|
|
@ -0,0 +1,144 @@ |
|
|
|
//! Demonstrates how to produces a proof for canonical cubic equation: `x^3 + x + 5 = y`.
|
|
|
|
//! The example is described in detail [here].
|
|
|
|
//!
|
|
|
|
//! The R1CS for this problem consists of the following 4 constraints:
|
|
|
|
//! `Z0 * Z0 - Z1 = 0`
|
|
|
|
//! `Z1 * Z0 - Z2 = 0`
|
|
|
|
//! `(Z2 + Z0) * 1 - Z3 = 0`
|
|
|
|
//! `(Z3 + 5) * 1 - I0 = 0`
|
|
|
|
//!
|
|
|
|
//! [here]: https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
|
|
|
use curve25519_dalek::scalar::Scalar;
|
|
|
|
use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK};
|
|
|
|
use merlin::Transcript;
|
|
|
|
use rand::rngs::OsRng;
|
|
|
|
|
|
|
|
#[allow(non_snake_case)]
|
|
|
|
fn produce_r1cs() -> (
|
|
|
|
usize,
|
|
|
|
usize,
|
|
|
|
usize,
|
|
|
|
usize,
|
|
|
|
Instance,
|
|
|
|
VarsAssignment,
|
|
|
|
InputsAssignment,
|
|
|
|
) {
|
|
|
|
// parameters of the R1CS instance
|
|
|
|
let num_cons = 4;
|
|
|
|
let num_vars = 4;
|
|
|
|
let num_inputs = 1;
|
|
|
|
let num_non_zero_entries = 8;
|
|
|
|
|
|
|
|
// We will encode the above constraints into three matrices, where
|
|
|
|
// the coefficients in the matrix are in the little-endian byte order
|
|
|
|
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
|
|
|
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
|
|
|
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
|
|
|
|
|
|
|
let one = Scalar::one().to_bytes();
|
|
|
|
|
|
|
|
// R1CS is a set of three sparse matrices A B C, where is a row for every
|
|
|
|
// constraint and a column for every entry in z = (vars, 1, inputs)
|
|
|
|
// An R1CS instance is satisfiable iff:
|
|
|
|
// Az \circ Bz = Cz, where z = (vars, 1, inputs)
|
|
|
|
|
|
|
|
// constraint 0 entries in (A,B,C)
|
|
|
|
// constraint 0 is Z0 * Z0 - Z1 = 0.
|
|
|
|
A.push((0, 0, one));
|
|
|
|
B.push((0, 0, one));
|
|
|
|
C.push((0, 1, one));
|
|
|
|
|
|
|
|
// constraint 1 entries in (A,B,C)
|
|
|
|
// constraint 1 is Z1 * Z0 - Z2 = 0.
|
|
|
|
A.push((1, 1, one));
|
|
|
|
B.push((1, 0, one));
|
|
|
|
C.push((1, 2, one));
|
|
|
|
|
|
|
|
// constraint 2 entries in (A,B,C)
|
|
|
|
// constraint 2 is (Z2 + Z0) * 1 - Z3 = 0.
|
|
|
|
A.push((2, 2, one));
|
|
|
|
A.push((2, 0, one));
|
|
|
|
B.push((2, num_vars, one));
|
|
|
|
C.push((2, 3, one));
|
|
|
|
|
|
|
|
// constraint 3 entries in (A,B,C)
|
|
|
|
// constraint 3 is (Z3 + 5) * 1 - I0 = 0.
|
|
|
|
A.push((3, 3, one));
|
|
|
|
A.push((3, num_vars, Scalar::from(5u32).to_bytes()));
|
|
|
|
B.push((3, num_vars, one));
|
|
|
|
C.push((3, num_vars + 1, one));
|
|
|
|
|
|
|
|
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
|
|
|
|
|
|
|
|
// compute a satisfying assignment
|
|
|
|
let mut csprng: OsRng = OsRng;
|
|
|
|
let z0 = Scalar::random(&mut csprng);
|
|
|
|
let z1 = z0 * z0; // constraint 0
|
|
|
|
let z2 = z1 * z0; // constraint 1
|
|
|
|
let z3 = z2 + z0; // constraint 2
|
|
|
|
let i0 = z3 + Scalar::from(5u32); // constraint 3
|
|
|
|
|
|
|
|
// create a VarsAssignment
|
|
|
|
let mut vars = vec![Scalar::zero().to_bytes(); num_vars];
|
|
|
|
vars[0] = z0.to_bytes();
|
|
|
|
vars[1] = z1.to_bytes();
|
|
|
|
vars[2] = z2.to_bytes();
|
|
|
|
vars[3] = z3.to_bytes();
|
|
|
|
let assignment_vars = VarsAssignment::new(&vars).unwrap();
|
|
|
|
|
|
|
|
// create an InputsAssignment
|
|
|
|
let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs];
|
|
|
|
inputs[0] = i0.to_bytes();
|
|
|
|
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
|
|
|
|
|
|
|
|
// check if the instance we created is satisfiable
|
|
|
|
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
|
|
|
|
assert_eq!(res.unwrap(), true, "should be satisfied");
|
|
|
|
|
|
|
|
(
|
|
|
|
num_cons,
|
|
|
|
num_vars,
|
|
|
|
num_inputs,
|
|
|
|
num_non_zero_entries,
|
|
|
|
inst,
|
|
|
|
assignment_vars,
|
|
|
|
assignment_inputs,
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
// produce an R1CS instance
|
|
|
|
let (
|
|
|
|
num_cons,
|
|
|
|
num_vars,
|
|
|
|
num_inputs,
|
|
|
|
num_non_zero_entries,
|
|
|
|
inst,
|
|
|
|
assignment_vars,
|
|
|
|
assignment_inputs,
|
|
|
|
) = produce_r1cs();
|
|
|
|
|
|
|
|
// produce public parameters
|
|
|
|
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
|
|
|
|
|
|
|
|
// create a commitment to the R1CS instance
|
|
|
|
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
|
|
|
|
|
|
|
// produce a proof of satisfiability
|
|
|
|
let mut prover_transcript = Transcript::new(b"snark_example");
|
|
|
|
let proof = SNARK::prove(
|
|
|
|
&inst,
|
|
|
|
&decomm,
|
|
|
|
assignment_vars,
|
|
|
|
&assignment_inputs,
|
|
|
|
&gens,
|
|
|
|
&mut prover_transcript,
|
|
|
|
);
|
|
|
|
|
|
|
|
// verify the proof of satisfiability
|
|
|
|
let mut verifier_transcript = Transcript::new(b"snark_example");
|
|
|
|
assert!(proof
|
|
|
|
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
|
|
|
|
.is_ok());
|
|
|
|
println!("proof verification successful!");
|
|
|
|
}
|