|
|
#![allow(non_snake_case)]
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use criterion::*;
use ff::PrimeField;
use nova_snark::{
traits::{
circuit::{StepCircuit, TrivialTestCircuit},
Group,
},
CompressedSNARK, PublicParams, RecursiveSNARK,
};
use std::time::Duration;
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
type C1 = NonTrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
criterion_group! {
name = compressed_snark;
config = Criterion::default().warm_up_time(Duration::from_millis(3000));
targets = bench_compressed_snark
}
criterion_main!(compressed_snark);
fn bench_compressed_snark(c: &mut Criterion) {
let num_samples = 10;
// we vary the number of constraints in the step circuit
for &log_num_cons_in_step_circuit in [0, 14, 15, 16, 17, 18, 19, 20].iter() {
let num_cons = 1 << log_num_cons_in_step_circuit;
let mut group = c.benchmark_group(format!("CompressedSNARK-StepCircuitSize-{}", num_cons));
group.sample_size(num_samples);
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
);
// produce a recursive SNARK
let num_steps = 3;
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
for i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::one(),
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
&pp,
i + 1,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::one(),
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
// Bench time to produce a compressed SNARK
let recursive_snark = recursive_snark.unwrap();
group.bench_function("Prove", |b| {
b.iter(|| {
assert!(CompressedSNARK::<_, _, _, _, S1, S2>::prove(
black_box(&pp),
black_box(&recursive_snark)
)
.is_ok());
})
});
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// Benchmark the verification time
group.bench_function("Verify", |b| {
b.iter(|| {
assert!(black_box(&compressed_snark)
.verify(
black_box(&pp),
black_box(num_steps),
black_box(<G1 as Group>::Scalar::one()),
black_box(<G2 as Group>::Scalar::one()),
)
.is_ok());
})
});
group.finish();
}
}
#[derive(Clone, Debug, Default)]
struct NonTrivialTestCircuit<F: PrimeField> {
num_cons: usize,
_p: PhantomData<F>,
}
impl<F> NonTrivialTestCircuit<F>
where
F: PrimeField,
{
pub fn new(num_cons: usize) -> Self {
Self {
num_cons,
_p: Default::default(),
}
}
}
impl<F> StepCircuit<F> for NonTrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
// Consider a an equation: `x^2 = y`, where `x` and `y` are respectively the input and output.
let mut x = z;
let mut y = x.clone();
for i in 0..self.num_cons {
y = x.square(cs.namespace(|| format!("x_sq_{}", i)))?;
x = y.clone();
}
Ok(y)
}
fn compute(&self, z: &F) -> F {
let mut x = *z;
let mut y = x;
for _i in 0..self.num_cons {
y = x * x;
x = y;
}
y
}
}
|