HyperNova: add multi-instances folding to AugmentedFCircuit & IVC (#119)

- Adds the logic to support multi-instances folding in HyperNova's
AugmentedFCircuit & IVC.
- Adds also methods to generate new LCCCS & CCCS instances that don't
depend on the main folding chain, to be folded in in the next step
- Updates CycleFold circuit & methods to work other folding schemes than
  Nova, adapting it to fold multiple points per circuit (instead of
2-to-1 as till now)
- Handle multi-instances folding in the FoldingScheme trait
  interface, which expects 'None' in Nova, and 'Some' in HyperNova &
other multi-folding schemes.
This commit is contained in:
2024-07-16 02:59:56 +02:00
committed by GitHub
parent cc1f6316a7
commit edadcdd520
22 changed files with 807 additions and 252 deletions

View File

@@ -14,7 +14,7 @@ use ark_r1cs_std::{
fields::{fp::FpVar, FieldVar},
groups::GroupOpsBounds,
prelude::CurveVar,
R1CSVar, ToConstraintFieldGadget,
R1CSVar, ToBitsGadget, ToConstraintFieldGadget,
};
use ark_relations::r1cs::{
ConstraintSynthesizer, ConstraintSystem, ConstraintSystemRef, Namespace, SynthesisError,
@@ -31,7 +31,7 @@ use super::{
use crate::constants::N_BITS_RO;
use crate::folding::{
circuits::cyclefold::{
CycleFoldChallengeGadget, CycleFoldCommittedInstanceVar, NIFSFullGadget, CF_IO_LEN,
cf_io_len, CycleFoldChallengeGadget, CycleFoldCommittedInstanceVar, NIFSFullGadget,
},
circuits::{
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
@@ -221,18 +221,19 @@ where
<C as CurveGroup>::BaseField: PrimeField,
{
/// Runs (in-circuit) the NIMFS.V, which outputs the new folded LCCCS instance together with
/// the rho_bits, which will be used in other parts of the AugmentedFCircuit
/// the rho_powers, which will be used in other parts of the AugmentedFCircuit
#[allow(clippy::type_complexity)]
pub fn verify<S: CryptographicSponge, T: TranscriptVar<C::ScalarField, S>>(
cs: ConstraintSystemRef<CF1<C>>,
// only used the CCS params, not the matrices
ccs: &CCS<C::ScalarField>,
transcript: &mut T,
running_instances: &[LCCCSVar<C>],
new_instances: &[CCCSVar<C>],
running_instances: &[LCCCSVar<C>], // U
new_instances: &[CCCSVar<C>], // u
proof: ProofVar<C>,
enabled: Boolean<C::ScalarField>,
) -> Result<(LCCCSVar<C>, Vec<Boolean<CF1<C>>>), SynthesisError> {
) -> Result<(LCCCSVar<C>, Vec<Vec<Boolean<CF1<C>>>>), SynthesisError> {
// absorb instances to transcript
for U_i in running_instances {
let v = [
@@ -315,18 +316,15 @@ where
let rho_bits: Vec<Boolean<CF1<C>>> = transcript.get_challenge_nbits(N_BITS_RO)?;
let rho = Boolean::le_bits_to_fp_var(&rho_bits)?;
// return the folded instance, together with the rho_bits so they can be used in other
// parts of the AugmentedFCircuit
Ok((
Self::fold(
running_instances,
new_instances,
proof.sigmas_thetas,
r_x_prime,
rho,
)?,
rho_bits,
))
// Self::fold will return the folded instance, together with the rho's powers vector so
// they can be used in other parts of the AugmentedFCircuit
Self::fold(
running_instances,
new_instances,
proof.sigmas_thetas,
r_x_prime,
rho,
)
}
/// Runs (in-circuit) the verifier side of the fold, computing the new folded LCCCS instance
@@ -337,12 +335,14 @@ where
sigmas_thetas: (Vec<Vec<FpVar<CF1<C>>>>, Vec<Vec<FpVar<CF1<C>>>>),
r_x_prime: Vec<FpVar<CF1<C>>>,
rho: FpVar<CF1<C>>,
) -> Result<LCCCSVar<C>, SynthesisError> {
) -> Result<(LCCCSVar<C>, Vec<Vec<Boolean<CF1<C>>>>), SynthesisError> {
let (sigmas, thetas) = (sigmas_thetas.0.clone(), sigmas_thetas.1.clone());
let mut u_folded: FpVar<CF1<C>> = FpVar::zero();
let mut x_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); lcccs[0].x.len()];
let mut v_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); sigmas[0].len()];
let mut rho_vec: Vec<Vec<Boolean<CF1<C>>>> =
vec![vec![Boolean::FALSE; N_BITS_RO]; lcccs.len() + cccs.len() - 1];
let mut rho_i = FpVar::one();
for i in 0..(lcccs.len() + cccs.len()) {
let u: FpVar<CF1<C>>;
@@ -379,16 +379,30 @@ where
.map(|(a_i, b_i)| a_i + b_i)
.collect();
// compute the next power of rho
rho_i *= rho.clone();
// crop the size of rho_i to N_BITS_RO
let rho_i_bits = rho_i.to_bits_le()?;
rho_i = Boolean::le_bits_to_fp_var(&rho_i_bits[..N_BITS_RO])?;
if i < lcccs.len() + cccs.len() - 1 {
// store the cropped rho_i into the rho_vec
rho_vec[i] = rho_i_bits[..N_BITS_RO].to_vec();
}
}
Ok(LCCCSVar::<C> {
C: lcccs[0].C.clone(), // WIP this will come from the cyclefold circuit
u: u_folded,
x: x_folded,
r_x: r_x_prime,
v: v_folded,
})
// return the folded instance, together with the rho's powers vector so they can be used in
// other parts of the AugmentedFCircuit
Ok((
LCCCSVar::<C> {
// C this is later overwritten by the U_{i+1}.C value checked by the cyclefold circuit
C: lcccs[0].C.clone(),
u: u_folded,
x: x_folded,
r_x: r_x_prime,
v: v_folded,
},
rho_vec,
))
}
}
@@ -456,16 +470,20 @@ pub struct AugmentedFCircuit<
pub poseidon_config: PoseidonConfig<CF1<C1>>,
pub ccs: CCS<C1::ScalarField>, // CCS of the AugmentedFCircuit
pub pp_hash: Option<CF1<C1>>,
pub mu: usize, // max number of LCCCS instances to be folded
pub nu: usize, // max number of CCCS instances to be folded
pub i: Option<CF1<C1>>,
pub i_usize: Option<usize>,
pub z_0: Option<Vec<C1::ScalarField>>,
pub z_i: Option<Vec<C1::ScalarField>>,
pub external_inputs: Option<Vec<C1::ScalarField>>,
pub u_i_C: Option<C1>, // u_i.C
pub U_i: Option<LCCCS<C1>>,
pub U_i1_C: Option<C1>, // U_{i+1}.C
pub F: FC, // F circuit
pub x: Option<CF1<C1>>, // public input (u_{i+1}.x[0])
pub Us: Option<Vec<LCCCS<C1>>>, // other U_i's to be folded that are not the main running instance
pub u_i_C: Option<C1>, // u_i.C
pub us: Option<Vec<CCCS<C1>>>, // other u_i's to be folded that are not the main incoming instance
pub U_i1_C: Option<C1>, // U_{i+1}.C
pub F: FC, // F circuit
pub x: Option<CF1<C1>>, // public input (u_{i+1}.x[0])
pub nimfs_proof: Option<NIMFSProof<C1>>,
// cyclefold verifier on C1
@@ -492,20 +510,29 @@ where
poseidon_config: &PoseidonConfig<CF1<C1>>,
F_circuit: FC,
ccs: CCS<C1::ScalarField>,
) -> Self {
Self {
mu: usize,
nu: usize,
) -> Result<Self, Error> {
if mu < 1 || nu < 1 {
return Err(Error::CantBeZero("mu,nu".to_string()));
}
Ok(Self {
_c2: PhantomData,
_gc2: PhantomData,
poseidon_config: poseidon_config.clone(),
ccs,
pp_hash: None,
mu,
nu,
i: None,
i_usize: None,
z_0: None,
z_i: None,
external_inputs: None,
u_i_C: None,
U_i: None,
Us: None,
u_i_C: None,
us: None,
U_i1_C: None,
F: F_circuit,
x: None,
@@ -514,13 +541,15 @@ where
cf_U_i: None,
cf_x: None,
cf_cmT: None,
}
})
}
pub fn empty(
poseidon_config: &PoseidonConfig<CF1<C1>>,
F_circuit: FC,
F: FC, // FCircuit
ccs: Option<CCS<C1::ScalarField>>,
mu: usize,
nu: usize,
) -> Result<Self, Error> {
let initial_ccs = CCS {
// m, n, s, s_prime and M will be overwritten by the `upper_bound_ccs' method
@@ -536,7 +565,7 @@ where
c: vec![C1::ScalarField::one(), C1::ScalarField::one().neg()],
M: vec![],
};
let mut augmented_f_circuit = Self::default(poseidon_config, F_circuit, initial_ccs);
let mut augmented_f_circuit = Self::default(poseidon_config, F, initial_ccs, mu, nu)?;
if ccs.is_some() {
augmented_f_circuit.ccs = ccs.unwrap();
} else {
@@ -551,51 +580,85 @@ where
/// feed in as parameter for the AugmentedFCircuit::empty method to avoid computing them there.
pub fn upper_bound_ccs(&self) -> Result<CCS<C1::ScalarField>, Error> {
let r1cs = get_r1cs_from_cs::<CF1<C1>>(self.clone()).unwrap();
let ccs = CCS::from_r1cs(r1cs.clone());
let mut ccs = CCS::from_r1cs(r1cs.clone());
let z_0 = vec![C1::ScalarField::zero(); self.F.state_len()];
let W_i = Witness::<C1::ScalarField>::dummy(&ccs);
let U_i = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
let w_i = W_i.clone();
let u_i = CCCS::<C1>::dummy(ccs.l);
let mut W_i = Witness::<C1::ScalarField>::dummy(&ccs);
let mut U_i = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
let mut w_i = W_i.clone();
let mut u_i = CCCS::<C1>::dummy(ccs.l);
let mut transcript_p: PoseidonSponge<C1::ScalarField> =
PoseidonSponge::<C1::ScalarField>::new(&self.poseidon_config.clone());
// since this is only for the number of constraints, no need to absorb the pp_hash here
let (nimfs_proof, U_i1, _, _) = NIMFS::<C1, PoseidonSponge<C1::ScalarField>>::prove(
&mut transcript_p,
&ccs,
&[U_i.clone()],
&[u_i.clone()],
&[W_i.clone()],
&[w_i.clone()],
)?;
let n_iters = 2;
for _ in 0..n_iters {
let Us = vec![U_i.clone(); self.mu - 1];
let Ws = vec![W_i.clone(); self.mu - 1];
let us = vec![u_i.clone(); self.nu - 1];
let ws = vec![w_i.clone(); self.nu - 1];
let augmented_f_circuit = Self {
_c2: PhantomData,
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
ccs: ccs.clone(),
pp_hash: Some(C1::ScalarField::zero()),
i: Some(C1::ScalarField::zero()),
i_usize: Some(0),
z_0: Some(z_0.clone()),
z_i: Some(z_0.clone()),
external_inputs: Some(vec![]),
u_i_C: Some(u_i.C),
U_i: Some(U_i.clone()),
U_i1_C: Some(U_i1.C),
F: self.F.clone(),
x: Some(C1::ScalarField::zero()),
nimfs_proof: Some(nimfs_proof),
// cyclefold values
cf_u_i_cmW: None,
cf_U_i: None,
cf_x: None,
cf_cmT: None,
};
let all_Us = [vec![U_i.clone()], Us.clone()].concat();
let all_us = [vec![u_i.clone()], us.clone()].concat();
let all_Ws = [vec![W_i.clone()], Ws].concat();
let all_ws = [vec![w_i.clone()], ws].concat();
Ok(augmented_f_circuit.compute_cs_ccs()?.1)
let mut transcript_p: PoseidonSponge<C1::ScalarField> =
PoseidonSponge::<C1::ScalarField>::new(&self.poseidon_config.clone());
// since this is only for the number of constraints, no need to absorb the pp_hash here
let (nimfs_proof, U_i1, _, _) = NIMFS::<C1, PoseidonSponge<C1::ScalarField>>::prove(
&mut transcript_p,
&ccs,
&all_Us,
&all_us,
&all_Ws,
&all_ws,
)?;
let augmented_f_circuit = Self {
_c2: PhantomData,
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
ccs: ccs.clone(),
pp_hash: Some(C1::ScalarField::zero()),
mu: self.mu,
nu: self.nu,
i: Some(C1::ScalarField::zero()),
i_usize: Some(0),
z_0: Some(z_0.clone()),
z_i: Some(z_0.clone()),
external_inputs: Some(vec![C1::ScalarField::zero(); self.F.external_inputs_len()]),
U_i: Some(U_i.clone()),
Us: Some(Us),
u_i_C: Some(u_i.C),
us: Some(us),
U_i1_C: Some(U_i1.C),
F: self.F.clone(),
x: Some(C1::ScalarField::zero()),
nimfs_proof: Some(nimfs_proof),
// cyclefold values
cf_u_i_cmW: None,
cf_U_i: None,
cf_x: None,
cf_cmT: None,
};
let cs: ConstraintSystem<C1::ScalarField>;
(cs, ccs) = augmented_f_circuit.compute_cs_ccs()?;
// prepare instances for next loop iteration
use crate::arith::r1cs::extract_w_x;
let (r1cs_w_i1, r1cs_x_i1) = extract_w_x::<C1::ScalarField>(&cs);
u_i = CCCS::<C1> {
C: u_i.C,
x: r1cs_x_i1,
};
w_i = Witness::<C1::ScalarField> {
w: r1cs_w_i1.clone(),
r_w: C1::ScalarField::one(),
};
W_i = Witness::<C1::ScalarField>::dummy(&ccs);
U_i = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
}
Ok(ccs)
// Ok(augmented_f_circuit.compute_cs_ccs()?.1)
}
/// Returns the cs (ConstraintSystem) and the CCS out of the AugmentedFCircuit
@@ -651,20 +714,25 @@ where
})?;
let U_dummy = LCCCS::<C1>::dummy(self.ccs.l, self.ccs.t, self.ccs.s);
let u_dummy = CCCS::<C1>::dummy(self.ccs.l);
let U_i =
LCCCSVar::<C1>::new_witness(cs.clone(), || Ok(self.U_i.unwrap_or(U_dummy.clone())))?;
let Us = Vec::<LCCCSVar<C1>>::new_witness(cs.clone(), || {
Ok(self.Us.unwrap_or(vec![U_dummy.clone(); self.mu - 1]))
})?;
let us = Vec::<CCCSVar<C1>>::new_witness(cs.clone(), || {
Ok(self.us.unwrap_or(vec![u_dummy.clone(); self.mu - 1]))
})?;
let U_i1_C = NonNativeAffineVar::new_witness(cs.clone(), || {
Ok(self.U_i1_C.unwrap_or_else(C1::zero))
})?;
let mu = 1; // Note: at this commit, only 2-to-1 instance fold is supported
let nu = 1;
let nimfs_proof_dummy = NIMFSProof::<C1>::dummy(&self.ccs, mu, nu);
let nimfs_proof_dummy = NIMFSProof::<C1>::dummy(&self.ccs, self.mu, self.nu);
let nimfs_proof = ProofVar::<C1>::new_witness(cs.clone(), || {
Ok(self.nimfs_proof.unwrap_or(nimfs_proof_dummy))
})?;
let cf_u_dummy = CommittedInstance::dummy(CF_IO_LEN);
let cf_u_dummy = CommittedInstance::dummy(cf_io_len(self.mu + self.nu));
let cf_U_i = CycleFoldCommittedInstanceVar::<C2, GC2>::new_witness(cs.clone(), || {
Ok(self.cf_U_i.unwrap_or(cf_u_dummy.clone()))
})?;
@@ -704,18 +772,21 @@ where
x: vec![u_i_x, cf_u_i_x],
};
let all_Us = [vec![U_i.clone()], Us].concat();
let all_us = [vec![u_i.clone()], us].concat();
// P.3. NIMFS.verify, obtains U_{i+1} by folding [U_i] & [u_i].
// Notice that NIMFSGadget::fold_committed_instance does not fold C. We set `U_i1.C` to
// unconstrained witnesses `U_i1_C` respectively. Its correctness will be checked on the
// other curve.
let mut transcript = PoseidonSpongeVar::new(cs.clone(), &self.poseidon_config);
transcript.absorb(&pp_hash)?;
let (mut U_i1, rho_bits) = NIMFSGadget::<C1>::verify(
let (mut U_i1, rho_vec) = NIMFSGadget::<C1>::verify(
cs.clone(),
&self.ccs.clone(),
&mut transcript,
&[U_i.clone()],
&[u_i.clone()],
&all_Us,
&all_us,
nimfs_proof,
is_not_basecase.clone(),
)?;
@@ -739,23 +810,36 @@ where
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;
// convert rho_bits to a `NonNativeFieldVar`
let rho_nonnat = {
let mut bits = rho_bits;
bits.resize(C1::BaseField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
NonNativeUintVar::from(&bits)
};
// convert rho_bits of the rho_vec to a `NonNativeFieldVar`
let rho_vec_nonnat = rho_vec
.iter()
.map(|rho_i| {
let mut bits = rho_i.clone();
bits.resize(C1::BaseField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
NonNativeUintVar::from(&bits)
})
.collect();
// CycleFold part
// C.1. Compute cf1_u_i.x and cf2_u_i.x
let cf_x = vec![
rho_nonnat, U_i.C.x, U_i.C.y, u_i.C.x, u_i.C.y, U_i1.C.x, U_i1.C.y,
];
let cf_x: Vec<NonNativeUintVar<CF2<C2>>> = [
rho_vec_nonnat,
all_Us
.iter()
.flat_map(|U| vec![U.C.x.clone(), U.C.y.clone()])
.collect(),
all_us
.iter()
.flat_map(|u| vec![u.C.x.clone(), u.C.y.clone()])
.collect(),
vec![U_i1.C.x, U_i1.C.y],
]
.concat();
// ensure that cf_u has as public inputs the C from main instances U_i, u_i, U_i+1
// coordinates of the commitments.
// C.2. Construct `cf_u_i`
let cf_u_i = CycleFoldCommittedInstanceVar {
let cf_u_i = CycleFoldCommittedInstanceVar::<C2, GC2> {
// cf1_u_i.cmE = 0. Notice that we enforce cmE to be equal to 0 since it is allocated
// as 0.
cmE: GC2::zero(),
@@ -1091,6 +1175,9 @@ mod tests {
let poseidon_config = poseidon_canonical_config::<Fr>();
let sponge = PoseidonSponge::<Fr>::new(&poseidon_config);
let mu = 3;
let nu = 3;
let start = Instant::now();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let mut augmented_f_circuit = AugmentedFCircuit::<
@@ -1098,7 +1185,7 @@ mod tests {
Projective2,
GVar2,
CubicFCircuit<Fr>,
>::empty(&poseidon_config, F_circuit, None)
>::empty(&poseidon_config, F_circuit, None, mu, nu)
.unwrap();
let ccs = augmented_f_circuit.ccs.clone();
println!("AugmentedFCircuit & CCS generation: {:?}", start.elapsed());
@@ -1106,7 +1193,7 @@ mod tests {
// CycleFold circuit
let cs2 = ConstraintSystem::<Fq>::new_ref();
let cf_circuit = CycleFoldCircuit::<Projective, GVar>::empty();
let cf_circuit = CycleFoldCircuit::<Projective, GVar>::empty(mu + nu);
cf_circuit.generate_constraints(cs2.clone()).unwrap();
cs2.finalize();
let cs2 = cs2
@@ -1114,6 +1201,7 @@ mod tests {
.ok_or(Error::NoInnerConstraintSystem)
.unwrap();
let cf_r1cs = extract_r1cs::<Fq>(&cs2);
println!("CF m x n: {} x {}", cf_r1cs.A.n_rows, cf_r1cs.A.n_cols);
let (pedersen_params, _) =
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
@@ -1152,6 +1240,16 @@ mod tests {
for i in 0..n_steps {
let start = Instant::now();
// for this test, let Us & us be just an array of copies of the U_i & u_i respectively
let Us = vec![U_i.clone(); mu - 1];
let Ws = vec![W_i.clone(); mu - 1];
let us = vec![u_i.clone(); nu - 1];
let ws = vec![w_i.clone(); nu - 1];
let all_Us = [vec![U_i.clone()], Us.clone()].concat();
let all_us = [vec![u_i.clone()], us.clone()].concat();
let all_Ws = [vec![W_i.clone()], Ws].concat();
let all_ws = [vec![w_i.clone()], ws].concat();
let z_i1 = F_circuit.step_native(i, z_i.clone(), vec![]).unwrap();
let (U_i1, W_i1);
@@ -1173,13 +1271,17 @@ mod tests {
poseidon_config: poseidon_config.clone(),
ccs: ccs.clone(),
pp_hash: Some(pp_hash),
mu,
nu,
i: Some(Fr::zero()),
i_usize: Some(0),
z_0: Some(z_0.clone()),
z_i: Some(z_i.clone()),
external_inputs: Some(vec![]),
u_i_C: Some(u_i.C),
U_i: Some(U_i.clone()),
Us: Some(Us.clone()),
u_i_C: Some(u_i.C),
us: Some(us.clone()),
U_i1_C: Some(U_i1.C),
F: F_circuit,
x: Some(u_i1_x),
@@ -1195,15 +1297,15 @@ mod tests {
let mut transcript_p: PoseidonSponge<Fr> =
PoseidonSponge::<Fr>::new(&poseidon_config.clone());
transcript_p.absorb(&pp_hash);
let (rho_bits, nimfs_proof);
(nimfs_proof, U_i1, W_i1, rho_bits) =
let (rho_powers, nimfs_proof);
(nimfs_proof, U_i1, W_i1, rho_powers) =
NIMFS::<Projective, PoseidonSponge<Fr>>::prove(
&mut transcript_p,
&ccs,
&[U_i.clone()],
&[u_i.clone()],
&[W_i.clone()],
&[w_i.clone()],
&all_Us,
&all_us,
&all_Ws,
&all_ws,
)
.unwrap();
@@ -1213,26 +1315,61 @@ mod tests {
let u_i1_x =
U_i1.hash(&sponge, pp_hash, iFr + Fr::one(), z_0.clone(), z_i1.clone());
let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap();
let rho_powers_Fq: Vec<Fq> = rho_powers
.iter()
.map(|rho_i| {
Fq::from_bigint(BigInteger::from_bits_le(&rho_i.into_bigint().to_bits_le()))
.unwrap()
})
.collect();
let rho_powers_bits: Vec<Vec<bool>> = rho_powers
.iter()
.map(|rho_i| rho_i.into_bigint().to_bits_le()[..N_BITS_RO].to_vec())
.collect();
// CycleFold part:
// get the vector used as public inputs 'x' in the CycleFold circuit
// cyclefold circuit for cmW
let cf_u_i_x = [
vec![rho_Fq],
// all values for multiple instances
rho_powers_Fq,
get_cm_coordinates(&U_i.C),
Us.iter()
.flat_map(|Us_i| get_cm_coordinates(&Us_i.C))
.collect(),
get_cm_coordinates(&u_i.C),
us.iter()
.flat_map(|us_i| get_cm_coordinates(&us_i.C))
.collect(),
get_cm_coordinates(&U_i1.C),
]
.concat();
let cf_circuit = CycleFoldCircuit::<Projective, GVar> {
_gc: PhantomData,
r_bits: Some(rho_bits.clone()),
p1: Some(U_i.clone().C),
p2: Some(u_i.clone().C),
n_points: mu + nu,
r_bits: Some(rho_powers_bits.clone()),
points: Some(
[
vec![U_i.clone().C],
Us.iter().map(|Us_i| Us_i.C).collect(),
vec![u_i.clone().C],
us.iter().map(|us_i| us_i.C).collect(),
]
.concat(),
),
x: Some(cf_u_i_x.clone()),
};
// ensure that the CycleFoldCircuit is well defined
assert_eq!(
cf_circuit.r_bits.clone().unwrap().len(),
cf_circuit.n_points - 1
);
assert_eq!(
cf_circuit.points.clone().unwrap().len(),
cf_circuit.n_points
);
let (_cf_w_i, cf_u_i, cf_W_i1, cf_U_i1, cf_cmT, _) = fold_cyclefold_circuit::<
Projective,
GVar,
@@ -1242,6 +1379,7 @@ mod tests {
Pedersen<Projective>,
Pedersen<Projective2>,
>(
mu + nu,
&mut transcript_p,
cf_r1cs.clone(),
cf_pedersen_params.clone(),
@@ -1264,13 +1402,17 @@ mod tests {
poseidon_config: poseidon_config.clone(),
ccs: ccs.clone(),
pp_hash: Some(pp_hash),
mu,
nu,
i: Some(iFr),
i_usize: Some(i),
z_0: Some(z_0.clone()),
z_i: Some(z_i.clone()),
external_inputs: Some(vec![]),
u_i_C: Some(u_i.C),
U_i: Some(U_i.clone()),
Us: Some(Us.clone()),
u_i_C: Some(u_i.C),
us: Some(us.clone()),
U_i1_C: Some(U_i1.C),
F: F_circuit,
x: Some(u_i1_x),