Browse Source

Traits for witnesses and committed instances (#157)

* Add traits for witness and committed instance

* Implement witness and committed instance traits for Nova and HyperNova

* Implement witness and committed instance traits for ProtoGalaxy

* Improve the clarity of docs for `Witness{Var}Ext::get_openings`

* Avoid cloning `z_i`

* Fix grammar issues

* Rename `Ext` traits for committed instances and witnesses to `Ops`

* Implement `to_sponge_bytes`
main
winderica 1 month ago
committed by GitHub
parent
commit
dfd03ea386
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
15 changed files with 566 additions and 329 deletions
  1. +16
    -3
      folding-schemes/src/folding/hypernova/cccs.rs
  2. +119
    -82
      folding-schemes/src/folding/hypernova/circuits.rs
  3. +9
    -9
      folding-schemes/src/folding/hypernova/decider_eth_circuit.rs
  4. +15
    -28
      folding-schemes/src/folding/hypernova/lcccs.rs
  5. +20
    -16
      folding-schemes/src/folding/hypernova/mod.rs
  6. +1
    -0
      folding-schemes/src/folding/mod.rs
  7. +73
    -59
      folding-schemes/src/folding/nova/circuits.rs
  8. +12
    -10
      folding-schemes/src/folding/nova/decider_eth_circuit.rs
  9. +26
    -31
      folding-schemes/src/folding/nova/mod.rs
  10. +2
    -1
      folding-schemes/src/folding/nova/zk.rs
  11. +24
    -27
      folding-schemes/src/folding/protogalaxy/circuits.rs
  12. +80
    -60
      folding-schemes/src/folding/protogalaxy/mod.rs
  13. +46
    -3
      folding-schemes/src/folding/protogalaxy/traits.rs
  14. +121
    -0
      folding-schemes/src/folding/traits.rs
  15. +2
    -0
      folding-schemes/src/lib.rs

+ 16
- 3
folding-schemes/src/folding/hypernova/cccs.rs

@ -9,9 +9,11 @@ use std::sync::Arc;
use ark_std::rand::Rng; use ark_std::rand::Rng;
use super::circuits::CCCSVar;
use super::Witness; use super::Witness;
use crate::arith::{ccs::CCS, Arith}; use crate::arith::{ccs::CCS, Arith};
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::folding::traits::CommittedInstanceOps;
use crate::transcript::AbsorbNonNative; use crate::transcript::AbsorbNonNative;
use crate::utils::mle::dense_vec_to_dense_mle; use crate::utils::mle::dense_vec_to_dense_mle;
use crate::utils::vec::mat_vec_mul; use crate::utils::vec::mat_vec_mul;
@ -126,9 +128,8 @@ impl Absorb for CCCS
where where
C::ScalarField: Absorb, C::ScalarField: Absorb,
{ {
fn to_sponge_bytes(&self, _dest: &mut Vec<u8>) {
// This is never called
unimplemented!()
fn to_sponge_bytes(&self, dest: &mut Vec<u8>) {
C::ScalarField::batch_to_sponge_bytes(&self.to_sponge_field_elements_as_vec(), dest);
} }
fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) { fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) {
@ -142,6 +143,18 @@ where
} }
} }
impl<C: CurveGroup> CommittedInstanceOps<C> for CCCS<C> {
type Var = CCCSVar<C>;
fn get_commitments(&self) -> Vec<C> {
vec![self.C]
}
fn is_incoming(&self) -> bool {
true
}
}
#[cfg(test)] #[cfg(test)]
pub mod tests { pub mod tests {
use ark_pallas::Fr; use ark_pallas::Fr;

+ 119
- 82
folding-schemes/src/folding/hypernova/circuits.rs

@ -1,6 +1,6 @@
/// Implementation of [HyperNova](https://eprint.iacr.org/2023/573.pdf) circuits /// Implementation of [HyperNova](https://eprint.iacr.org/2023/573.pdf) circuits
use ark_crypto_primitives::sponge::{ use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
constraints::{AbsorbGadget, CryptographicSpongeVar},
poseidon::{constraints::PoseidonSpongeVar, PoseidonSponge}, poseidon::{constraints::PoseidonSpongeVar, PoseidonSponge},
CryptographicSponge, CryptographicSponge,
}; };
@ -14,6 +14,7 @@ use ark_r1cs_std::{
fields::{fp::FpVar, FieldVar}, fields::{fp::FpVar, FieldVar},
groups::GroupOpsBounds, groups::GroupOpsBounds,
prelude::CurveVar, prelude::CurveVar,
uint8::UInt8,
R1CSVar, ToConstraintFieldGadget, R1CSVar, ToConstraintFieldGadget,
}; };
use ark_relations::r1cs::{ use ark_relations::r1cs::{
@ -41,6 +42,7 @@ use crate::folding::{
CF1, CF2, CF1, CF2,
}, },
nova::get_r1cs_from_cs, nova::get_r1cs_from_cs,
traits::CommittedInstanceVarOps,
}; };
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
use crate::utils::virtual_polynomial::VPAuxInfo; use crate::utils::virtual_polynomial::VPAuxInfo;
@ -52,19 +54,16 @@ use crate::{
/// Committed CCS instance /// Committed CCS instance
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct CCCSVar<C: CurveGroup>
where
<C as CurveGroup>::BaseField: PrimeField,
{
pub struct CCCSVar<C: CurveGroup> {
// Commitment to witness // Commitment to witness
pub C: NonNativeAffineVar<C>, pub C: NonNativeAffineVar<C>,
// Public io // Public io
pub x: Vec<FpVar<CF1<C>>>, pub x: Vec<FpVar<CF1<C>>>,
} }
impl<C> AllocVar<CCCS<C>, CF1<C>> for CCCSVar<C> impl<C> AllocVar<CCCS<C>, CF1<C>> for CCCSVar<C>
where where
C: CurveGroup, C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{ {
fn new_variable<T: Borrow<CCCS<C>>>( fn new_variable<T: Borrow<CCCS<C>>>(
cs: impl Into<Namespace<CF1<C>>>, cs: impl Into<Namespace<CF1<C>>>,
@ -83,12 +82,30 @@ where
} }
} }
impl<C: CurveGroup> CommittedInstanceVarOps<C> for CCCSVar<C> {
type PointVar = NonNativeAffineVar<C>;
fn get_commitments(&self) -> Vec<Self::PointVar> {
vec![self.C.clone()]
}
fn get_public_inputs(&self) -> &[FpVar<CF1<C>>] {
&self.x
}
fn enforce_incoming(&self) -> Result<(), SynthesisError> {
// `CCCSVar` is always the incoming instance
Ok(())
}
fn enforce_partial_equal(&self, other: &Self) -> Result<(), SynthesisError> {
self.x.enforce_equal(&other.x)
}
}
/// Linearized Committed CCS instance /// Linearized Committed CCS instance
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct LCCCSVar<C: CurveGroup>
where
<C as CurveGroup>::BaseField: PrimeField,
{
pub struct LCCCSVar<C: CurveGroup> {
// Commitment to witness // Commitment to witness
pub C: NonNativeAffineVar<C>, pub C: NonNativeAffineVar<C>,
// Relaxation factor of z for folded LCCCS // Relaxation factor of z for folded LCCCS
@ -100,10 +117,10 @@ where
// Vector of v_i // Vector of v_i
pub v: Vec<FpVar<CF1<C>>>, pub v: Vec<FpVar<CF1<C>>>,
} }
impl<C> AllocVar<LCCCS<C>, CF1<C>> for LCCCSVar<C> impl<C> AllocVar<LCCCS<C>, CF1<C>> for LCCCSVar<C>
where where
C: CurveGroup, C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{ {
fn new_variable<T: Borrow<LCCCS<C>>>( fn new_variable<T: Borrow<LCCCS<C>>>(
cs: impl Into<Namespace<CF1<C>>>, cs: impl Into<Namespace<CF1<C>>>,
@ -127,41 +144,44 @@ where
} }
} }
impl<C> LCCCSVar<C>
where
C: CurveGroup,
<C as Group>::ScalarField: Absorb,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
/// [`LCCCSVar`].hash implements the LCCCS instance hash compatible with the native
/// implementation from LCCCS.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U` is the LCCCS.
/// Additionally it returns the vector of the field elements from the self parameters, so they
/// can be reused in other gadgets avoiding recalculating (reconstraining) them.
#[allow(clippy::type_complexity)]
pub fn hash(
self,
sponge: &PoseidonSpongeVar<CF1<C>>,
pp_hash: FpVar<CF1<C>>,
i: FpVar<CF1<C>>,
z_0: Vec<FpVar<CF1<C>>>,
z_i: Vec<FpVar<CF1<C>>>,
) -> Result<(FpVar<CF1<C>>, Vec<FpVar<CF1<C>>>), SynthesisError> {
let mut sponge = sponge.clone();
let U_vec = [
self.C.to_constraint_field()?,
vec![self.u],
self.x,
self.r_x,
self.v,
impl<C: CurveGroup> AbsorbGadget<C::ScalarField> for LCCCSVar<C> {
fn to_sponge_bytes(&self) -> Result<Vec<UInt8<C::ScalarField>>, SynthesisError> {
FpVar::batch_to_sponge_bytes(&self.to_sponge_field_elements()?)
}
fn to_sponge_field_elements(&self) -> Result<Vec<FpVar<C::ScalarField>>, SynthesisError> {
Ok([
&self.C.to_constraint_field()?,
&[self.u.clone()][..],
&self.x,
&self.r_x,
&self.v,
] ]
.concat();
sponge.absorb(&pp_hash)?;
sponge.absorb(&i)?;
sponge.absorb(&z_0)?;
sponge.absorb(&z_i)?;
sponge.absorb(&U_vec)?;
Ok((sponge.squeeze_field_elements(1)?.pop().unwrap(), U_vec))
.concat())
}
}
impl<C: CurveGroup> CommittedInstanceVarOps<C> for LCCCSVar<C> {
type PointVar = NonNativeAffineVar<C>;
fn get_commitments(&self) -> Vec<Self::PointVar> {
vec![self.C.clone()]
}
fn get_public_inputs(&self) -> &[FpVar<CF1<C>>] {
&self.x
}
fn enforce_incoming(&self) -> Result<(), SynthesisError> {
// `LCCCSVar` is always the running instance
Err(SynthesisError::Unsatisfiable)
}
fn enforce_partial_equal(&self, other: &Self) -> Result<(), SynthesisError> {
self.u.enforce_equal(&other.u)?;
self.x.enforce_equal(&other.x)?;
self.r_x.enforce_equal(&other.r_x)?;
self.v.enforce_equal(&other.v)
} }
} }
@ -742,25 +762,13 @@ where
let sponge = PoseidonSpongeVar::<C1::ScalarField>::new(cs.clone(), &self.poseidon_config); let sponge = PoseidonSpongeVar::<C1::ScalarField>::new(cs.clone(), &self.poseidon_config);
// get z_{i+1} from the F circuit
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 =
self.F
.generate_step_constraints(cs.clone(), i_usize, z_i.clone(), external_inputs)?;
let is_basecase = i.is_zero()?; let is_basecase = i.is_zero()?;
let is_not_basecase = is_basecase.not(); let is_not_basecase = is_basecase.not();
// Primary Part // Primary Part
// P.1. Compute u_i.x // P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i) // u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, _) = U_i.clone().hash(
&sponge,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
let (u_i_x, _) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
// u_i.x[1] = H(cf_U_i) // u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?; let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?;
@ -795,19 +803,26 @@ where
U_i1.C = U_i1_C; U_i1.C = U_i1_C;
// P.4.a compute and check the first output of F' // P.4.a compute and check the first output of F'
// get z_{i+1} from the F circuit
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 = self
.F
.generate_step_constraints(cs.clone(), i_usize, z_i, external_inputs)?;
let (u_i1_x, _) = U_i1.clone().hash( let (u_i1_x, _) = U_i1.clone().hash(
&sponge, &sponge,
pp_hash.clone(),
i + FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&(i + FpVar::<CF1<C1>>::one()),
&z_0,
&z_i1,
)?; )?;
let (u_i1_x_base, _) = LCCCSVar::new_constant(cs.clone(), U_dummy)?.hash( let (u_i1_x_base, _) = LCCCSVar::new_constant(cs.clone(), U_dummy)?.hash(
&sponge, &sponge,
pp_hash.clone(),
FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&FpVar::<CF1<C1>>::one(),
&z_0,
&z_i1,
)?; )?;
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?; let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?; x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;
@ -900,6 +915,7 @@ mod tests {
utils::{compute_c, compute_sigmas_thetas}, utils::{compute_c, compute_sigmas_thetas},
HyperNovaCycleFoldCircuit, HyperNovaCycleFoldCircuit,
}, },
traits::CommittedInstanceOps,
}, },
frontend::utils::CubicFCircuit, frontend::utils::CubicFCircuit,
transcript::poseidon::poseidon_canonical_config, transcript::poseidon::poseidon_canonical_config,
@ -1113,6 +1129,37 @@ mod tests {
assert_eq!(folded_lcccsVar.u.value().unwrap(), folded_lcccs.u); assert_eq!(folded_lcccsVar.u.value().unwrap(), folded_lcccs.u);
} }
/// test that checks the native LCCCS.to_sponge_{bytes,field_elements} vs
/// the R1CS constraints version
#[test]
pub fn test_lcccs_to_sponge_preimage() {
let mut rng = test_rng();
let ccs = get_test_ccs();
let z1 = get_test_z::<Fr>(3);
let (pedersen_params, _) =
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
let (lcccs, _) = ccs
.to_lcccs::<_, _, Pedersen<Projective, true>, true>(&mut rng, &pedersen_params, &z1)
.unwrap();
let bytes = lcccs.to_sponge_bytes_as_vec();
let field_elements = lcccs.to_sponge_field_elements_as_vec();
let cs = ConstraintSystem::<Fr>::new_ref();
let lcccsVar = LCCCSVar::<Projective>::new_witness(cs.clone(), || Ok(lcccs)).unwrap();
let bytes_var = lcccsVar.to_sponge_bytes().unwrap();
let field_elements_var = lcccsVar.to_sponge_field_elements().unwrap();
assert!(cs.is_satisfied().unwrap());
// check that the natively computed and in-circuit computed hashes match
assert_eq!(bytes_var.value().unwrap(), bytes);
assert_eq!(field_elements_var.value().unwrap(), field_elements);
}
/// test that checks the native LCCCS.hash vs the R1CS constraints version /// test that checks the native LCCCS.hash vs the R1CS constraints version
#[test] #[test]
pub fn test_lcccs_hash() { pub fn test_lcccs_hash() {
@ -1133,9 +1180,7 @@ mod tests {
let (lcccs, _) = ccs let (lcccs, _) = ccs
.to_lcccs::<_, _, Pedersen<Projective, true>, true>(&mut rng, &pedersen_params, &z1) .to_lcccs::<_, _, Pedersen<Projective, true>, true>(&mut rng, &pedersen_params, &z1)
.unwrap(); .unwrap();
let h = lcccs
.clone()
.hash(&sponge, pp_hash, i, z_0.clone(), z_i.clone());
let h = lcccs.clone().hash(&sponge, pp_hash, i, &z_0, &z_i);
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
@ -1147,13 +1192,7 @@ mod tests {
let lcccsVar = LCCCSVar::<Projective>::new_witness(cs.clone(), || Ok(lcccs)).unwrap(); let lcccsVar = LCCCSVar::<Projective>::new_witness(cs.clone(), || Ok(lcccs)).unwrap();
let (hVar, _) = lcccsVar let (hVar, _) = lcccsVar
.clone() .clone()
.hash(
&spongeVar,
pp_hashVar,
iVar.clone(),
z_0Var.clone(),
z_iVar.clone(),
)
.hash(&spongeVar, &pp_hashVar, &iVar, &z_0Var, &z_iVar)
.unwrap(); .unwrap();
assert!(cs.is_satisfied().unwrap()); assert!(cs.is_satisfied().unwrap());
@ -1225,7 +1264,7 @@ mod tests {
let mut cf_W_i = cf_W_dummy.clone(); let mut cf_W_i = cf_W_dummy.clone();
let mut cf_U_i = cf_U_dummy.clone(); let mut cf_U_i = cf_U_dummy.clone();
u_i.x = vec![ u_i.x = vec![
U_i.hash(&sponge, pp_hash, Fr::zero(), z_0.clone(), z_i.clone()),
U_i.hash(&sponge, pp_hash, Fr::zero(), &z_0, &z_i),
cf_U_i.hash_cyclefold(&sponge, pp_hash), cf_U_i.hash_cyclefold(&sponge, pp_hash),
]; ];
@ -1252,7 +1291,7 @@ mod tests {
W_i1 = Witness::<Fr>::dummy(&ccs); W_i1 = Witness::<Fr>::dummy(&ccs);
U_i1 = LCCCS::dummy(ccs.l, ccs.t, ccs.s); U_i1 = LCCCS::dummy(ccs.l, ccs.t, ccs.s);
let u_i1_x = U_i1.hash(&sponge, pp_hash, Fr::one(), z_0.clone(), z_i1.clone());
let u_i1_x = U_i1.hash(&sponge, pp_hash, Fr::one(), &z_0, &z_i1);
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public // hash the initial (dummy) CycleFold instance, which is used as the 2nd public
// input in the AugmentedFCircuit // input in the AugmentedFCircuit
@ -1309,8 +1348,7 @@ mod tests {
// sanity check: check the folded instance relation // sanity check: check the folded instance relation
U_i1.check_relation(&ccs, &W_i1).unwrap(); U_i1.check_relation(&ccs, &W_i1).unwrap();
let u_i1_x =
U_i1.hash(&sponge, pp_hash, iFr + Fr::one(), z_0.clone(), z_i1.clone());
let u_i1_x = U_i1.hash(&sponge, pp_hash, iFr + Fr::one(), &z_0, &z_i1);
let rho_bits = rho.into_bigint().to_bits_le()[..NOVA_N_BITS_RO].to_vec(); let rho_bits = rho.into_bigint().to_bits_le()[..NOVA_N_BITS_RO].to_vec();
let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap(); let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap();
@ -1434,8 +1472,7 @@ mod tests {
assert_eq!(u_i.x, r1cs_x_i1); assert_eq!(u_i.x, r1cs_x_i1);
assert_eq!(u_i.x[0], augmented_f_circuit.x.unwrap()); assert_eq!(u_i.x[0], augmented_f_circuit.x.unwrap());
assert_eq!(u_i.x[1], augmented_f_circuit.cf_x.unwrap()); assert_eq!(u_i.x[1], augmented_f_circuit.cf_x.unwrap());
let expected_u_i1_x =
U_i1.hash(&sponge, pp_hash, iFr + Fr::one(), z_0.clone(), z_i1.clone());
let expected_u_i1_x = U_i1.hash(&sponge, pp_hash, iFr + Fr::one(), &z_0, &z_i1);
let expected_cf_U_i1_x = cf_U_i.hash_cyclefold(&sponge, pp_hash); let expected_cf_U_i1_x = cf_U_i.hash_cyclefold(&sponge, pp_hash);
// u_i is already u_i1 at this point, check that has the expected value at x[0] // u_i is already u_i1 at this point, check that has the expected value at x[0]
assert_eq!(u_i.x[0], expected_u_i1_x); assert_eq!(u_i.x[0], expected_u_i1_x);

+ 9
- 9
folding-schemes/src/folding/hypernova/decider_eth_circuit.rs

@ -26,8 +26,6 @@ use super::{
nimfs::{NIMFSProof, NIMFS}, nimfs::{NIMFSProof, NIMFS},
HyperNova, Witness, CCCS, LCCCS, HyperNova, Witness, CCCS, LCCCS,
}; };
use crate::arith::ccs::CCS;
use crate::arith::r1cs::R1CS;
use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme}; use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme};
use crate::folding::circuits::{ use crate::folding::circuits::{
cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness}, cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness},
@ -40,6 +38,8 @@ use crate::utils::{
vec::poly_from_vec, vec::poly_from_vec,
}; };
use crate::Error; use crate::Error;
use crate::{arith::ccs::CCS, folding::traits::CommittedInstanceVarOps};
use crate::{arith::r1cs::R1CS, folding::traits::WitnessVarOps};
/// In-circuit representation of the Witness associated to the CommittedInstance. /// In-circuit representation of the Witness associated to the CommittedInstance.
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
@ -66,6 +66,12 @@ impl AllocVar, F> for WitnessVar {
} }
} }
impl<F: PrimeField> WitnessVarOps<F> for WitnessVar<F> {
fn get_openings(&self) -> Vec<(&[FpVar<F>], FpVar<F>)> {
vec![(&self.w, self.r_w.clone())]
}
}
/// CCSMatricesVar contains the matrices 'M' of the CCS without the rest of CCS parameters. /// CCSMatricesVar contains the matrices 'M' of the CCS without the rest of CCS parameters.
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct CCSMatricesVar<F: PrimeField> { pub struct CCSMatricesVar<F: PrimeField> {
@ -340,13 +346,7 @@ where
)?; )?;
// 3.a u_i.x[0] == H(i, z_0, z_i, U_i) // 3.a u_i.x[0] == H(i, z_0, z_i, U_i)
let (u_i_x, _) = U_i.clone().hash(
&sponge,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
let (u_i_x, _) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
(u_i.x[0]).enforce_equal(&u_i_x)?; (u_i.x[0]).enforce_equal(&u_i_x)?;
#[cfg(feature = "light-test")] #[cfg(feature = "light-test")]

+ 15
- 28
folding-schemes/src/folding/hypernova/lcccs.rs

@ -1,5 +1,5 @@
use ark_crypto_primitives::sponge::Absorb; use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ec::CurveGroup;
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension; use ark_poly::DenseMultilinearExtension;
use ark_poly::MultilinearExtension; use ark_poly::MultilinearExtension;
@ -8,10 +8,12 @@ use ark_serialize::CanonicalSerialize;
use ark_std::rand::Rng; use ark_std::rand::Rng;
use ark_std::Zero; use ark_std::Zero;
use super::circuits::LCCCSVar;
use super::Witness; use super::Witness;
use crate::arith::ccs::CCS; use crate::arith::ccs::CCS;
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::transcript::{AbsorbNonNative, Transcript};
use crate::folding::traits::CommittedInstanceOps;
use crate::transcript::AbsorbNonNative;
use crate::utils::mle::dense_vec_to_dense_mle; use crate::utils::mle::dense_vec_to_dense_mle;
use crate::utils::vec::mat_vec_mul; use crate::utils::vec::mat_vec_mul;
use crate::Error; use crate::Error;
@ -121,9 +123,8 @@ impl Absorb for LCCCS
where where
C::ScalarField: Absorb, C::ScalarField: Absorb,
{ {
fn to_sponge_bytes(&self, _dest: &mut Vec<u8>) {
// This is never called
unimplemented!()
fn to_sponge_bytes(&self, dest: &mut Vec<u8>) {
C::ScalarField::batch_to_sponge_bytes(&self.to_sponge_field_elements_as_vec(), dest);
} }
fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) { fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) {
@ -140,29 +141,15 @@ where
} }
} }
impl<C: CurveGroup> LCCCS<C>
where
<C as Group>::ScalarField: Absorb,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
/// [`LCCCS`].hash implements the committed instance hash compatible with the gadget
/// implemented in nova/circuits.rs::CommittedInstanceVar.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U_i` is the LCCCS.
pub fn hash<T: Transcript<C::ScalarField>>(
&self,
sponge: &T,
pp_hash: C::ScalarField,
i: C::ScalarField,
z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>,
) -> C::ScalarField {
let mut sponge = sponge.clone();
sponge.absorb(&pp_hash);
sponge.absorb(&i);
sponge.absorb(&z_0);
sponge.absorb(&z_i);
sponge.absorb(&self);
sponge.squeeze_field_elements(1)[0]
impl<C: CurveGroup> CommittedInstanceOps<C> for LCCCS<C> {
type Var = LCCCSVar<C>;
fn get_commitments(&self) -> Vec<C> {
vec![self.C]
}
fn is_incoming(&self) -> bool {
false
} }
} }

+ 20
- 16
folding-schemes/src/folding/hypernova/mod.rs

@ -20,6 +20,7 @@ pub mod utils;
use cccs::CCCS; use cccs::CCCS;
use circuits::AugmentedFCircuit; use circuits::AugmentedFCircuit;
use decider_eth_circuit::WitnessVar;
use lcccs::LCCCS; use lcccs::LCCCS;
use nimfs::NIMFS; use nimfs::NIMFS;
@ -32,6 +33,7 @@ use crate::folding::circuits::{
CF2, CF2,
}; };
use crate::folding::nova::{get_r1cs_from_cs, PreprocessorParam}; use crate::folding::nova::{get_r1cs_from_cs, PreprocessorParam};
use crate::folding::traits::{CommittedInstanceOps, WitnessOps};
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
use crate::utils::{get_cm_coordinates, pp_hash}; use crate::utils::{get_cm_coordinates, pp_hash};
use crate::Error; use crate::Error;
@ -81,6 +83,14 @@ impl Witness {
} }
} }
impl<F: PrimeField> WitnessOps<F> for Witness<F> {
type Var = WitnessVar<F>;
fn get_openings(&self) -> Vec<(&[F], F)> {
vec![(&self.w, self.r_w)]
}
}
/// Proving parameters for HyperNova-based IVC /// Proving parameters for HyperNova-based IVC
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct ProverParams<C1, C2, CS1, CS2, const H: bool> pub struct ProverParams<C1, C2, CS1, CS2, const H: bool>
@ -307,8 +317,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
C1::ScalarField::zero(), // i C1::ScalarField::zero(), // i
self.z_0.clone(),
state.clone(),
&self.z_0,
&state,
), ),
cf_U_i.hash_cyclefold(&sponge, self.pp_hash), cf_U_i.hash_cyclefold(&sponge, self.pp_hash),
]; ];
@ -324,8 +334,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
C1::ScalarField::one(), // i+1, where i=0 C1::ScalarField::one(), // i+1, where i=0
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
let cf_u_i1_x = cf_U_i.hash_cyclefold(&sponge, self.pp_hash); let cf_u_i1_x = cf_U_i.hash_cyclefold(&sponge, self.pp_hash);
@ -494,13 +504,7 @@ where
let (cf_W_dummy, cf_U_dummy): (CycleFoldWitness<C2>, CycleFoldCommittedInstance<C2>) = let (cf_W_dummy, cf_U_dummy): (CycleFoldWitness<C2>, CycleFoldCommittedInstance<C2>) =
cf_r1cs.dummy_running_instance(); cf_r1cs.dummy_running_instance();
u_dummy.x = vec![ u_dummy.x = vec![
U_dummy.hash(
&sponge,
pp_hash,
C1::ScalarField::zero(),
z_0.clone(),
z_0.clone(),
),
U_dummy.hash(&sponge, pp_hash, C1::ScalarField::zero(), &z_0, &z_0),
cf_U_dummy.hash_cyclefold(&sponge, pp_hash), cf_U_dummy.hash_cyclefold(&sponge, pp_hash),
]; ];
@ -643,8 +647,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
C1::ScalarField::one(), C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public // hash the initial (dummy) CycleFold instance, which is used as the 2nd public
@ -699,8 +703,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
let rho_bits = rho.into_bigint().to_bits_le()[..NOVA_N_BITS_RO].to_vec(); let rho_bits = rho.into_bigint().to_bits_le()[..NOVA_N_BITS_RO].to_vec();
@ -884,7 +888,7 @@ where
// check that u_i's output points to the running instance // check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i) // u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, z_0, z_i.clone());
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, &z_0, &z_i);
if expected_u_i_x != u_i.x[0] { if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }

+ 1
- 0
folding-schemes/src/folding/mod.rs

@ -2,3 +2,4 @@ pub mod circuits;
pub mod hypernova; pub mod hypernova;
pub mod nova; pub mod nova;
pub mod protogalaxy; pub mod protogalaxy;
pub mod traits;

+ 73
- 59
folding-schemes/src/folding/nova/circuits.rs

@ -21,7 +21,6 @@ use ark_std::{fmt::Debug, One, Zero};
use core::{borrow::Borrow, marker::PhantomData}; use core::{borrow::Borrow, marker::PhantomData};
use super::{CommittedInstance, NovaCycleFoldConfig}; use super::{CommittedInstance, NovaCycleFoldConfig};
use crate::constants::NOVA_N_BITS_RO;
use crate::folding::circuits::{ use crate::folding::circuits::{
cyclefold::{ cyclefold::{
CycleFoldChallengeGadget, CycleFoldCommittedInstance, CycleFoldCommittedInstanceVar, CycleFoldChallengeGadget, CycleFoldCommittedInstance, CycleFoldCommittedInstanceVar,
@ -32,15 +31,13 @@ use crate::folding::circuits::{
}; };
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
use crate::transcript::{AbsorbNonNativeGadget, Transcript, TranscriptVar}; use crate::transcript::{AbsorbNonNativeGadget, Transcript, TranscriptVar};
use crate::{constants::NOVA_N_BITS_RO, folding::traits::CommittedInstanceVarOps};
/// CommittedInstanceVar contains the u, x, cmE and cmW values which are folded on the main Nova /// CommittedInstanceVar contains the u, x, cmE and cmW values which are folded on the main Nova
/// constraints field (E1::Fr, where E1 is the main curve). The peculiarity is that cmE and cmW are /// constraints field (E1::Fr, where E1 is the main curve). The peculiarity is that cmE and cmW are
/// represented non-natively over the constraint field. /// represented non-natively over the constraint field.
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct CommittedInstanceVar<C: CurveGroup>
where
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
pub struct CommittedInstanceVar<C: CurveGroup> {
pub u: FpVar<C::ScalarField>, pub u: FpVar<C::ScalarField>,
pub x: Vec<FpVar<C::ScalarField>>, pub x: Vec<FpVar<C::ScalarField>>,
pub cmE: NonNativeAffineVar<C>, pub cmE: NonNativeAffineVar<C>,
@ -50,7 +47,6 @@ where
impl<C> AllocVar<CommittedInstance<C>, CF1<C>> for CommittedInstanceVar<C> impl<C> AllocVar<CommittedInstance<C>, CF1<C>> for CommittedInstanceVar<C>
where where
C: CurveGroup, C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{ {
fn new_variable<T: Borrow<CommittedInstance<C>>>( fn new_variable<T: Borrow<CommittedInstance<C>>>(
cs: impl Into<Namespace<CF1<C>>>, cs: impl Into<Namespace<CF1<C>>>,
@ -80,7 +76,7 @@ where
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField, <C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{ {
fn to_sponge_bytes(&self) -> Result<Vec<UInt8<C::ScalarField>>, SynthesisError> { fn to_sponge_bytes(&self) -> Result<Vec<UInt8<C::ScalarField>>, SynthesisError> {
unimplemented!()
FpVar::batch_to_sponge_bytes(&self.to_sponge_field_elements()?)
} }
fn to_sponge_field_elements(&self) -> Result<Vec<FpVar<C::ScalarField>>, SynthesisError> { fn to_sponge_field_elements(&self) -> Result<Vec<FpVar<C::ScalarField>>, SynthesisError> {
@ -94,35 +90,27 @@ where
} }
} }
impl<C> CommittedInstanceVar<C>
where
C: CurveGroup,
<C as Group>::ScalarField: Absorb,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
/// hash implements the committed instance hash compatible with the native implementation from
/// CommittedInstance.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U` is the
/// `CommittedInstance`.
/// Additionally it returns the vector of the field elements from the self parameters, so they
/// can be reused in other gadgets avoiding recalculating (reconstraining) them.
#[allow(clippy::type_complexity)]
pub fn hash<S: CryptographicSponge, T: TranscriptVar<CF1<C>, S>>(
self,
sponge: &T,
pp_hash: FpVar<CF1<C>>,
i: FpVar<CF1<C>>,
z_0: Vec<FpVar<CF1<C>>>,
z_i: Vec<FpVar<CF1<C>>>,
) -> Result<(FpVar<CF1<C>>, Vec<FpVar<CF1<C>>>), SynthesisError> {
let mut sponge = sponge.clone();
let U_vec = self.to_sponge_field_elements()?;
sponge.absorb(&pp_hash)?;
sponge.absorb(&i)?;
sponge.absorb(&z_0)?;
sponge.absorb(&z_i)?;
sponge.absorb(&U_vec)?;
Ok((sponge.squeeze_field_elements(1)?.pop().unwrap(), U_vec))
impl<C: CurveGroup> CommittedInstanceVarOps<C> for CommittedInstanceVar<C> {
type PointVar = NonNativeAffineVar<C>;
fn get_commitments(&self) -> Vec<Self::PointVar> {
vec![self.cmW.clone(), self.cmE.clone()]
}
fn get_public_inputs(&self) -> &[FpVar<CF1<C>>] {
&self.x
}
fn enforce_incoming(&self) -> Result<(), SynthesisError> {
let zero = NonNativeUintVar::new_constant(ConstraintSystemRef::None, CF2::<C>::zero())?;
self.cmE.x.enforce_equal_unaligned(&zero)?;
self.cmE.y.enforce_equal_unaligned(&zero)?;
self.u.enforce_equal(&FpVar::one())
}
fn enforce_partial_equal(&self, other: &Self) -> Result<(), SynthesisError> {
self.u.enforce_equal(&other.u)?;
self.x.enforce_equal(&other.x)
} }
} }
@ -359,24 +347,12 @@ where
// `transcript` is for challenge generation. // `transcript` is for challenge generation.
let mut transcript = sponge.clone(); let mut transcript = sponge.clone();
// get z_{i+1} from the F circuit
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 =
self.F
.generate_step_constraints(cs.clone(), i_usize, z_i.clone(), external_inputs)?;
let is_basecase = i.is_zero()?; let is_basecase = i.is_zero()?;
// Primary Part // Primary Part
// P.1. Compute u_i.x // P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i) // u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, U_i_vec) = U_i.clone().hash(
&sponge,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
let (u_i_x, U_i_vec) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
// u_i.x[1] = H(cf_U_i) // u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?; let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?;
@ -421,21 +397,28 @@ where
U_i1.cmW = U_i1_cmW; U_i1.cmW = U_i1_cmW;
// P.4.a compute and check the first output of F' // P.4.a compute and check the first output of F'
// get z_{i+1} from the F circuit
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 = self
.F
.generate_step_constraints(cs.clone(), i_usize, z_i, external_inputs)?;
// Base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{\bot}) // Base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{\bot})
// Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1}) // Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1})
let (u_i1_x, _) = U_i1.clone().hash( let (u_i1_x, _) = U_i1.clone().hash(
&sponge, &sponge,
pp_hash.clone(),
i + FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&(i + FpVar::<CF1<C1>>::one()),
&z_0,
&z_i1,
)?; )?;
let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash( let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash(
&sponge, &sponge,
pp_hash.clone(),
FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&FpVar::<CF1<C1>>::one(),
&z_0,
&z_i1,
)?; )?;
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?; let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?; x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;
@ -538,6 +521,7 @@ pub mod tests {
use crate::commitment::pedersen::Pedersen; use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::nifs::tests::prepare_simple_fold_inputs; use crate::folding::nova::nifs::tests::prepare_simple_fold_inputs;
use crate::folding::nova::nifs::NIFS; use crate::folding::nova::nifs::NIFS;
use crate::folding::traits::CommittedInstanceOps;
use crate::transcript::poseidon::poseidon_canonical_config; use crate::transcript::poseidon::poseidon_canonical_config;
#[test] #[test]
@ -591,6 +575,36 @@ pub mod tests {
assert!(cs.is_satisfied().unwrap()); assert!(cs.is_satisfied().unwrap());
} }
/// test that checks the native CommittedInstance.to_sponge_{bytes,field_elements}
/// vs the R1CS constraints version
#[test]
pub fn test_committed_instance_to_sponge_preimage() {
let mut rng = ark_std::test_rng();
let ci = CommittedInstance::<Projective> {
cmE: Projective::rand(&mut rng),
u: Fr::rand(&mut rng),
cmW: Projective::rand(&mut rng),
x: vec![Fr::rand(&mut rng); 1],
};
let bytes = ci.to_sponge_bytes_as_vec();
let field_elements = ci.to_sponge_field_elements_as_vec();
let cs = ConstraintSystem::<Fr>::new_ref();
let ciVar =
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci.clone())).unwrap();
let bytes_var = ciVar.to_sponge_bytes().unwrap();
let field_elements_var = ciVar.to_sponge_field_elements().unwrap();
assert!(cs.is_satisfied().unwrap());
// check that the natively computed and in-circuit computed hashes match
assert_eq!(bytes_var.value().unwrap(), bytes);
assert_eq!(field_elements_var.value().unwrap(), field_elements);
}
#[test] #[test]
fn test_committed_instance_hash() { fn test_committed_instance_hash() {
let mut rng = ark_std::test_rng(); let mut rng = ark_std::test_rng();
@ -609,7 +623,7 @@ pub mod tests {
}; };
// compute the CommittedInstance hash natively // compute the CommittedInstance hash natively
let h = ci.hash(&sponge, pp_hash, i, z_0.clone(), z_i.clone());
let h = ci.hash(&sponge, pp_hash, i, &z_0, &z_i);
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
@ -624,7 +638,7 @@ pub mod tests {
// compute the CommittedInstance hash in-circuit // compute the CommittedInstance hash in-circuit
let (hVar, _) = ciVar let (hVar, _) = ciVar
.hash(&sponge, pp_hashVar, iVar, z_0Var, z_iVar)
.hash(&sponge, &pp_hashVar, &iVar, &z_0Var, &z_iVar)
.unwrap(); .unwrap();
assert!(cs.is_satisfied().unwrap()); assert!(cs.is_satisfied().unwrap());

+ 12
- 10
folding-schemes/src/folding/nova/decider_eth_circuit.rs

@ -27,8 +27,6 @@ use super::{
nifs::NIFS, nifs::NIFS,
CommittedInstance, Nova, Witness, CommittedInstance, Nova, Witness,
}; };
use crate::arith::r1cs::R1CS;
use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme};
use crate::folding::circuits::{ use crate::folding::circuits::{
cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness}, cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness},
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar}, nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
@ -41,6 +39,11 @@ use crate::utils::{
vec::poly_from_vec, vec::poly_from_vec,
}; };
use crate::Error; use crate::Error;
use crate::{arith::r1cs::R1CS, folding::traits::WitnessVarOps};
use crate::{
commitment::{pedersen::Params as PedersenParams, CommitmentScheme},
folding::traits::CommittedInstanceVarOps,
};
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct RelaxedR1CSGadget {} pub struct RelaxedR1CSGadget {}
@ -135,7 +138,6 @@ pub struct WitnessVar {
impl<C> AllocVar<Witness<C>, CF1<C>> for WitnessVar<C> impl<C> AllocVar<Witness<C>, CF1<C>> for WitnessVar<C>
where where
C: CurveGroup, C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{ {
fn new_variable<T: Borrow<Witness<C>>>( fn new_variable<T: Borrow<Witness<C>>>(
cs: impl Into<Namespace<CF1<C>>>, cs: impl Into<Namespace<CF1<C>>>,
@ -160,6 +162,12 @@ where
} }
} }
impl<C: CurveGroup> WitnessVarOps<C::ScalarField> for WitnessVar<C> {
fn get_openings(&self) -> Vec<(&[FpVar<C::ScalarField>], FpVar<C::ScalarField>)> {
vec![(&self.E, self.rE.clone()), (&self.W, self.rW.clone())]
}
}
/// Circuit that implements the in-circuit checks needed for the onchain (Ethereum's EVM) /// Circuit that implements the in-circuit checks needed for the onchain (Ethereum's EVM)
/// verification. /// verification.
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
@ -398,13 +406,7 @@ where
(u_i.u.is_one()?).enforce_equal(&Boolean::TRUE)?; (u_i.u.is_one()?).enforce_equal(&Boolean::TRUE)?;
// 3.a u_i.x[0] == H(i, z_0, z_i, U_i) // 3.a u_i.x[0] == H(i, z_0, z_i, U_i)
let (u_i_x, U_i_vec) = U_i.clone().hash(
&sponge,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
let (u_i_x, U_i_vec) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
(u_i.x[0]).enforce_equal(&u_i_x)?; (u_i.x[0]).enforce_equal(&u_i_x)?;
#[cfg(feature = "light-test")] #[cfg(feature = "light-test")]

+ 26
- 31
folding-schemes/src/folding/nova/mod.rs

@ -13,6 +13,7 @@ use ark_std::fmt::Debug;
use ark_std::rand::RngCore; use ark_std::rand::RngCore;
use ark_std::{One, UniformRand, Zero}; use ark_std::{One, UniformRand, Zero};
use core::marker::PhantomData; use core::marker::PhantomData;
use decider_eth_circuit::WitnessVar;
use crate::folding::circuits::cyclefold::{ use crate::folding::circuits::cyclefold::{
fold_cyclefold_circuit, CycleFoldCircuit, CycleFoldCommittedInstance, CycleFoldConfig, fold_cyclefold_circuit, CycleFoldCircuit, CycleFoldCommittedInstance, CycleFoldConfig,
@ -38,9 +39,11 @@ pub mod nifs;
pub mod serialize; pub mod serialize;
pub mod traits; pub mod traits;
pub mod zk; pub mod zk;
use circuits::{AugmentedFCircuit, ChallengeGadget};
use circuits::{AugmentedFCircuit, ChallengeGadget, CommittedInstanceVar};
use nifs::NIFS; use nifs::NIFS;
use super::traits::{CommittedInstanceOps, WitnessOps};
/// Configuration for Nova's CycleFold circuit /// Configuration for Nova's CycleFold circuit
pub struct NovaCycleFoldConfig<C: CurveGroup> { pub struct NovaCycleFoldConfig<C: CurveGroup> {
_c: PhantomData<C>, _c: PhantomData<C>,
@ -83,9 +86,8 @@ impl Absorb for CommittedInstance
where where
C::ScalarField: Absorb, C::ScalarField: Absorb,
{ {
fn to_sponge_bytes(&self, _dest: &mut Vec<u8>) {
// This is never called
unimplemented!()
fn to_sponge_bytes(&self, dest: &mut Vec<u8>) {
C::ScalarField::batch_to_sponge_bytes(&self.to_sponge_field_elements_as_vec(), dest);
} }
fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) { fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) {
@ -103,30 +105,15 @@ where
} }
} }
impl<C: CurveGroup> CommittedInstance<C>
where
<C as Group>::ScalarField: Absorb,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
/// hash implements the committed instance hash compatible with the gadget implemented in
/// nova/circuits.rs::CommittedInstanceVar.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U_i` is the
/// `CommittedInstance`.
pub fn hash<T: Transcript<C::ScalarField>>(
&self,
sponge: &T,
pp_hash: C::ScalarField, // public params hash
i: C::ScalarField,
z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>,
) -> C::ScalarField {
let mut sponge = sponge.clone();
sponge.absorb(&pp_hash);
sponge.absorb(&i);
sponge.absorb(&z_0);
sponge.absorb(&z_i);
sponge.absorb(&self);
sponge.squeeze_field_elements(1)[0]
impl<C: CurveGroup> CommittedInstanceOps<C> for CommittedInstance<C> {
type Var = CommittedInstanceVar<C>;
fn get_commitments(&self) -> Vec<C> {
vec![self.cmW, self.cmE]
}
fn is_incoming(&self) -> bool {
self.cmE == C::zero() && self.u == One::one()
} }
} }
@ -188,6 +175,14 @@ impl Witness {
} }
} }
impl<C: CurveGroup> WitnessOps<C::ScalarField> for Witness<C> {
type Var = WitnessVar<C>;
fn get_openings(&self) -> Vec<(&[C::ScalarField], C::ScalarField)> {
vec![(&self.W, self.rW), (&self.E, self.rE)]
}
}
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct PreprocessorParam<C1, C2, FC, CS1, CS2, const H: bool = false> pub struct PreprocessorParam<C1, C2, FC, CS1, CS2, const H: bool = false>
where where
@ -696,8 +691,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
// u_{i+1}.x[1] = H(cf_U_{i+1}) // u_{i+1}.x[1] = H(cf_U_{i+1})
let cf_u_i1_x: C1::ScalarField; let cf_u_i1_x: C1::ScalarField;
@ -907,7 +902,7 @@ where
// check that u_i's output points to the running instance // check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i) // u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, z_0, z_i.clone());
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, &z_0, &z_i);
if expected_u_i_x != u_i.x[0] { if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }

+ 2
- 1
folding-schemes/src/folding/nova/zk.rs

@ -36,6 +36,7 @@ use ark_std::{One, Zero};
use crate::{ use crate::{
arith::r1cs::{RelaxedR1CS, R1CS}, arith::r1cs::{RelaxedR1CS, R1CS},
folding::traits::CommittedInstanceOps,
RngCore, RngCore,
}; };
use ark_crypto_primitives::sponge::{ use ark_crypto_primitives::sponge::{
@ -226,7 +227,7 @@ where
// b. Check computed hashes are correct // b. Check computed hashes are correct
let mut sponge = PoseidonSponge::<C1::ScalarField>::new(poseidon_config); let mut sponge = PoseidonSponge::<C1::ScalarField>::new(poseidon_config);
let expected_u_i_x = proof.U_i.hash(&sponge, pp_hash, i, z_0, z_i);
let expected_u_i_x = proof.U_i.hash(&sponge, pp_hash, i, &z_0, &z_i);
if expected_u_i_x != proof.u_i.x[0] { if expected_u_i_x != proof.u_i.x[0] {
return Err(Error::zkIVCVerificationFail); return Err(Error::zkIVCVerificationFail);
} }

+ 24
- 27
folding-schemes/src/folding/protogalaxy/circuits.rs

@ -24,13 +24,16 @@ use super::{
CommittedInstance, CommittedInstanceVar, ProtoGalaxyCycleFoldConfig, CommittedInstance, CommittedInstanceVar, ProtoGalaxyCycleFoldConfig,
}; };
use crate::{ use crate::{
folding::circuits::{
cyclefold::{
CycleFoldChallengeGadget, CycleFoldCommittedInstance, CycleFoldCommittedInstanceVar,
CycleFoldConfig, NIFSFullGadget,
folding::{
circuits::{
cyclefold::{
CycleFoldChallengeGadget, CycleFoldCommittedInstance,
CycleFoldCommittedInstanceVar, CycleFoldConfig, NIFSFullGadget,
},
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
CF1, CF2,
}, },
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
CF1, CF2,
traits::CommittedInstanceVarOps,
}, },
frontend::FCircuit, frontend::FCircuit,
transcript::{AbsorbNonNativeGadget, TranscriptVar}, transcript::{AbsorbNonNativeGadget, TranscriptVar},
@ -346,24 +349,12 @@ where
// `transcript` is for challenge generation. // `transcript` is for challenge generation.
let mut transcript = sponge.clone(); let mut transcript = sponge.clone();
// get z_{i+1} from the F circuit
let i_usize = self.i_usize;
let z_i1 =
self.F
.generate_step_constraints(cs.clone(), i_usize, z_i.clone(), external_inputs)?;
let is_basecase = i.is_zero()?; let is_basecase = i.is_zero()?;
// Primary Part // Primary Part
// P.1. Compute u_i.x // P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i) // u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, _) = U_i.clone().hash(
&sponge,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
let (u_i_x, _) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
// u_i.x[1] = H(cf_U_i) // u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, _) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?; let (cf_u_i_x, _) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?;
@ -380,21 +371,27 @@ where
)?; )?;
// P.4.a compute and check the first output of F' // P.4.a compute and check the first output of F'
// get z_{i+1} from the F circuit
let z_i1 =
self.F
.generate_step_constraints(cs.clone(), self.i_usize, z_i, external_inputs)?;
// Base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{\bot}) // Base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{\bot})
// Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1}) // Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1})
let (u_i1_x, _) = U_i1.clone().hash( let (u_i1_x, _) = U_i1.clone().hash(
&sponge, &sponge,
pp_hash.clone(),
i + FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&(i + FpVar::<CF1<C1>>::one()),
&z_0,
&z_i1,
)?; )?;
let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash( let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash(
&sponge, &sponge,
pp_hash.clone(),
FpVar::<CF1<C1>>::one(),
z_0.clone(),
z_i1.clone(),
&pp_hash,
&FpVar::<CF1<C1>>::one(),
&z_0,
&z_i1,
)?; )?;
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?; let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?; x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;

+ 80
- 60
folding-schemes/src/folding/protogalaxy/mod.rs

@ -1,14 +1,14 @@
/// Implements the scheme described in [ProtoGalaxy](https://eprint.iacr.org/2023/1106.pdf) /// Implements the scheme described in [ProtoGalaxy](https://eprint.iacr.org/2023/1106.pdf)
use ark_crypto_primitives::sponge::{ use ark_crypto_primitives::sponge::{
constraints::{AbsorbGadget, CryptographicSpongeVar},
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
poseidon::{PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge, Absorb, CryptographicSponge,
}; };
use ark_ec::{CurveGroup, Group}; use ark_ec::{CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField}; use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::{ use ark_r1cs_std::{
alloc::{AllocVar, AllocationMode}, alloc::{AllocVar, AllocationMode},
fields::fp::FpVar,
eq::EqGadget,
fields::{fp::FpVar, FieldVar},
groups::{CurveVar, GroupOpsBounds}, groups::{CurveVar, GroupOpsBounds},
R1CSVar, ToConstraintFieldGadget, R1CSVar, ToConstraintFieldGadget,
}; };
@ -44,6 +44,8 @@ pub(crate) mod utils;
use circuits::AugmentedFCircuit; use circuits::AugmentedFCircuit;
use folding::Folding; use folding::Folding;
use super::traits::{CommittedInstanceOps, CommittedInstanceVarOps, WitnessOps, WitnessVarOps};
/// Configuration for ProtoGalaxy's CycleFold circuit /// Configuration for ProtoGalaxy's CycleFold circuit
pub struct ProtoGalaxyCycleFoldConfig<C: CurveGroup> { pub struct ProtoGalaxyCycleFoldConfig<C: CurveGroup> {
_c: PhantomData<C>, _c: PhantomData<C>,
@ -83,30 +85,15 @@ impl CommittedInstance {
} }
} }
impl<C: CurveGroup> CommittedInstance<C>
where
C::ScalarField: Absorb,
C::BaseField: PrimeField,
{
/// hash implements the committed instance hash compatible with the gadget implemented in
/// CommittedInstanceVar.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U_i` is the
/// `CommittedInstance`.
pub fn hash(
&self,
sponge: &PoseidonSponge<C::ScalarField>,
pp_hash: C::ScalarField,
i: C::ScalarField,
z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>,
) -> C::ScalarField {
let mut sponge = sponge.clone();
sponge.absorb(&pp_hash);
sponge.absorb(&i);
sponge.absorb(&z_0);
sponge.absorb(&z_i);
sponge.absorb(&self);
sponge.squeeze_field_elements(1)[0]
impl<C: CurveGroup> CommittedInstanceOps<C> for CommittedInstance<C> {
type Var = CommittedInstanceVar<C>;
fn get_commitments(&self) -> Vec<C> {
vec![self.phi]
}
fn is_incoming(&self) -> bool {
self.e == Zero::zero() && self.betas.is_empty()
} }
} }
@ -164,34 +151,29 @@ impl R1CSVar for CommittedInstanceVar {
} }
} }
impl<C: CurveGroup> CommittedInstanceVar<C>
where
C::ScalarField: Absorb,
C::BaseField: PrimeField,
{
/// hash implements the committed instance hash compatible with the native implementation from
/// CommittedInstance.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U` is the
/// `CommittedInstance`.
/// Additionally it returns the vector of the field elements from the self parameters, so they
/// can be reused in other gadgets avoiding recalculating (reconstraining) them.
#[allow(clippy::type_complexity)]
pub fn hash(
self,
sponge: &PoseidonSpongeVar<CF1<C>>,
pp_hash: FpVar<CF1<C>>,
i: FpVar<CF1<C>>,
z_0: Vec<FpVar<CF1<C>>>,
z_i: Vec<FpVar<CF1<C>>>,
) -> Result<(FpVar<CF1<C>>, Vec<FpVar<CF1<C>>>), SynthesisError> {
let mut sponge = sponge.clone();
let U_vec = self.to_sponge_field_elements()?;
sponge.absorb(&pp_hash)?;
sponge.absorb(&i)?;
sponge.absorb(&z_0)?;
sponge.absorb(&z_i)?;
sponge.absorb(&U_vec)?;
Ok((sponge.squeeze_field_elements(1)?.pop().unwrap(), U_vec))
impl<C: CurveGroup> CommittedInstanceVarOps<C> for CommittedInstanceVar<C> {
type PointVar = NonNativeAffineVar<C>;
fn get_commitments(&self) -> Vec<Self::PointVar> {
vec![self.phi.clone()]
}
fn get_public_inputs(&self) -> &[FpVar<CF1<C>>] {
&self.x
}
fn enforce_incoming(&self) -> Result<(), SynthesisError> {
if self.betas.is_empty() {
self.e.enforce_equal(&FpVar::zero())
} else {
Err(SynthesisError::Unsatisfiable)
}
}
fn enforce_partial_equal(&self, other: &Self) -> Result<(), SynthesisError> {
self.betas.enforce_equal(&other.betas)?;
self.e.enforce_equal(&other.e)?;
self.x.enforce_equal(&other.x)
} }
} }
@ -224,6 +206,44 @@ impl Witness {
} }
} }
impl<F: PrimeField> WitnessOps<F> for Witness<F> {
type Var = WitnessVar<F>;
fn get_openings(&self) -> Vec<(&[F], F)> {
vec![(&self.w, self.r_w)]
}
}
/// In-circuit representation of the Witness associated to the CommittedInstance.
#[derive(Debug, Clone)]
pub struct WitnessVar<F: PrimeField> {
pub W: Vec<FpVar<F>>,
pub rW: FpVar<F>,
}
impl<F: PrimeField> AllocVar<Witness<F>, F> for WitnessVar<F> {
fn new_variable<T: Borrow<Witness<F>>>(
cs: impl Into<Namespace<F>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let W = Vec::new_variable(cs.clone(), || Ok(val.borrow().w.to_vec()), mode)?;
let rW = FpVar::new_variable(cs.clone(), || Ok(val.borrow().r_w), mode)?;
Ok(Self { W, rW })
})
}
}
impl<F: PrimeField> WitnessVarOps<F> for WitnessVar<F> {
fn get_openings(&self) -> Vec<(&[FpVar<F>], FpVar<F>)> {
vec![(&self.W, self.rW.clone())]
}
}
#[derive(Debug, thiserror::Error, PartialEq)] #[derive(Debug, thiserror::Error, PartialEq)]
pub enum ProtoGalaxyError { pub enum ProtoGalaxyError {
#[error("The remainder from G(X)-F(α)*L_0(X)) / Z(X) should be zero")] #[error("The remainder from G(X)-F(α)*L_0(X)) / Z(X) should be zero")]
@ -636,8 +656,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
// `cf_U_{i+1}` (i.e., `cf_U_1`) is fixed to `cf_U_dummy`, so we // `cf_U_{i+1}` (i.e., `cf_U_1`) is fixed to `cf_U_dummy`, so we
// just use `self.cf_U_i = cf_U_0 = cf_U_dummy`. // just use `self.cf_U_i = cf_U_0 = cf_U_dummy`.
@ -744,8 +764,8 @@ where
&sponge, &sponge,
self.pp_hash, self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
&self.z_0,
&z_i1,
); );
cf_u_i1_x = cf_U_i1.hash_cyclefold(&sponge, self.pp_hash); cf_u_i1_x = cf_U_i1.hash_cyclefold(&sponge, self.pp_hash);
@ -874,7 +894,7 @@ where
// check that u_i's output points to the running instance // check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i) // u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, z_0, z_i.clone());
let expected_u_i_x = U_i.hash(&sponge, pp_hash, num_steps, &z_0, &z_i);
if expected_u_i_x != u_i.x[0] { if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }

+ 46
- 3
folding-schemes/src/folding/protogalaxy/traits.rs

@ -18,8 +18,8 @@ impl Absorb for CommittedInstance
where where
C::ScalarField: Absorb, C::ScalarField: Absorb,
{ {
fn to_sponge_bytes(&self, _dest: &mut Vec<u8>) {
unimplemented!()
fn to_sponge_bytes(&self, dest: &mut Vec<u8>) {
C::ScalarField::batch_to_sponge_bytes(&self.to_sponge_field_elements_as_vec(), dest);
} }
fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) { fn to_sponge_field_elements<F: PrimeField>(&self, dest: &mut Vec<F>) {
@ -35,7 +35,7 @@ where
// Implements the trait for absorbing ProtoGalaxy's CommittedInstanceVar in-circuit. // Implements the trait for absorbing ProtoGalaxy's CommittedInstanceVar in-circuit.
impl<C: CurveGroup> AbsorbGadget<C::ScalarField> for CommittedInstanceVar<C> { impl<C: CurveGroup> AbsorbGadget<C::ScalarField> for CommittedInstanceVar<C> {
fn to_sponge_bytes(&self) -> Result<Vec<UInt8<C::ScalarField>>, SynthesisError> { fn to_sponge_bytes(&self) -> Result<Vec<UInt8<C::ScalarField>>, SynthesisError> {
unimplemented!()
FpVar::batch_to_sponge_bytes(&self.to_sponge_field_elements()?)
} }
fn to_sponge_field_elements(&self) -> Result<Vec<FpVar<C::ScalarField>>, SynthesisError> { fn to_sponge_field_elements(&self) -> Result<Vec<FpVar<C::ScalarField>>, SynthesisError> {
@ -114,3 +114,46 @@ impl RelaxedR1CS, CommittedInstance
unimplemented!() unimplemented!()
} }
} }
#[cfg(test)]
pub mod tests {
use super::*;
use ark_bn254::{Fr, G1Projective as Projective};
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::UniformRand;
use rand::Rng;
/// test that checks the native CommittedInstance.to_sponge_{bytes,field_elements}
/// vs the R1CS constraints version
#[test]
pub fn test_committed_instance_to_sponge_preimage() {
let mut rng = ark_std::test_rng();
let t = rng.gen::<u8>() as usize;
let io_len = rng.gen::<u8>() as usize;
let ci = CommittedInstance::<Projective> {
phi: Projective::rand(&mut rng),
betas: (0..t).map(|_| Fr::rand(&mut rng)).collect(),
e: Fr::rand(&mut rng),
x: (0..io_len).map(|_| Fr::rand(&mut rng)).collect(),
};
let bytes = ci.to_sponge_bytes_as_vec();
let field_elements = ci.to_sponge_field_elements_as_vec();
let cs = ConstraintSystem::<Fr>::new_ref();
let ciVar =
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci.clone())).unwrap();
let bytes_var = ciVar.to_sponge_bytes().unwrap();
let field_elements_var = ciVar.to_sponge_field_elements().unwrap();
assert!(cs.is_satisfied().unwrap());
// check that the natively computed and in-circuit computed hashes match
assert_eq!(bytes_var.value().unwrap(), bytes);
assert_eq!(field_elements_var.value().unwrap(), field_elements);
}
}

+ 121
- 0
folding-schemes/src/folding/traits.rs

@ -0,0 +1,121 @@
use ark_crypto_primitives::sponge::{
constraints::{AbsorbGadget, CryptographicSpongeVar},
poseidon::constraints::PoseidonSpongeVar,
Absorb,
};
use ark_ec::CurveGroup;
use ark_ff::PrimeField;
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, ToConstraintFieldGadget};
use ark_relations::r1cs::SynthesisError;
use crate::{transcript::Transcript, Error};
use super::circuits::CF1;
pub trait CommittedInstanceOps<C: CurveGroup> {
/// The in-circuit representation of the committed instance.
type Var: AllocVar<Self, CF1<C>> + CommittedInstanceVarOps<C>;
/// `hash` implements the committed instance hash compatible with the
/// in-circuit implementation from `CommittedInstanceVarOps::hash`.
///
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and
/// `U_i` is the committed instance `self`.
fn hash<T: Transcript<CF1<C>>>(
&self,
sponge: &T,
pp_hash: CF1<C>, // public params hash
i: CF1<C>,
z_0: &[CF1<C>],
z_i: &[CF1<C>],
) -> CF1<C>
where
CF1<C>: Absorb,
Self: Sized + Absorb,
{
let mut sponge = sponge.clone();
sponge.absorb(&pp_hash);
sponge.absorb(&i);
sponge.absorb(&z_0);
sponge.absorb(&z_i);
sponge.absorb(&self);
sponge.squeeze_field_elements(1)[0]
}
/// Returns the commitments contained in the committed instance.
fn get_commitments(&self) -> Vec<C>;
/// Returns `true` if the committed instance is an incoming instance, and
/// `false` if it is a running instance.
fn is_incoming(&self) -> bool;
/// Checks if the committed instance is an incoming instance.
fn check_incoming(&self) -> Result<(), Error> {
self.is_incoming()
.then_some(())
.ok_or(Error::NotIncomingCommittedInstance)
}
}
pub trait CommittedInstanceVarOps<C: CurveGroup> {
type PointVar: ToConstraintFieldGadget<CF1<C>>;
/// `hash` implements the in-circuit committed instance hash compatible with
/// the native implementation from `CommittedInstanceOps::hash`.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and
/// `U_i` is the committed instance `self`.
///
/// Additionally it returns the in-circuit representation of the committed
/// instance `self` as a vector of field elements, so they can be reused in
/// other gadgets avoiding recalculating (reconstraining) them.
#[allow(clippy::type_complexity)]
fn hash(
&self,
sponge: &PoseidonSpongeVar<CF1<C>>,
pp_hash: &FpVar<CF1<C>>,
i: &FpVar<CF1<C>>,
z_0: &[FpVar<CF1<C>>],
z_i: &[FpVar<CF1<C>>],
) -> Result<(FpVar<CF1<C>>, Vec<FpVar<CF1<C>>>), SynthesisError>
where
Self: AbsorbGadget<CF1<C>>,
{
let mut sponge = sponge.clone();
let U_vec = self.to_sponge_field_elements()?;
sponge.absorb(&pp_hash)?;
sponge.absorb(&i)?;
sponge.absorb(&z_0)?;
sponge.absorb(&z_i)?;
sponge.absorb(&U_vec)?;
Ok((sponge.squeeze_field_elements(1)?.pop().unwrap(), U_vec))
}
/// Returns the commitments contained in the committed instance.
fn get_commitments(&self) -> Vec<Self::PointVar>;
/// Returns the public inputs contained in the committed instance.
fn get_public_inputs(&self) -> &[FpVar<CF1<C>>];
/// Generates constraints to enforce that the committed instance is an
/// incoming instance.
fn enforce_incoming(&self) -> Result<(), SynthesisError>;
/// Generates constraints to enforce that the committed instance `self` is
/// partially equal to another committed instance `other`.
/// Here, only field elements are compared, while commitments (points) are
/// not.
fn enforce_partial_equal(&self, other: &Self) -> Result<(), SynthesisError>;
}
pub trait WitnessOps<F: PrimeField> {
/// The in-circuit representation of the witness.
type Var: AllocVar<Self, F> + WitnessVarOps<F>;
/// Returns the openings (i.e., the values being committed to and the
/// randomness) contained in the witness.
fn get_openings(&self) -> Vec<(&[F], F)>;
}
pub trait WitnessVarOps<F: PrimeField> {
/// Returns the openings (i.e., the values being committed to and the
/// randomness) contained in the witness.
fn get_openings(&self) -> Vec<(&[FpVar<F>], FpVar<F>)>;
}

+ 2
- 0
folding-schemes/src/lib.rs

@ -43,6 +43,8 @@ pub enum Error {
IVCVerificationFail, IVCVerificationFail,
#[error("zkIVC verification failed")] #[error("zkIVC verification failed")]
zkIVCVerificationFail, zkIVCVerificationFail,
#[error("Committed instance is expected to be an incoming (fresh) instance")]
NotIncomingCommittedInstance,
#[error("R1CS instance is expected to not be relaxed")] #[error("R1CS instance is expected to not be relaxed")]
R1CSUnrelaxedFail, R1CSUnrelaxedFail,
#[error("Could not find the inner ConstraintSystem")] #[error("Could not find the inner ConstraintSystem")]

Loading…
Cancel
Save