,
|
|
CommitmentScheme,
|
|
},
|
|
folding::nova::{
|
|
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|
decider_eth_circuit::DeciderEthCircuit,
|
|
get_cs_params_len, Nova, ProverParams,
|
|
},
|
|
frontend::FCircuit,
|
|
transcript::poseidon::poseidon_test_config,
|
|
Decider, Error, FoldingScheme,
|
|
};
|
|
use solidity_verifiers::{
|
|
evm::{compile_solidity, Evm},
|
|
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|
NovaCycleFoldVerifierKey,
|
|
};
|
|
|
|
/// Test circuit to be folded
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct CubicFCircuit<F: PrimeField> {
|
|
_f: PhantomData<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for CubicFCircuit<F> {
|
|
type Params = ();
|
|
fn new(_params: Self::Params) -> Self {
|
|
Self { _f: PhantomData }
|
|
}
|
|
fn state_len(&self) -> usize {
|
|
1
|
|
}
|
|
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
|
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
|
|
}
|
|
fn generate_step_constraints(
|
|
&self,
|
|
cs: ConstraintSystemRef<F>,
|
|
_i: usize,
|
|
z_i: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
|
|
let z_i = z_i[0].clone();
|
|
|
|
Ok(vec![&z_i * &z_i * &z_i + &z_i + &five])
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn init_test_prover_params<FC: FCircuit<Fr, Params = ()>>() -> (
|
|
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
|
KZGVerifierKey<Bn254>,
|
|
) {
|
|
let mut rng = ark_std::test_rng();
|
|
let poseidon_config = poseidon_test_config::<Fr>();
|
|
let f_circuit = FC::new(());
|
|
let (cs_len, cf_cs_len) =
|
|
get_cs_params_len::<G1, GVar, G2, GVar2, FC>(&poseidon_config, f_circuit).unwrap();
|
|
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
|
|
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
|
|
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
|
|
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
|
|
poseidon_config: poseidon_config.clone(),
|
|
cs_params: kzg_pk.clone(),
|
|
cf_cs_params: cf_pedersen_params,
|
|
};
|
|
(fs_prover_params, kzg_vk)
|
|
}
|
|
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
|
|
#[allow(clippy::type_complexity)]
|
|
fn init_params<FC: FCircuit<Fr, Params = ()>>() -> (
|
|
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
|
KZGVerifierKey<Bn254>,
|
|
ProvingKey<Bn254>,
|
|
G16VerifierKey<Bn254>,
|
|
) {
|
|
let mut rng = rand::rngs::OsRng;
|
|
let start = Instant::now();
|
|
let (fs_prover_params, kzg_vk) = init_test_prover_params::<FC>();
|
|
println!("generated Nova folding params: {:?}", start.elapsed());
|
|
let f_circuit = FC::new(());
|
|
|
|
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
|
|
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
|
|
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
|
|
|
|
let decider_circuit =
|
|
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
|
|
nova.clone(),
|
|
)
|
|
.unwrap();
|
|
let start = Instant::now();
|
|
let (g16_pk, g16_vk) =
|
|
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
|
|
println!(
|
|
"generated G16 (Decider circuit) params: {:?}",
|
|
start.elapsed()
|
|
);
|
|
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
|
|
}
|
|
|
|
fn main() {
|
|
let n_steps = 10;
|
|
// set the initial state
|
|
let z_0 = vec![Fr::from(3_u32)];
|
|
|
|
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) = init_params::<CubicFCircuit<Fr>>();
|
|
|
|
pub type NOVA = Nova<G1, GVar, G2, GVar2, CubicFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
|
|
pub type DECIDERETH_FCircuit = DeciderEth<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
CubicFCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
Groth16<Bn254>,
|
|
NOVA,
|
|
>;
|
|
let f_circuit = CubicFCircuit::<Fr>::new(());
|
|
|
|
// initialize the folding scheme engine, in our case we use Nova
|
|
let mut nova = NOVA::init(&fs_prover_params, f_circuit, z_0).unwrap();
|
|
// run n steps of the folding iteration
|
|
for i in 0..n_steps {
|
|
let start = Instant::now();
|
|
nova.prove_step().unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
let rng = rand::rngs::OsRng;
|
|
let start = Instant::now();
|
|
let proof = DECIDERETH_FCircuit::prove(
|
|
(g16_pk, fs_prover_params.cs_params.clone()),
|
|
rng,
|
|
nova.clone(),
|
|
)
|
|
.unwrap();
|
|
println!("generated Decider proof: {:?}", start.elapsed());
|
|
|
|
let verified = DECIDERETH_FCircuit::verify(
|
|
(g16_vk.clone(), kzg_vk.clone()),
|
|
nova.i,
|
|
nova.z_0.clone(),
|
|
nova.z_i.clone(),
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
&proof,
|
|
)
|
|
.unwrap();
|
|
assert!(verified);
|
|
println!("Decider proof verification: {}", verified);
|
|
|
|
// Now, let's generate the Solidity code that verifies this Decider final proof
|
|
let function_selector =
|
|
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|
|
|
let calldata: Vec<u8> = prepare_calldata(
|
|
function_selector,
|
|
nova.i,
|
|
nova.z_0,
|
|
nova.z_i,
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
proof,
|
|
)
|
|
.unwrap();
|
|
|
|
// prepare the setup params for the solidity verifier
|
|
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
|
|
|
|
// generate the solidity code
|
|
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|
|
|
// verify the proof against the solidity code in the EVM
|
|
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
|
|
let mut evm = Evm::default();
|
|
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|
assert_eq!(*output.last().unwrap(), 1);
|
|
|
|
// save smart contract and the calldata
|
|
println!("storing nova-verifier.sol and the calldata into files");
|
|
use std::fs;
|
|
fs::write(
|
|
"./examples/nova-verifier.sol",
|
|
decider_solidity_code.clone(),
|
|
)
|
|
.unwrap();
|
|
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|
}
|