mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-27 14:13:46 +01:00
Compare commits
14 Commits
ark-ed-on-
...
sjoseph/bi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
60b6e5d63b | ||
|
|
461e4190b1 | ||
|
|
5fe1862c9a | ||
|
|
2118e14b6a | ||
|
|
b5c2d8eba3 | ||
|
|
129795aa4c | ||
|
|
a9cb9bfcb2 | ||
|
|
d2c998736e | ||
|
|
ada1fdac07 | ||
|
|
8c795ec0cf | ||
|
|
9d232a7dcd | ||
|
|
4d6c49640c | ||
|
|
880a010f5e | ||
|
|
269fe97519 |
44
.github/workflows/ci.yml
vendored
44
.github/workflows/ci.yml
vendored
@@ -29,8 +29,8 @@ jobs:
|
||||
command: fmt
|
||||
args: --all -- --check
|
||||
|
||||
test:
|
||||
name: Test
|
||||
check:
|
||||
name: Check
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
RUSTFLAGS: -Dwarnings
|
||||
@@ -78,13 +78,39 @@ jobs:
|
||||
args: --all-features --examples --workspace --benches
|
||||
if: matrix.rust == 'nightly'
|
||||
|
||||
- name: Test
|
||||
uses: actions-rs/cargo@v1
|
||||
with:
|
||||
command: test
|
||||
args: "--workspace \
|
||||
--all-features \
|
||||
--exclude curve-benches"
|
||||
|
||||
|
||||
directories: # Job that list subdirectories
|
||||
name: List directories for parallelizing tests
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
dir: ${{ steps.set-dirs.outputs.dir }} # generate output name dir by using inner step output
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- id: set-dirs # Give it an id to handle to get step outputs in the outputs key above
|
||||
run: echo "::set-output name=dir::$(ls -d */ | jq -R -s -c 'split("\n")[:-1]')"
|
||||
# Define step output named dir base on ls command transformed to JSON thanks to jq
|
||||
test:
|
||||
name: Test
|
||||
runs-on: ubuntu-latest
|
||||
needs: [directories] # Depends on previous job
|
||||
strategy:
|
||||
matrix:
|
||||
dir: ${{fromJson(needs.directories.outputs.dir)}} # List matrix strategy from directories dynamically
|
||||
# rust:
|
||||
# - stable
|
||||
# - nightly
|
||||
exclude:
|
||||
- dir: scripts/
|
||||
- dir: curve-constraint-tests/
|
||||
- dir: curve-benches/
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v2
|
||||
- name: Run tests
|
||||
run: |
|
||||
cd ${{matrix.dir}}
|
||||
cargo test --all-features
|
||||
|
||||
docs:
|
||||
name: Check Documentation
|
||||
|
||||
36
CHANGELOG.md
36
CHANGELOG.md
@@ -1,9 +1,42 @@
|
||||
# CHANGELOG
|
||||
|
||||
## Pending
|
||||
|
||||
- [\#76](https://github.com/arkworks-rs/curves/pull/76) twisted Edwards parameters for bls12-377
|
||||
|
||||
### Breaking changes
|
||||
|
||||
### Features
|
||||
|
||||
### Improvements
|
||||
|
||||
- [\#74](https://github.com/arkworks-rs/curves/pull/74) Use Scott's subgroup membership tests for `G1` and `G2` of BLS12-381.
|
||||
|
||||
### Bug fixes
|
||||
|
||||
## v0.3.0
|
||||
|
||||
### Breaking changes
|
||||
|
||||
- [\#60](https://github.com/arkworks-rs/curves/pull/60) Change the scalar group generator of `Fr` of `bls12_377` Fr from `11` to `22`.
|
||||
- [\#61](https://github.com/arkworks-rs/curves/pull/61) Remove `ATE_LOOP_COUNT_IS_NEGATIVE` from BN254 curve parameter.
|
||||
|
||||
### Features
|
||||
|
||||
- [\#64](https://github.com/arkworks-rs/curves/pull/64) Implement the Bandersnatch curve, another twisted Edwards curve for BLS12-381.
|
||||
|
||||
### Improvements
|
||||
|
||||
### Bug fixes
|
||||
|
||||
## v0.2.0
|
||||
|
||||
### Breaking changes
|
||||
|
||||
- Requires all crates from `arkworks-rs/algebra` to have version `v0.2.0` or greater.
|
||||
|
||||
### Features
|
||||
|
||||
- [\#3](https://github.com/arkworks-rs/curves/pull/3) Add constraints for
|
||||
`ark-bls12-377`,
|
||||
`ark-ed-on-bls12-377`,
|
||||
@@ -19,11 +52,14 @@
|
||||
`ark-mnt6-753`.
|
||||
- [\#7](https://github.com/arkworks-rs/curves/pull/7) Add benchmarks for Edwards curves.
|
||||
- [\#19](https://github.com/arkworks-rs/curves/pull/19) Change field constants to be provided as normal strings, instead of in Montgomery form.
|
||||
- [\#53](https://github.com/arkworks-rs/curves/pull/53) Add benchmarks for Pallas and Vesta curves.
|
||||
|
||||
### Improvements
|
||||
|
||||
- [\#42](https://github.com/arkworks-rs/curves/pull/42) Remove the dependency of `rand_xorshift`.
|
||||
|
||||
### Bug fixes
|
||||
|
||||
- [\#28](https://github.com/arkworks-rs/curves/pull/28), [\#49](https://github.com/arkworks-rs/curves/pull/49) Fix broken documentation links.
|
||||
- [\#38](https://github.com/arkworks-rs/curves/pull/38) Compile with `panic='abort'` in release mode, for safety of the library across FFI boundaries.
|
||||
- [\#45](https://github.com/arkworks-rs/curves/pull/45) Fix `ark-ed-on-mnt4-753`.
|
||||
|
||||
12
Cargo.toml
12
Cargo.toml
@@ -15,6 +15,7 @@ members = [
|
||||
|
||||
"bls12_381",
|
||||
"ed_on_bls12_381",
|
||||
"ed_on_bls12_381_bandersnatch",
|
||||
|
||||
"bn254",
|
||||
"ed_on_bn254",
|
||||
@@ -31,11 +32,6 @@ members = [
|
||||
"vesta",
|
||||
]
|
||||
|
||||
[patch.'https://github.com/arkworks-rs/algebra']
|
||||
ark-ff = { path = '../algebra/ff' }
|
||||
ark-ec = { path = '../algebra/ec' }
|
||||
ark-serialize = { path = '../algebra/serialize' }
|
||||
|
||||
[profile.release]
|
||||
opt-level = 3
|
||||
lto = "thin"
|
||||
@@ -60,3 +56,9 @@ lto = "thin"
|
||||
incremental = true
|
||||
debug-assertions = true
|
||||
debug = true
|
||||
|
||||
# To be removed in the new release.
|
||||
[patch.crates-io]
|
||||
ark-ec = { git = "https://github.com/arkworks-rs/algebra" }
|
||||
ark-ff = { git = "https://github.com/arkworks-rs/algebra" }
|
||||
ark-serialize = { git = "https://github.com/arkworks-rs/algebra" }
|
||||
|
||||
@@ -5,6 +5,7 @@ This repository contains implementations of some popular elliptic curves. The cu
|
||||
### BLS12-381 and embedded curves
|
||||
* [`ark-bls12-381`](bls12_381): Implements the BLS12-381 pairing-friendly curve
|
||||
* [`ark-ed-on-bls12-381`](ed_on_bls12_381): Implements a Twisted Edwards curve atop the scalar field of BLS12-381
|
||||
* [`ark-ed-on-bls12-381-bandersnatch`](ed_on_bls12_381_bandersnatch): Implements Bandersnatch, another Twisted Edwards curve atop the scalar field of BLS12-381
|
||||
|
||||
### BLS12-377 and related curves
|
||||
* [`ark-bls12-377`](bls12_377): Implements the BLS12-377 pairing-friendly curve
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-bls12-377"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The BLS12-377 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-bls12-377/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version="^0.2.0", default-features = false }
|
||||
ark-ec = { version="^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version="^0.2.0", default-features = false, optional = true }
|
||||
ark-std = { version="^0.2.0", default-features = false }
|
||||
ark-ff = { version="^0.3.0", default-features = false }
|
||||
ark-ec = { version="^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version="^0.3.0", default-features = false, optional = true }
|
||||
ark-std = { version="^0.3.0", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version="^0.2.0", default-features = false }
|
||||
ark-serialize = { version="^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.2.0", default-features = false }
|
||||
ark-curve-constraint-tests = { version="^0.2.0", path = "../curve-constraint-tests", default-features = false }
|
||||
ark-relations = { version="^0.3.0", default-features = false }
|
||||
ark-serialize = { version="^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
default = [ "curve" ]
|
||||
|
||||
@@ -1,11 +1,22 @@
|
||||
use crate::Parameters;
|
||||
use ark_r1cs_std::groups::bls12;
|
||||
use ark_ec::bls12::Bls12Parameters;
|
||||
use ark_ec::ModelParameters;
|
||||
use ark_r1cs_std::{
|
||||
fields::fp::FpVar,
|
||||
groups::{bls12, curves::twisted_edwards::AffineVar as TEAffineVar},
|
||||
};
|
||||
|
||||
/// An element of G1 in the BLS12-377 bilinear group.
|
||||
pub type G1Var = bls12::G1Var<Parameters>;
|
||||
/// An element of G2 in the BLS12-377 bilinear group.
|
||||
pub type G2Var = bls12::G2Var<Parameters>;
|
||||
|
||||
/// An element of G1 (in TE Affine form) in the BLS12-377 bilinear group.
|
||||
pub type G1TEAffineVar = TEAffineVar<
|
||||
<Parameters as Bls12Parameters>::G1Parameters,
|
||||
FpVar<<<Parameters as Bls12Parameters>::G1Parameters as ModelParameters>::BaseField>,
|
||||
>;
|
||||
|
||||
/// Represents the cached precomputation that can be performed on a G1 element
|
||||
/// which enables speeding up pairing computation.
|
||||
pub type G1PreparedVar = bls12::G1PreparedVar<Parameters>;
|
||||
@@ -21,6 +32,11 @@ fn test() {
|
||||
G1Var,
|
||||
>()
|
||||
.unwrap();
|
||||
ark_curve_constraint_tests::curves::te_test::<
|
||||
<Parameters as Bls12Parameters>::G1Parameters,
|
||||
G1TEAffineVar,
|
||||
>()
|
||||
.unwrap();
|
||||
ark_curve_constraint_tests::curves::sw_test::<
|
||||
<Parameters as Bls12Parameters>::G2Parameters,
|
||||
G2Var,
|
||||
|
||||
@@ -1,5 +1,11 @@
|
||||
use ark_ec::models::{ModelParameters, SWModelParameters};
|
||||
use ark_ec::models::{
|
||||
twisted_edwards_extended::{
|
||||
GroupAffine as TEGroupAffine, GroupProjective as TEGroupProjective,
|
||||
},
|
||||
ModelParameters, MontgomeryModelParameters, SWModelParameters, TEModelParameters,
|
||||
};
|
||||
use ark_ff::{field_new, Zero};
|
||||
use core::ops::Neg;
|
||||
|
||||
use crate::{
|
||||
fields::{FQ_ONE, FQ_ZERO},
|
||||
@@ -40,6 +46,129 @@ impl SWModelParameters for Parameters {
|
||||
}
|
||||
}
|
||||
|
||||
pub type G1TEAffine = TEGroupAffine<Parameters>;
|
||||
pub type G1TEProjective = TEGroupProjective<Parameters>;
|
||||
|
||||
/// Bls12_377::G1 also has a twisted Edwards form.
|
||||
/// It can be obtained via the following script, implementing
|
||||
/// 1. SW -> Montgomery -> TE1 transformation: <https://en.wikipedia.org/wiki/Montgomery_curve>
|
||||
/// 2. TE1 -> TE2 normalization (enforcing `a = -1`)
|
||||
/// ``` sage
|
||||
///
|
||||
/// # modulus
|
||||
/// p = 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001
|
||||
/// Fp = Zmod(p)
|
||||
///
|
||||
/// #####################################################
|
||||
/// # Weierstrass curve: y² = x³ + A * x + B
|
||||
/// #####################################################
|
||||
/// # curve y^2 = x^3 + 1
|
||||
/// WA = Fp(0)
|
||||
/// WB = Fp(1)
|
||||
///
|
||||
/// #####################################################
|
||||
/// # Montgomery curve: By² = x³ + A * x² + x
|
||||
/// #####################################################
|
||||
/// # root for x^3 + 1 = 0
|
||||
/// alpha = -1
|
||||
/// # s = 1 / (sqrt(3alpha^2 + a))
|
||||
/// s = 1/(Fp(3).sqrt())
|
||||
///
|
||||
/// # MA = 3 * alpha * s
|
||||
/// MA = Fp(228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384)
|
||||
/// # MB = s
|
||||
/// MB = Fp(10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931)
|
||||
///
|
||||
/// # #####################################################
|
||||
/// # # Twisted Edwards curve 1: a * x² + y² = 1 + d * x² * y²
|
||||
/// # #####################################################
|
||||
/// # We first convert to TE form obtaining a curve with a != -1, and then
|
||||
/// # apply a transformation to obtain a TE curve with a = -1.
|
||||
/// # a = (MA+2)/MB
|
||||
/// TE1a = Fp(61134141799337779744243169579317764548490943457438569789767076791016838392692895365021181670618017873462480451583)
|
||||
/// # b = (MA-2)/MB
|
||||
/// TE1d = Fp(197530284213631314266409564115575768987902569297476090750117185875703629955647927409947706468955342250977841006588)
|
||||
///
|
||||
/// # #####################################################
|
||||
/// # # Twisted Edwards curve 2: a * x² + y² = 1 + d * x² * y²
|
||||
/// # #####################################################
|
||||
/// # a = -1
|
||||
/// TE2a = Fp(-1)
|
||||
/// # b = -TE1d/TE1a
|
||||
/// TE2d = Fp(122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179)
|
||||
///
|
||||
/// ```
|
||||
impl TEModelParameters for Parameters {
|
||||
/// COEFF_A = -1
|
||||
const COEFF_A: Fq = field_new!(Fq, "-1");
|
||||
|
||||
/// COEFF_D = 122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179 mod q
|
||||
#[rustfmt::skip]
|
||||
const COEFF_D: Fq = field_new!(Fq, "122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179");
|
||||
|
||||
/// COFACTOR = (x - 1)^2 / 3 = 30631250834960419227450344600217059328
|
||||
const COFACTOR: &'static [u64] = &[0x0, 0x170b5d4430000000];
|
||||
|
||||
/// COFACTOR_INV = COFACTOR^{-1} mod r
|
||||
/// = 5285428838741532253824584287042945485047145357130994810877
|
||||
#[rustfmt::skip]
|
||||
const COFACTOR_INV: Fr = field_new!(Fr, "5285428838741532253824584287042945485047145357130994810877");
|
||||
|
||||
/// AFFINE_GENERATOR_COEFFS = (GENERATOR_X, GENERATOR_Y)
|
||||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
||||
(TE_GENERATOR_X, TE_GENERATOR_Y);
|
||||
|
||||
type MontgomeryModelParameters = Parameters;
|
||||
|
||||
/// Multiplication by `a` is multiply by `-1`.
|
||||
#[inline(always)]
|
||||
fn mul_by_a(elem: &Self::BaseField) -> Self::BaseField {
|
||||
elem.neg()
|
||||
}
|
||||
}
|
||||
|
||||
// BLS12-377::G1 also has a Montgomery form.
|
||||
// BLS12-377::G1 also has a twisted Edwards form.
|
||||
// It can be obtained via the following script, implementing
|
||||
// SW -> Montgomery transformation: <https://en.wikipedia.org/wiki/Montgomery_curve>
|
||||
// ``` sage
|
||||
//
|
||||
// # modulus
|
||||
// p=0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001
|
||||
// Fp=Zmod(p)
|
||||
//
|
||||
// #####################################################
|
||||
// # Weierstrass curve: y² = x³ + A * x + B
|
||||
// #####################################################
|
||||
// # curve y^2 = x^3 + 1
|
||||
// WA=Fp(0)
|
||||
// WB=Fp(1)
|
||||
//
|
||||
// #####################################################
|
||||
// # Montgomery curve: By² = x³ + A * x² + x
|
||||
// #####################################################
|
||||
// # root for x^3 + 1 = 0
|
||||
// alpha = -1
|
||||
// # s = 1 / (sqrt(3alpha^2 + a))
|
||||
// s = 1/(Fp(3).sqrt())
|
||||
//
|
||||
// # MA = 3 * alpha * s
|
||||
// MA=Fp(228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384)
|
||||
// # MB = s
|
||||
// MB=Fp(10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931)
|
||||
// ```
|
||||
impl MontgomeryModelParameters for Parameters {
|
||||
/// COEFF_A = 228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Fq = field_new!(Fq, "228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384");
|
||||
|
||||
/// COEFF_B = 10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Fq = field_new!(Fq, "10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931");
|
||||
|
||||
type TEModelParameters = Parameters;
|
||||
}
|
||||
|
||||
/// G1_GENERATOR_X =
|
||||
/// 81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695
|
||||
#[rustfmt::skip]
|
||||
@@ -49,3 +178,56 @@ pub const G1_GENERATOR_X: Fq = field_new!(Fq, "819379993731509642399382555734659
|
||||
/// 241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030
|
||||
#[rustfmt::skip]
|
||||
pub const G1_GENERATOR_Y: Fq = field_new!(Fq, "241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030");
|
||||
|
||||
// The generator for twisted Edward form is the same SW generator converted into the normalized TE form (TE2).
|
||||
// ``` sage
|
||||
// # following scripts in previous section
|
||||
// #####################################################
|
||||
// # Weierstrass curve generator
|
||||
// #####################################################
|
||||
// Wx = Fp(81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695)
|
||||
// Wy = Fp(241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030)
|
||||
//
|
||||
// assert(Wy^2 - Wx^3 - WA * Wx - WB == 0)
|
||||
//
|
||||
// #####################################################
|
||||
// # Montgomery curve generator
|
||||
// #####################################################
|
||||
// # x = s * (x - alpha)
|
||||
// Mx = Fp(251803586774461569862800610331871502335378228972505599912537082323947581271784390797244487924068052270360793200630)
|
||||
// # y = s * y
|
||||
// My = Fp(77739247071951651095607889637653357561348174979132042929587539214321586851215673796661346812932566642719051699820)
|
||||
//
|
||||
// assert(MB * My^2 == Mx^3+ MA * Mx^2 + Mx)
|
||||
//
|
||||
// # #####################################################
|
||||
// # # Twisted Edwards curve 1 generator
|
||||
// # #####################################################
|
||||
// # x = Mx/My
|
||||
// TE1x = Fp(82241236807150726090333472814441006963902378430536027612759193445733851062772474760677400112551677454953925168208)
|
||||
// # y = (Mx - 1)/(Mx+1)
|
||||
// TE1y = Fp(6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235)
|
||||
//
|
||||
// assert( TE1a * TE1x^2 + TE1y^2 == 1 + TE1d * TE1x^2 * TE1y^2 )
|
||||
//
|
||||
//
|
||||
// # #####################################################
|
||||
// # # Twisted Edwards curve 2 generator
|
||||
// # #####################################################
|
||||
// beta = (-TE1a).sqrt()
|
||||
// # x = TE1x * sqrt(-TE1a)
|
||||
// TE2x = Fp(71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393)
|
||||
// # y = TE1y
|
||||
// TE2y = Fp(6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235)
|
||||
//
|
||||
// assert( TE2a * TE2x^2 + TE2y^2 == 1 + TE2d * TE2x^2 * TE2y^2 )
|
||||
// ```
|
||||
/// TE_GENERATOR_X =
|
||||
/// 71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393
|
||||
#[rustfmt::skip]
|
||||
pub const TE_GENERATOR_X: Fq = field_new!(Fq, "71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393");
|
||||
|
||||
/// TE_GENERATOR_Y =
|
||||
/// 6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235
|
||||
#[rustfmt::skip]
|
||||
pub const TE_GENERATOR_Y: Fq = field_new!(Fq, "6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235");
|
||||
|
||||
@@ -31,3 +31,5 @@ pub type G1Affine = bls12::G1Affine<Parameters>;
|
||||
pub type G1Projective = bls12::G1Projective<Parameters>;
|
||||
pub type G2Affine = bls12::G2Affine<Parameters>;
|
||||
pub type G2Projective = bls12::G2Projective<Parameters>;
|
||||
|
||||
pub use g1::{G1TEAffine, G1TEProjective};
|
||||
|
||||
@@ -1,19 +1,22 @@
|
||||
#![allow(unused_imports)]
|
||||
use crate::{
|
||||
g1, g2, Bls12_377, Fq, Fq12, Fq2, Fr, G1Affine, G1Projective, G1TEProjective, G2Affine,
|
||||
G2Projective,
|
||||
};
|
||||
use ark_ec::{
|
||||
models::SWModelParameters, short_weierstrass_jacobian, AffineCurve, PairingEngine,
|
||||
ProjectiveCurve,
|
||||
};
|
||||
use ark_ff::{
|
||||
fields::{Field, FpParameters, PrimeField, SquareRootField},
|
||||
One, Zero,
|
||||
};
|
||||
use ark_serialize::CanonicalSerialize;
|
||||
use ark_std::test_rng;
|
||||
|
||||
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
|
||||
use ark_std::rand::Rng;
|
||||
use ark_std::{rand::Rng, test_rng};
|
||||
use core::ops::{AddAssign, MulAssign};
|
||||
|
||||
use crate::{g1, g2, Bls12_377, Fq, Fq12, Fq2, Fr, G1Affine, G1Projective, G2Affine, G2Projective};
|
||||
|
||||
use ark_algebra_test_templates::{
|
||||
curves::{curve_tests, sw_tests},
|
||||
curves::{curve_tests, edwards_tests, sw_tests},
|
||||
groups::group_test,
|
||||
};
|
||||
|
||||
@@ -22,6 +25,7 @@ fn test_g1_projective_curve() {
|
||||
curve_tests::<G1Projective>();
|
||||
|
||||
sw_tests::<g1::Parameters>();
|
||||
edwards_tests::<g1::Parameters>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -30,6 +34,10 @@ fn test_g1_projective_group() {
|
||||
let a: G1Projective = rng.gen();
|
||||
let b: G1Projective = rng.gen();
|
||||
group_test(a, b);
|
||||
|
||||
let c = rng.gen();
|
||||
let d = rng.gen();
|
||||
group_test::<G1TEProjective>(c, d);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -1,3 +1,24 @@
|
||||
//! Bls12-377 scalar field.
|
||||
///
|
||||
/// Roots of unity computed from modulus and R using this sage code:
|
||||
///
|
||||
/// ```ignore
|
||||
/// q = 8444461749428370424248824938781546531375899335154063827935233455917409239041
|
||||
/// R = 6014086494747379908336260804527802945383293308637734276299549080986809532403 # Montgomery R
|
||||
/// s = 47
|
||||
/// o = q - 1
|
||||
/// F = GF(q)
|
||||
/// g = F.multiplicative_generator()
|
||||
/// g = F.multiplicative_generator()
|
||||
/// assert g.multiplicative_order() == o
|
||||
/// g2 = g ** (o/2**s)
|
||||
/// assert g2.multiplicative_order() == 2**s
|
||||
/// def into_chunks(val, width, n):
|
||||
/// return [int(int(val) // (2 ** (width * i)) % 2 ** width) for i in range(n)]
|
||||
/// print("Gen: ", g * R % q)
|
||||
/// print("Gen: ", into_chunks(g * R % q, 64, 4))
|
||||
/// print("2-adic gen: ", into_chunks(g2 * R % q, 64, 4))
|
||||
/// ```
|
||||
use ark_ff::{biginteger::BigInteger256 as BigInteger, fields::*};
|
||||
|
||||
pub type Fr = Fp256<FrParameters>;
|
||||
@@ -12,10 +33,10 @@ impl FftParameters for FrParameters {
|
||||
|
||||
#[rustfmt::skip]
|
||||
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
|
||||
0x3c3d3ca739381fb2,
|
||||
0x9a14cda3ec99772b,
|
||||
0xd7aacc7c59724826,
|
||||
0xd1ba211c5cc349c,
|
||||
12646347781564978760u64,
|
||||
6783048705277173164u64,
|
||||
268534165941069093u64,
|
||||
1121515446318641358u64,
|
||||
]);
|
||||
}
|
||||
impl FpParameters for FrParameters {
|
||||
@@ -53,15 +74,16 @@ impl FpParameters for FrParameters {
|
||||
|
||||
const INV: u64 = 725501752471715839u64;
|
||||
|
||||
/// GENERATOR = 11
|
||||
/// GENERATOR = 22
|
||||
/// Encoded in Montgomery form, so the value is
|
||||
/// (11 * R) % q = 7043719196222586021957094278335006679584931048936630243748405699433040183146
|
||||
/// (22 * R) % q =
|
||||
/// 5642976643016801619665363617888466827793962762719196659561577942948671127251
|
||||
#[rustfmt::skip]
|
||||
const GENERATOR: BigInteger = BigInteger([
|
||||
1855201571499933546u64,
|
||||
8511318076631809892u64,
|
||||
6222514765367795509u64,
|
||||
1122129207579058019u64,
|
||||
2984901390528151251u64,
|
||||
10561528701063790279u64,
|
||||
5476750214495080041u64,
|
||||
898978044469942640u64,
|
||||
]);
|
||||
|
||||
/// (r - 1)/2 =
|
||||
|
||||
@@ -7,8 +7,7 @@ use ark_ff::{
|
||||
One, UniformRand, Zero,
|
||||
};
|
||||
use ark_serialize::{buffer_bit_byte_size, CanonicalSerialize};
|
||||
use ark_std::rand::Rng;
|
||||
use ark_std::test_rng;
|
||||
use ark_std::{rand::Rng, test_rng};
|
||||
use core::{
|
||||
cmp::Ordering,
|
||||
ops::{AddAssign, MulAssign, SubAssign},
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-bls12-381"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The BLS12-381 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-bls12-381/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,13 +13,13 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version="^0.2.0", default-features = false }
|
||||
ark-ec = { version="^0.2.0", default-features = false }
|
||||
ark-std = { version="^0.2.0", default-features = false }
|
||||
ark-ff = { version="^0.3.0", default-features = false }
|
||||
ark-ec = { version="^0.3.0", default-features = false }
|
||||
ark-std = { version="^0.3.0", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-serialize = { version="^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.2.0", default-features = false }
|
||||
ark-serialize = { version="^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = [ "curve" ]
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
use crate::*;
|
||||
use ark_ec::{
|
||||
bls12,
|
||||
bls12::Bls12Parameters,
|
||||
models::{ModelParameters, SWModelParameters},
|
||||
short_weierstrass_jacobian::GroupAffine,
|
||||
AffineCurve, ProjectiveCurve,
|
||||
};
|
||||
use ark_ff::{field_new, Zero};
|
||||
use ark_ff::{biginteger::BigInteger256, field_new, Zero};
|
||||
use ark_std::ops::Neg;
|
||||
|
||||
pub type G1Affine = bls12::G1Affine<crate::Parameters>;
|
||||
pub type G1Projective = bls12::G1Projective<crate::Parameters>;
|
||||
@@ -40,6 +44,25 @@ impl SWModelParameters for Parameters {
|
||||
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
||||
Self::BaseField::zero()
|
||||
}
|
||||
|
||||
fn is_in_correct_subgroup_assuming_on_curve(p: &GroupAffine<Parameters>) -> bool {
|
||||
// Algorithm from Section 6 of https://eprint.iacr.org/2021/1130.
|
||||
//
|
||||
// Check that endomorphism_p(P) == -[X^2]P
|
||||
|
||||
let x = BigInteger256::new([crate::Parameters::X[0], 0, 0, 0]);
|
||||
|
||||
// An early-out optimization described in Section 6.
|
||||
// If uP == P but P != point of infinity, then the point is not in the right subgroup.
|
||||
let x_times_p = p.mul(x);
|
||||
if x_times_p.eq(p) && !p.infinity {
|
||||
return false;
|
||||
}
|
||||
|
||||
let minus_x_squared_times_p = x_times_p.mul(x).neg();
|
||||
let endomorphism_p = endomorphism(p);
|
||||
minus_x_squared_times_p.eq(&endomorphism_p)
|
||||
}
|
||||
}
|
||||
|
||||
/// G1_GENERATOR_X =
|
||||
@@ -51,3 +74,14 @@ pub const G1_GENERATOR_X: Fq = field_new!(Fq, "368541675371338701678108831518307
|
||||
/// 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
|
||||
#[rustfmt::skip]
|
||||
pub const G1_GENERATOR_Y: Fq = field_new!(Fq, "1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569");
|
||||
|
||||
/// BETA is a non-trivial cubic root of unity in Fq.
|
||||
pub const BETA: Fq = field_new!(Fq, "793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350");
|
||||
|
||||
pub fn endomorphism(p: &GroupAffine<Parameters>) -> GroupAffine<Parameters> {
|
||||
// Endomorphism of the points on the curve.
|
||||
// endomorphism_p(x,y) = (BETA * x, y) where BETA is a non-trivial cubic root of unity in Fq.
|
||||
let mut res = (*p).clone();
|
||||
res.x *= BETA;
|
||||
res
|
||||
}
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
use crate::*;
|
||||
use ark_ec::bls12::Bls12Parameters;
|
||||
use ark_ec::{
|
||||
bls12,
|
||||
models::{ModelParameters, SWModelParameters},
|
||||
short_weierstrass_jacobian::GroupAffine,
|
||||
AffineCurve,
|
||||
};
|
||||
use ark_ff::{field_new, Zero};
|
||||
use ark_ff::{biginteger::BigInteger256, field_new, Field, Zero};
|
||||
|
||||
pub type G2Affine = bls12::G2Affine<crate::Parameters>;
|
||||
pub type G2Projective = bls12::G2Projective<crate::Parameters>;
|
||||
@@ -51,6 +54,21 @@ impl SWModelParameters for Parameters {
|
||||
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
||||
Self::BaseField::zero()
|
||||
}
|
||||
|
||||
fn is_in_correct_subgroup_assuming_on_curve(point: &GroupAffine<Parameters>) -> bool {
|
||||
// Algorithm from Section 4 of https://eprint.iacr.org/2021/1130.
|
||||
//
|
||||
// Checks that [p]P = [X]P
|
||||
|
||||
let mut x_times_point = point.mul(BigInteger256([crate::Parameters::X[0], 0, 0, 0]));
|
||||
if crate::Parameters::X_IS_NEGATIVE {
|
||||
x_times_point = -x_times_point;
|
||||
}
|
||||
|
||||
let p_times_point = p_power_endomorphism(point);
|
||||
|
||||
x_times_point.eq(&p_times_point)
|
||||
}
|
||||
}
|
||||
|
||||
pub const G2_GENERATOR_X: Fq2 = field_new!(Fq2, G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
|
||||
@@ -75,3 +93,52 @@ pub const G2_GENERATOR_Y_C0: Fq = field_new!(Fq, "198515060228729193556805452117
|
||||
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
|
||||
#[rustfmt::skip]
|
||||
pub const G2_GENERATOR_Y_C1: Fq = field_new!(Fq, "927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582");
|
||||
|
||||
// psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed
|
||||
// with the quadratic twist and its inverse
|
||||
|
||||
// PSI_X = 1/(u+1)^((p-1)/3)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = field_new!(
|
||||
Fq2,
|
||||
FQ_ZERO,
|
||||
field_new!(
|
||||
Fq,
|
||||
"4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
|
||||
)
|
||||
);
|
||||
|
||||
// PSI_Y = 1/(u+1)^((p-1)/2)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = field_new!(
|
||||
Fq2,
|
||||
field_new!(
|
||||
Fq,
|
||||
"2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"),
|
||||
field_new!(
|
||||
Fq,
|
||||
"1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257")
|
||||
);
|
||||
|
||||
pub fn p_power_endomorphism(p: &GroupAffine<Parameters>) -> GroupAffine<Parameters> {
|
||||
// The p-power endomorphism for G2 is defined as follows:
|
||||
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1). To map a point (x, y) in E' to (s, t) in E,
|
||||
// one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)), because E: y^2 = x^3 + 4.
|
||||
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'), another point on curve E,
|
||||
// where s' = s^p, t' = t^p.
|
||||
// 3. Map the point from E back to E'; that is,
|
||||
// one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
||||
//
|
||||
// To sum up, it maps
|
||||
// (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
|
||||
// as implemented in the code as follows.
|
||||
|
||||
let mut res = *p;
|
||||
res.x.frobenius_map(1);
|
||||
res.y.frobenius_map(1);
|
||||
|
||||
let tmp_x = res.x.clone();
|
||||
res.x.c0 = -P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c1;
|
||||
res.x.c1 = P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c0;
|
||||
res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
#![allow(unused_imports)]
|
||||
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
|
||||
use ark_ec::{
|
||||
models::SWModelParameters,
|
||||
short_weierstrass_jacobian::{GroupAffine, GroupProjective},
|
||||
AffineCurve, PairingEngine, ProjectiveCurve,
|
||||
};
|
||||
use ark_ff::{
|
||||
fields::{Field, FpParameters, PrimeField, SquareRootField},
|
||||
One, Zero,
|
||||
BitIteratorBE, One, UniformRand, Zero,
|
||||
};
|
||||
use ark_serialize::CanonicalSerialize;
|
||||
use ark_std::rand::Rng;
|
||||
@@ -11,6 +15,7 @@ use core::ops::{AddAssign, MulAssign};
|
||||
|
||||
use crate::{g1, g2, Bls12_381, Fq, Fq12, Fq2, Fr, G1Affine, G1Projective, G2Affine, G2Projective};
|
||||
use ark_algebra_test_templates::{curves::*, groups::*};
|
||||
use ark_ec::group::Group;
|
||||
|
||||
#[test]
|
||||
fn test_g1_projective_curve() {
|
||||
@@ -115,3 +120,54 @@ fn test_g1_generator_raw() {
|
||||
x.add_assign(&Fq::one());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_endomorphism_beta() {
|
||||
assert!(g1::BETA.pow(&[3u64]).is_one());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_subgroup_membership_via_endomorphism() {
|
||||
let mut rng = test_rng();
|
||||
let generator = G1Projective::rand(&mut rng).into_affine();
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_subgroup_non_membership_via_endomorphism() {
|
||||
let mut rng = test_rng();
|
||||
loop {
|
||||
let x = Fq::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
|
||||
if let Some(p) = G1Affine::get_point_from_x(x, greatest) {
|
||||
if !p.into_projective().mul(Fr::characteristic()).is_zero() {
|
||||
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_subgroup_membership_via_endomorphism() {
|
||||
let mut rng = test_rng();
|
||||
let generator = G2Projective::rand(&mut rng).into_affine();
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_subgroup_non_membership_via_endomorphism() {
|
||||
let mut rng = test_rng();
|
||||
loop {
|
||||
let x = Fq2::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
|
||||
if let Some(p) = G2Affine::get_point_from_x(x, greatest) {
|
||||
if !p.into_projective().mul(Fr::characteristic()).is_zero() {
|
||||
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1004,7 +1004,7 @@ fn test_fq_repr_num_bits() {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_sub_noborrow() {
|
||||
fn test_fq_repr_sub_ret_borrow() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
|
||||
let mut t = BigInteger384([
|
||||
@@ -1015,7 +1015,7 @@ fn test_fq_repr_sub_noborrow() {
|
||||
0xad0eb3948a5c34fd,
|
||||
0xd56f7b5ab8b5ce8,
|
||||
]);
|
||||
t.sub_noborrow(&BigInteger384([
|
||||
t.sub_ret_borrow(&BigInteger384([
|
||||
0xc7867917187ca02b,
|
||||
0x5d75679d4911ffef,
|
||||
0x8c5b3e48b1a71c15,
|
||||
@@ -1050,12 +1050,12 @@ fn test_fq_repr_sub_noborrow() {
|
||||
assert!(b < c);
|
||||
|
||||
let mut csub_ba = c;
|
||||
csub_ba.sub_noborrow(&b);
|
||||
csub_ba.sub_noborrow(&a);
|
||||
csub_ba.sub_ret_borrow(&b);
|
||||
csub_ba.sub_ret_borrow(&a);
|
||||
|
||||
let mut csub_ab = c;
|
||||
csub_ab.sub_noborrow(&a);
|
||||
csub_ab.sub_noborrow(&b);
|
||||
csub_ab.sub_ret_borrow(&a);
|
||||
csub_ab.sub_ret_borrow(&b);
|
||||
|
||||
assert_eq!(csub_ab, csub_ba);
|
||||
}
|
||||
@@ -1069,7 +1069,7 @@ fn test_fq_repr_sub_noborrow() {
|
||||
0x4b1ba7b6434bacd7,
|
||||
0x1a0111ea397fe69a,
|
||||
]);
|
||||
qplusone.sub_noborrow(&BigInteger384([
|
||||
qplusone.sub_ret_borrow(&BigInteger384([
|
||||
0xb9feffffffffaaac,
|
||||
0x1eabfffeb153ffff,
|
||||
0x6730d2a0f6b0f624,
|
||||
@@ -1091,7 +1091,7 @@ fn test_fq_repr_sub_noborrow() {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_add_nocarry() {
|
||||
fn test_fq_repr_add_ret_carry() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
|
||||
let mut t = BigInteger384([
|
||||
@@ -1102,7 +1102,7 @@ fn test_fq_repr_add_nocarry() {
|
||||
0xad0eb3948a5c34fd,
|
||||
0xd56f7b5ab8b5ce8,
|
||||
]);
|
||||
t.add_nocarry(&BigInteger384([
|
||||
t.add_ret_carry(&BigInteger384([
|
||||
0xc7867917187ca02b,
|
||||
0x5d75679d4911ffef,
|
||||
0x8c5b3e48b1a71c15,
|
||||
@@ -1133,28 +1133,28 @@ fn test_fq_repr_add_nocarry() {
|
||||
c.0[5] >>= 3;
|
||||
|
||||
let mut abc = a;
|
||||
abc.add_nocarry(&b);
|
||||
abc.add_nocarry(&c);
|
||||
abc.add_ret_carry(&b);
|
||||
abc.add_ret_carry(&c);
|
||||
|
||||
let mut acb = a;
|
||||
acb.add_nocarry(&c);
|
||||
acb.add_nocarry(&b);
|
||||
acb.add_ret_carry(&c);
|
||||
acb.add_ret_carry(&b);
|
||||
|
||||
let mut bac = b;
|
||||
bac.add_nocarry(&a);
|
||||
bac.add_nocarry(&c);
|
||||
bac.add_ret_carry(&a);
|
||||
bac.add_ret_carry(&c);
|
||||
|
||||
let mut bca = b;
|
||||
bca.add_nocarry(&c);
|
||||
bca.add_nocarry(&a);
|
||||
bca.add_ret_carry(&c);
|
||||
bca.add_ret_carry(&a);
|
||||
|
||||
let mut cab = c;
|
||||
cab.add_nocarry(&a);
|
||||
cab.add_nocarry(&b);
|
||||
cab.add_ret_carry(&a);
|
||||
cab.add_ret_carry(&b);
|
||||
|
||||
let mut cba = c;
|
||||
cba.add_nocarry(&b);
|
||||
cba.add_nocarry(&a);
|
||||
cba.add_ret_carry(&b);
|
||||
cba.add_ret_carry(&a);
|
||||
|
||||
assert_eq!(abc, acb);
|
||||
assert_eq!(abc, bac);
|
||||
@@ -1172,7 +1172,7 @@ fn test_fq_repr_add_nocarry() {
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
]);
|
||||
x.add_nocarry(&BigInteger384::from(1));
|
||||
x.add_ret_carry(&BigInteger384::from(1));
|
||||
assert!(x.is_zero());
|
||||
}
|
||||
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-bn254"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The BN254 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-bn254/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,13 +13,13 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version="^0.2.0", default-features = false }
|
||||
ark-ec = { version="^0.2.0", default-features = false }
|
||||
ark-std = { version="^0.2.0", default-features = false }
|
||||
ark-ff = { version="^0.3.0", default-features = false }
|
||||
ark-ec = { version="^0.3.0", default-features = false }
|
||||
ark-std = { version="^0.3.0", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-serialize = { version="^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.2.0", default-features = false }
|
||||
ark-serialize = { version="^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = [ "curve" ]
|
||||
|
||||
@@ -21,8 +21,6 @@ impl BnParameters for Parameters {
|
||||
0, 1, 1, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 0,
|
||||
-1, 0, 0, 1, 0, 1, 1,
|
||||
];
|
||||
/// `ate_loop_count` is positive.
|
||||
const ATE_LOOP_COUNT_IS_NEGATIVE: bool = false;
|
||||
|
||||
const TWIST_MUL_BY_Q_X: Fq2 = field_new!(
|
||||
Fq2,
|
||||
|
||||
@@ -19,7 +19,7 @@ impl FftParameters for FqParameters {
|
||||
]);
|
||||
}
|
||||
impl FpParameters for FqParameters {
|
||||
/// MODULUS = 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177
|
||||
/// MODULUS = 21888242871839275222246405745257275088696311157297823662689037894645226208583
|
||||
#[rustfmt::skip]
|
||||
const MODULUS: BigInteger = BigInteger([
|
||||
0x3c208c16d87cfd47,
|
||||
@@ -82,7 +82,7 @@ impl FpParameters for FqParameters {
|
||||
]);
|
||||
|
||||
// (T - 1) // 2 =
|
||||
// 1837921289030710838195067919506396475074392872918698035817074744121558668640693829665401097909504529
|
||||
// 5472060717959818805561601436314318772174077789324455915672259473661306552145
|
||||
#[rustfmt::skip]
|
||||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
||||
0x4f082305b61f3f51,
|
||||
|
||||
@@ -34,6 +34,8 @@ impl FpParameters for FrParameters {
|
||||
|
||||
const REPR_SHAVE_BITS: u32 = 2;
|
||||
|
||||
/// R = pow(2, 320) % MODULUS
|
||||
/// = 6350874878119819312338956282401532410528162663560392320966563075034087161851
|
||||
#[rustfmt::skip]
|
||||
const R: BigInteger = BigInteger([
|
||||
12436184717236109307u64,
|
||||
@@ -42,6 +44,8 @@ impl FpParameters for FrParameters {
|
||||
1011752739694698287u64,
|
||||
]);
|
||||
|
||||
/// R2 = R * R % MODULUS
|
||||
/// = 944936681149208446651664254269745548490766851729442924617792859073125903783
|
||||
#[rustfmt::skip]
|
||||
const R2: BigInteger = BigInteger([
|
||||
1997599621687373223u64,
|
||||
@@ -50,9 +54,10 @@ impl FpParameters for FrParameters {
|
||||
150537098327114917u64,
|
||||
]);
|
||||
|
||||
/// INV = (-MODULUS) ^ {-1} % pow(2, 64) = 14042775128853446655
|
||||
const INV: u64 = 14042775128853446655u64;
|
||||
|
||||
// GENERATOR = 5
|
||||
/// GENERATOR = 5
|
||||
#[rustfmt::skip]
|
||||
const GENERATOR: BigInteger = BigInteger([
|
||||
1949230679015292902u64,
|
||||
@@ -61,7 +66,7 @@ impl FpParameters for FrParameters {
|
||||
1571765431670520771u64,
|
||||
]);
|
||||
|
||||
/// (r - 1)/2 =
|
||||
/// (MODULUS - 1)/2 =
|
||||
/// 10944121435919637611123202872628637544274182200208017171849102093287904247808
|
||||
#[rustfmt::skip]
|
||||
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
||||
@@ -73,7 +78,7 @@ impl FpParameters for FrParameters {
|
||||
|
||||
// T and T_MINUS_ONE_DIV_TWO, where r - 1 = 2^s * t
|
||||
|
||||
/// t = (r - 1) / 2^s =
|
||||
/// T = (MODULUS - 1) / 2^s =
|
||||
/// 81540058820840996586704275553141814055101440848469862132140264610111
|
||||
#[rustfmt::skip]
|
||||
const T: BigInteger = BigInteger([
|
||||
@@ -83,7 +88,7 @@ impl FpParameters for FrParameters {
|
||||
0x30644e72e,
|
||||
]);
|
||||
|
||||
/// (t - 1) / 2 =
|
||||
/// (T - 1) / 2 =
|
||||
/// 40770029410420498293352137776570907027550720424234931066070132305055
|
||||
#[rustfmt::skip]
|
||||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
//! * valuation(r - 1, 2) = 28
|
||||
//! * G1 curve equation: y^2 = x^3 + 3
|
||||
//! * G2 curve equation: y^2 = x^3 + B, where
|
||||
//! * B = 3/(u+9) where Fq2\[u\]=Fq/u+1
|
||||
//! * B = 3/(u+9) where Fq2 is represented as Fq\[u\]/(u^2+1)
|
||||
//! = Fq2(19485874751759354771024239261021720505790618469301721065564631296452457478373, 266929791119991161246907387137283842545076965332900288569378510910307636690)
|
||||
|
||||
#[cfg(feature = "curve")]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-bw6-761"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The BW6-761 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-bw6-761/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,14 +13,14 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version="^0.2.0", default-features = false }
|
||||
ark-ec = { version="^0.2.0", default-features = false }
|
||||
ark-std = { version="^0.2.0", default-features = false }
|
||||
ark-bls12-377 = { version="^0.2.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
ark-ff = { version="^0.3.0", default-features = false }
|
||||
ark-ec = { version="^0.3.0", default-features = false }
|
||||
ark-std = { version="^0.3.0", default-features = false }
|
||||
ark-bls12-377 = { version="^0.3.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-serialize = { version="^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.2.0", default-features = false }
|
||||
ark-serialize = { version="^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version="^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-cp6-782"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The CP6-782 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-cp6-782/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,14 +13,14 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-bls12-377 = { version = "^0.2.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-bls12-377 = { version = "^0.3.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
@@ -1,17 +1,18 @@
|
||||
[package]
|
||||
name = "ark-curve-benches"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [
|
||||
"Sean Bowe",
|
||||
"Alessandro Chiesa",
|
||||
"Matthew Green",
|
||||
"Ian Miers",
|
||||
"Pratyush Mishra",
|
||||
"Howard Wu"
|
||||
"Howard Wu",
|
||||
"Daira Hopwood"
|
||||
]
|
||||
description = "A benchmark library for finite fields and elliptic curves"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/algebra/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves", "pairing"]
|
||||
categories = ["cryptography"]
|
||||
@@ -27,10 +28,10 @@ build = "build.rs"
|
||||
bencher = { version = "0.1.5" }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
|
||||
ark-mnt4-298 = { path = "../mnt4_298" }
|
||||
ark-mnt6-298 = { path = "../mnt6_298" }
|
||||
@@ -42,6 +43,8 @@ ark-bls12-381 = { path = "../bls12_381" }
|
||||
ark-ed-on-bls12-381 = { path = "../ed_on_bls12_381" }
|
||||
ark-bw6-761 = { path = "../bw6_761" }
|
||||
ark-cp6-782 = { path = "../cp6_782" }
|
||||
ark-pallas = { path = "../pallas" }
|
||||
ark-vesta = { path = "../vesta" }
|
||||
|
||||
[features]
|
||||
asm = [ "ark-ff/asm"]
|
||||
@@ -100,3 +103,13 @@ harness = false
|
||||
name = "mnt6_753"
|
||||
path = "benches/mnt6_753.rs"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "pallas"
|
||||
path = "benches/pallas.rs"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "vesta"
|
||||
path = "benches/vesta.rs"
|
||||
harness = false
|
||||
|
||||
19
curve-benches/benches/pallas.rs
Normal file
19
curve-benches/benches/pallas.rs
Normal file
@@ -0,0 +1,19 @@
|
||||
use ark_curve_benches::*;
|
||||
use ark_std::ops::{AddAssign, MulAssign, SubAssign};
|
||||
|
||||
use ark_ec::ProjectiveCurve;
|
||||
use ark_ff::{
|
||||
biginteger::{BigInteger256 as FrRepr, BigInteger256 as FqRepr},
|
||||
BigInteger, Field, PrimeField, SquareRootField, UniformRand,
|
||||
};
|
||||
use ark_pallas::{fq::Fq, fr::Fr, Affine as GAffine, Projective as G};
|
||||
|
||||
mod g {
|
||||
use super::*;
|
||||
ec_bench!(G, GAffine);
|
||||
}
|
||||
|
||||
f_bench!(Fq, Fq, FqRepr, FqRepr, fq);
|
||||
f_bench!(Fr, Fr, FrRepr, FrRepr, fr);
|
||||
|
||||
bencher::benchmark_main!(fq, fr, g::group_ops);
|
||||
19
curve-benches/benches/vesta.rs
Normal file
19
curve-benches/benches/vesta.rs
Normal file
@@ -0,0 +1,19 @@
|
||||
use ark_curve_benches::*;
|
||||
use ark_std::ops::{AddAssign, MulAssign, SubAssign};
|
||||
|
||||
use ark_ec::ProjectiveCurve;
|
||||
use ark_ff::{
|
||||
biginteger::{BigInteger256 as FrRepr, BigInteger256 as FqRepr},
|
||||
BigInteger, Field, PrimeField, SquareRootField, UniformRand,
|
||||
};
|
||||
use ark_vesta::{fq::Fq, fr::Fr, Affine as GAffine, Projective as G};
|
||||
|
||||
mod g {
|
||||
use super::*;
|
||||
ec_bench!(G, GAffine);
|
||||
}
|
||||
|
||||
f_bench!(Fq, Fq, FqRepr, FqRepr, fq);
|
||||
f_bench!(Fr, Fr, FrRepr, FrRepr, fr);
|
||||
|
||||
bencher::benchmark_main!(fq, fr, g::group_ops);
|
||||
@@ -196,6 +196,32 @@ macro_rules! ec_bench {
|
||||
});
|
||||
}
|
||||
|
||||
fn deser_uncompressed(b: &mut $crate::bencher::Bencher) {
|
||||
use ark_ec::ProjectiveCurve;
|
||||
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = ark_std::test_rng();
|
||||
|
||||
let mut num_bytes = 0;
|
||||
let tmp = <$projective>::rand(&mut rng).into_affine();
|
||||
let v: Vec<_> = (0..SAMPLES)
|
||||
.flat_map(|_| {
|
||||
let mut bytes = Vec::with_capacity(1000);
|
||||
tmp.serialize_uncompressed(&mut bytes).unwrap();
|
||||
num_bytes = bytes.len();
|
||||
bytes
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
let index = count * num_bytes;
|
||||
<$affine>::deserialize_uncompressed(&v[index..(index + num_bytes)]).unwrap()
|
||||
});
|
||||
}
|
||||
|
||||
fn msm_131072(b: &mut $crate::bencher::Bencher) {
|
||||
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
|
||||
const SAMPLES: usize = 131072;
|
||||
@@ -224,6 +250,7 @@ macro_rules! ec_bench {
|
||||
deser,
|
||||
ser_unchecked,
|
||||
deser_unchecked,
|
||||
deser_uncompressed,
|
||||
msm_131072,
|
||||
);
|
||||
};
|
||||
|
||||
@@ -24,8 +24,8 @@ macro_rules! f_bench {
|
||||
// sqrt field stuff
|
||||
sqrt,
|
||||
// prime field stuff
|
||||
repr_add_nocarry,
|
||||
repr_sub_noborrow,
|
||||
repr_add_ret_carry,
|
||||
repr_sub_ret_borrow,
|
||||
repr_num_bits,
|
||||
repr_mul2,
|
||||
repr_div2,
|
||||
@@ -322,7 +322,7 @@ macro_rules! sqrt {
|
||||
#[macro_export]
|
||||
macro_rules! prime_field {
|
||||
($f:ident, $f_type:ty, $f_repr:ident, $f_repr_type:ty) => {
|
||||
fn repr_add_nocarry(b: &mut $crate::bencher::Bencher) {
|
||||
fn repr_add_ret_carry(b: &mut $crate::bencher::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = ark_std::test_rng();
|
||||
@@ -343,13 +343,13 @@ macro_rules! prime_field {
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
n_fold!(tmp, v, add_nocarry, count);
|
||||
n_fold!(tmp, v, add_ret_carry, count);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
fn repr_sub_noborrow(b: &mut $crate::bencher::Bencher) {
|
||||
fn repr_sub_ret_borrow(b: &mut $crate::bencher::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = ark_std::test_rng();
|
||||
@@ -369,7 +369,7 @@ macro_rules! prime_field {
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
n_fold!(tmp, v, sub_noborrow, count);
|
||||
n_fold!(tmp, v, sub_ret_borrow, count);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp;
|
||||
});
|
||||
@@ -448,7 +448,7 @@ macro_rules! prime_field {
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
$f::from(v[count]);
|
||||
let _ = $f::from(v[count]);
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "ark-curve-constraint-tests"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A library for testing constraints for finite fields, elliptic curves, and pairings"
|
||||
homepage = "https://arkworks.rs"
|
||||
@@ -13,12 +13,12 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-bls12-377"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the BLS12-377 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-bls12-377/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-bls12-377 = { version = "^0.2.0", path = "../bls12_377", default-features = false, features = [ "scalar_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-377 = { version = "^0.3.0", path = "../bls12_377", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-bls12-381"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the BLS12-381 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-bls12-381/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-bls12-381 = { version = "^0.2.0", path = "../bls12_381", default-features = false, features = [ "scalar_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-381 = { version = "^0.3.0", path = "../bls12_381", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,12 +1,17 @@
|
||||
use crate::*;
|
||||
use ark_r1cs_std::groups::curves::twisted_edwards::AffineVar;
|
||||
use ark_r1cs_std::groups::curves::{short_weierstrass::ProjectiveVar, twisted_edwards::AffineVar};
|
||||
|
||||
use crate::constraints::FqVar;
|
||||
|
||||
/// A variable that is the R1CS equivalent of `crate::EdwardsAffine`.
|
||||
pub type EdwardsVar = AffineVar<EdwardsParameters, FqVar>;
|
||||
pub type EdwardsVar = AffineVar<JubjubParameters, FqVar>;
|
||||
|
||||
/// A variable that is the R1CS equivalent of `crate::SWProjective`
|
||||
pub type SWVar = ProjectiveVar<JubjubParameters, FqVar>;
|
||||
|
||||
#[test]
|
||||
fn test() {
|
||||
ark_curve_constraint_tests::curves::te_test::<_, EdwardsVar>().unwrap();
|
||||
ark_curve_constraint_tests::curves::sw_test::<_, SWVar>().unwrap();
|
||||
ark_curve_constraint_tests::curves::group_test::<_, Fq, EdwardsVar>().unwrap();
|
||||
}
|
||||
|
||||
@@ -1,15 +1,21 @@
|
||||
use crate::{Fq, Fr};
|
||||
use ark_ec::{
|
||||
models::{ModelParameters, MontgomeryModelParameters, TEModelParameters},
|
||||
short_weierstrass_jacobian::{
|
||||
GroupAffine as SWGroupAffine, GroupProjective as SWGroupProjective,
|
||||
},
|
||||
twisted_edwards_extended::{GroupAffine, GroupProjective},
|
||||
SWModelParameters,
|
||||
};
|
||||
use ark_ff::field_new;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub type EdwardsAffine = GroupAffine<EdwardsParameters>;
|
||||
pub type EdwardsProjective = GroupProjective<EdwardsParameters>;
|
||||
pub type EdwardsAffine = GroupAffine<JubjubParameters>;
|
||||
pub type EdwardsProjective = GroupProjective<JubjubParameters>;
|
||||
pub type SWAffine = SWGroupAffine<JubjubParameters>;
|
||||
pub type SWProjective = SWGroupProjective<JubjubParameters>;
|
||||
|
||||
/// `JubJub` is a twisted Edwards curve. These curves have equations of the
|
||||
/// form: ax² + y² = 1 - dx²y².
|
||||
@@ -32,15 +38,29 @@ pub type EdwardsProjective = GroupProjective<EdwardsParameters>;
|
||||
/// ```
|
||||
/// These parameters and the sage script obtained from:
|
||||
/// <https://github.com/zcash/zcash/issues/2230#issuecomment-317182190>
|
||||
///
|
||||
///
|
||||
/// `jubjub` also has a short Weierstrass curve form, following the
|
||||
/// form: y² = x³ + A * x + B
|
||||
/// where
|
||||
///
|
||||
/// A = 52296097456646850916096512823759002727550416093741407922227928430486925478210
|
||||
/// B = 48351165704696163914533707656614864561753505123260775585269522553028192119009
|
||||
///
|
||||
/// We can use the script available
|
||||
/// [here](https://github.com/zhenfeizhang/bandersnatch/blob/main/bandersnatch/script/jubjub.sage)
|
||||
/// to convert between the different representations.
|
||||
#[derive(Clone, Default, PartialEq, Eq)]
|
||||
pub struct EdwardsParameters;
|
||||
pub struct JubjubParameters;
|
||||
pub type EdwardsParameters = JubjubParameters;
|
||||
pub type SWParameters = JubjubParameters;
|
||||
|
||||
impl ModelParameters for EdwardsParameters {
|
||||
impl ModelParameters for JubjubParameters {
|
||||
type BaseField = Fq;
|
||||
type ScalarField = Fr;
|
||||
}
|
||||
|
||||
impl TEModelParameters for EdwardsParameters {
|
||||
impl TEModelParameters for JubjubParameters {
|
||||
/// COEFF_A = -1
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Fq = field_new!(Fq, "-1");
|
||||
@@ -60,7 +80,7 @@ impl TEModelParameters for EdwardsParameters {
|
||||
/// AFFINE_GENERATOR_COEFFS = (GENERATOR_X, GENERATOR_Y)
|
||||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) = (GENERATOR_X, GENERATOR_Y);
|
||||
|
||||
type MontgomeryModelParameters = EdwardsParameters;
|
||||
type MontgomeryModelParameters = JubjubParameters;
|
||||
|
||||
/// Multiplication by `a` is simply negation here.
|
||||
#[inline(always)]
|
||||
@@ -69,7 +89,7 @@ impl TEModelParameters for EdwardsParameters {
|
||||
}
|
||||
}
|
||||
|
||||
impl MontgomeryModelParameters for EdwardsParameters {
|
||||
impl MontgomeryModelParameters for JubjubParameters {
|
||||
/// COEFF_A = 40962
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Fq = field_new!(Fq, "40962");
|
||||
@@ -77,10 +97,39 @@ impl MontgomeryModelParameters for EdwardsParameters {
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Fq = field_new!(Fq, "-40964");
|
||||
|
||||
type TEModelParameters = EdwardsParameters;
|
||||
type TEModelParameters = JubjubParameters;
|
||||
}
|
||||
|
||||
#[rustfmt::skip]
|
||||
const GENERATOR_X: Fq = field_new!(Fq, "8076246640662884909881801758704306714034609987455869804520522091855516602923");
|
||||
#[rustfmt::skip]
|
||||
const GENERATOR_Y: Fq = field_new!(Fq, "13262374693698910701929044844600465831413122818447359594527400194675274060458");
|
||||
|
||||
impl SWModelParameters for JubjubParameters {
|
||||
/// COEFF_A = 52296097456646850916096512823759002727550416093741407922227928430486925478210
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Self::BaseField = field_new!(Fq, "52296097456646850916096512823759002727550416093741407922227928430486925478210");
|
||||
|
||||
/// COEFF_B = 48351165704696163914533707656614864561753505123260775585269522553028192119009
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Self::BaseField = field_new!(Fq, "48351165704696163914533707656614864561753505123260775585269522553028192119009");
|
||||
|
||||
/// COFACTOR = 8
|
||||
const COFACTOR: &'static [u64] = &[8];
|
||||
|
||||
/// COFACTOR^(-1) mod r =
|
||||
/// 819310549611346726241370945440405716213240158234039660170669895299022906775
|
||||
#[rustfmt::skip]
|
||||
const COFACTOR_INV: Fr = field_new!(Fr, "819310549611346726241370945440405716213240158234039660170669895299022906775");
|
||||
|
||||
/// generators
|
||||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
||||
(SW_GENERATOR_X, SW_GENERATOR_Y);
|
||||
}
|
||||
|
||||
/// x coordinate for SW curve generator
|
||||
#[rustfmt::skip]
|
||||
const SW_GENERATOR_X: Fq = field_new!(Fq, "33835869156188682335217394949746694649676633840125476177319971163079011318731");
|
||||
/// y coordinate for SW curve generator
|
||||
#[rustfmt::skip]
|
||||
const SW_GENERATOR_Y: Fq = field_new!(Fq, "43777270878440091394432848052353307184915192688165709016756678962558652055320");
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use ark_ec::{AffineCurve, ProjectiveCurve};
|
||||
use ark_ff::{bytes::FromBytes, Zero};
|
||||
use ark_std::rand::Rng;
|
||||
use ark_std::str::FromStr;
|
||||
use ark_std::test_rng;
|
||||
use ark_std::{rand::Rng, str::FromStr, test_rng};
|
||||
|
||||
use crate::*;
|
||||
|
||||
@@ -12,7 +10,9 @@ use ark_algebra_test_templates::{curves::*, groups::*};
|
||||
fn test_projective_curve() {
|
||||
curve_tests::<EdwardsProjective>();
|
||||
|
||||
edwards_tests::<EdwardsParameters>();
|
||||
edwards_tests::<JubjubParameters>();
|
||||
montgomery_conversion_test::<JubjubParameters>();
|
||||
sw_tests::<JubjubParameters>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -20,8 +20,13 @@ fn test_projective_group() {
|
||||
let mut rng = test_rng();
|
||||
let a = rng.gen();
|
||||
let b = rng.gen();
|
||||
|
||||
let c = rng.gen();
|
||||
let d = rng.gen();
|
||||
|
||||
for _i in 0..100 {
|
||||
group_test::<EdwardsProjective>(a, b);
|
||||
group_test::<SWProjective>(c, d);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -37,9 +42,15 @@ fn test_affine_group() {
|
||||
|
||||
#[test]
|
||||
fn test_generator() {
|
||||
// edward curve
|
||||
let generator = EdwardsAffine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
// weierstrass curve
|
||||
let generator = SWAffine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -103,5 +114,5 @@ fn test_bytes() {
|
||||
|
||||
#[test]
|
||||
fn test_montgomery_conversion() {
|
||||
montgomery_conversion_test::<EdwardsParameters>();
|
||||
montgomery_conversion_test::<JubjubParameters>();
|
||||
}
|
||||
|
||||
@@ -9,8 +9,7 @@ use ark_std::test_rng;
|
||||
|
||||
use ark_algebra_test_templates::fields::*;
|
||||
|
||||
use ark_std::rand::Rng;
|
||||
use ark_std::str::FromStr;
|
||||
use ark_std::{rand::Rng, str::FromStr};
|
||||
|
||||
#[test]
|
||||
fn test_fr() {
|
||||
|
||||
@@ -8,14 +8,16 @@
|
||||
)]
|
||||
#![forbid(unsafe_code)]
|
||||
|
||||
//! This library implements a twisted Edwards curve whose base field is the scalar field of the
|
||||
//! curve BLS12-377. This allows defining cryptographic primitives that use elliptic curves over
|
||||
//! the scalar field of the latter curve. This curve was generated by Sean Bowe, and is also known
|
||||
//! as [Jubjub](https://github.com/zkcrypto/jubjub).
|
||||
//! This library implements a twisted Edwards curve whose base field is the
|
||||
//! scalar field of the curve BLS12-381. This allows defining cryptographic
|
||||
//! primitives that use elliptic curves over the scalar field of the latter
|
||||
//! curve. This curve was generated by Sean Bowe, and is also known as [Jubjub](https://github.com/zkcrypto/jubjub).
|
||||
//!
|
||||
//! Curve information:
|
||||
//! * Base field: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
//! * Scalar field: r = 6554484396890773809930967563523245729705921265872317281365359162392183254199
|
||||
//! * Base field: q =
|
||||
//! 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
//! * Scalar field: r =
|
||||
//! 6554484396890773809930967563523245729705921265872317281365359162392183254199
|
||||
//! * Valuation(q - 1, 2) = 32
|
||||
//! * Valuation(r - 1, 2) = 1
|
||||
//! * Curve equation: ax^2 + y^2 =1 + dx^2y^2, where
|
||||
|
||||
34
ed_on_bls12_381_bandersnatch/Cargo.toml
Normal file
34
ed_on_bls12_381_bandersnatch/Cargo.toml
Normal file
@@ -0,0 +1,34 @@
|
||||
[package]
|
||||
name = "ark-ed-on-bls12-381-bandersnatch"
|
||||
version = "0.1.0"
|
||||
authors = [ "zhenfei zhang", "arkworks contributors" ]
|
||||
description = "Bandersnatch: a curve defined over the scalar field of the BLS12-381 curve"
|
||||
repository = "https://github.com/zhenfeizhang/bandersnatch-rust"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
include = ["Cargo.toml", "src", "README.md", "LICENSE-APACHE", "LICENSE-MIT"]
|
||||
license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-381 = { version = "^0.3.0", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
std = [
|
||||
"ark-std/std",
|
||||
"ark-ff/std",
|
||||
"ark-ec/std",
|
||||
"ark-bls12-381/std"
|
||||
]
|
||||
r1cs = ["ark-r1cs-std"]
|
||||
15
ed_on_bls12_381_bandersnatch/src/constraints/curves.rs
Normal file
15
ed_on_bls12_381_bandersnatch/src/constraints/curves.rs
Normal file
@@ -0,0 +1,15 @@
|
||||
use crate::{constraints::FqVar, *};
|
||||
use ark_r1cs_std::groups::curves::{short_weierstrass::ProjectiveVar, twisted_edwards::AffineVar};
|
||||
|
||||
/// A variable that is the R1CS equivalent of `crate::BandersnatchParameters`.
|
||||
pub type EdwardsVar = AffineVar<BandersnatchParameters, FqVar>;
|
||||
|
||||
/// A variable that is the R1CS equivalent of `crate::SWProjective`
|
||||
pub type SWVar = ProjectiveVar<BandersnatchParameters, FqVar>;
|
||||
|
||||
#[test]
|
||||
fn test() {
|
||||
ark_curve_constraint_tests::curves::te_test::<_, EdwardsVar>().unwrap();
|
||||
ark_curve_constraint_tests::curves::sw_test::<_, SWVar>().unwrap();
|
||||
ark_curve_constraint_tests::curves::group_test::<_, Fq, EdwardsVar>().unwrap();
|
||||
}
|
||||
9
ed_on_bls12_381_bandersnatch/src/constraints/fields.rs
Normal file
9
ed_on_bls12_381_bandersnatch/src/constraints/fields.rs
Normal file
@@ -0,0 +1,9 @@
|
||||
use ark_r1cs_std::fields::fp::FpVar;
|
||||
|
||||
/// A variable that is the R1CS equivalent of `crate::Fq`.
|
||||
pub type FqVar = FpVar<crate::Fq>;
|
||||
|
||||
#[test]
|
||||
fn test() {
|
||||
ark_curve_constraint_tests::fields::field_test::<_, _, FqVar>().unwrap();
|
||||
}
|
||||
107
ed_on_bls12_381_bandersnatch/src/constraints/mod.rs
Normal file
107
ed_on_bls12_381_bandersnatch/src/constraints/mod.rs
Normal file
@@ -0,0 +1,107 @@
|
||||
//! This module implements the R1CS equivalent of `ark_bandersnatch`.
|
||||
//!
|
||||
//! It implements field variables for `crate::Fq`,
|
||||
//! and group variables for `crate::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `crate::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
||||
//! use ark_std::UniformRand;
|
||||
//! use ark_relations::r1cs::*;
|
||||
//! use ark_r1cs_std::prelude::*;
|
||||
//! use ark_ed_on_bls12_381_bandersnatch::{*, constraints::*};
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = ark_std::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
||||
//! # use ark_std::UniformRand;
|
||||
//! # use ark_relations::r1cs::*;
|
||||
//! # use ark_r1cs_std::prelude::*;
|
||||
//! # use ark_ed_on_bls12_381_bandersnatch::{*, constraints::*};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = ark_std::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
pub use curves::*;
|
||||
pub use fields::*;
|
||||
148
ed_on_bls12_381_bandersnatch/src/curves/mod.rs
Normal file
148
ed_on_bls12_381_bandersnatch/src/curves/mod.rs
Normal file
@@ -0,0 +1,148 @@
|
||||
use crate::{Fq, Fr};
|
||||
use ark_ec::{
|
||||
models::{ModelParameters, MontgomeryModelParameters, TEModelParameters},
|
||||
short_weierstrass_jacobian::{
|
||||
GroupAffine as SWGroupAffine, GroupProjective as SWGroupProjective,
|
||||
},
|
||||
twisted_edwards_extended::{GroupAffine, GroupProjective},
|
||||
SWModelParameters,
|
||||
};
|
||||
use ark_ff::{field_new, Field};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub type EdwardsAffine = GroupAffine<BandersnatchParameters>;
|
||||
pub type EdwardsProjective = GroupProjective<BandersnatchParameters>;
|
||||
|
||||
pub type SWAffine = SWGroupAffine<BandersnatchParameters>;
|
||||
pub type SWProjective = SWGroupProjective<BandersnatchParameters>;
|
||||
|
||||
/// `bandersnatch` is a twisted Edwards curve. These curves have equations of the
|
||||
/// form: ax² + y² = 1 - dx²y².
|
||||
/// over some base finite field Fq.
|
||||
///
|
||||
/// bandersnatch's curve equation: -5x² + y² = 1 - dx²y²
|
||||
///
|
||||
/// q = 52435875175126190479447740508185965837690552500527637822603658699938581184513.
|
||||
///
|
||||
/// a = -5.
|
||||
/// d = (138827208126141220649022263972958607803/
|
||||
/// 171449701953573178309673572579671231137) mod q
|
||||
/// = 45022363124591815672509500913686876175488063829319466900776701791074614335719.
|
||||
///
|
||||
/// Sage script to calculate these:
|
||||
///
|
||||
/// ```text
|
||||
/// q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
/// Fq = GF(q)
|
||||
/// d = (Fq(138827208126141220649022263972958607803)/Fq(171449701953573178309673572579671231137))
|
||||
/// ```
|
||||
/// These parameters and the sage script obtained from:
|
||||
/// <https://github.com/asanso/Bandersnatch/>
|
||||
///
|
||||
/// bandersnatch also has a short Weierstrass curve form, following the
|
||||
/// form: y² = x³ + A * x + B
|
||||
/// where
|
||||
///
|
||||
/// A = 10773120815616481058602537765553212789256758185246796157495669123169359657269
|
||||
/// B = 29569587568322301171008055308580903175558631321415017492731745847794083609535
|
||||
///
|
||||
/// Script to transfer between different curves are available
|
||||
/// <https://github.com/zhenfeizhang/bandersnatch/blob/main/bandersnatch/script/bandersnatch.sage>
|
||||
///
|
||||
#[derive(Clone, Default, PartialEq, Eq)]
|
||||
pub struct BandersnatchParameters;
|
||||
|
||||
pub type EdwardsParameters = BandersnatchParameters;
|
||||
pub type SWParameters = BandersnatchParameters;
|
||||
|
||||
impl ModelParameters for BandersnatchParameters {
|
||||
type BaseField = Fq;
|
||||
type ScalarField = Fr;
|
||||
}
|
||||
|
||||
impl TEModelParameters for BandersnatchParameters {
|
||||
/// COEFF_A = -5
|
||||
const COEFF_A: Fq = field_new!(Fq, "-5");
|
||||
|
||||
/// COEFF_D = (138827208126141220649022263972958607803/
|
||||
/// 171449701953573178309673572579671231137) mod q
|
||||
#[rustfmt::skip]
|
||||
const COEFF_D: Fq = field_new!(Fq, "45022363124591815672509500913686876175488063829319466900776701791074614335719");
|
||||
|
||||
/// COFACTOR = 4
|
||||
const COFACTOR: &'static [u64] = &[4];
|
||||
|
||||
/// COFACTOR^(-1) mod r =
|
||||
/// 9831726595336160714896451345284868594481866920080427688839802480047265754601
|
||||
#[rustfmt::skip]
|
||||
const COFACTOR_INV: Fr = field_new!(Fr, "9831726595336160714896451345284868594481866920080427688839802480047265754601");
|
||||
|
||||
/// AFFINE_GENERATOR_COEFFS = (GENERATOR_X, GENERATOR_Y)
|
||||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
||||
(TE_GENERATOR_X, TE_GENERATOR_Y);
|
||||
|
||||
type MontgomeryModelParameters = BandersnatchParameters;
|
||||
|
||||
/// Multiplication by `a` is multiply by `-5`.
|
||||
#[inline(always)]
|
||||
fn mul_by_a(elem: &Self::BaseField) -> Self::BaseField {
|
||||
let t = (*elem).double().double();
|
||||
-(t + *elem)
|
||||
}
|
||||
}
|
||||
|
||||
impl MontgomeryModelParameters for BandersnatchParameters {
|
||||
/// COEFF_A = 29978822694968839326280996386011761570173833766074948509196803838190355340952
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Fq = field_new!(Fq, "29978822694968839326280996386011761570173833766074948509196803838190355340952");
|
||||
|
||||
/// COEFF_B = 25465760566081946422412445027709227188579564747101592991722834452325077642517
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Fq = field_new!(Fq, "25465760566081946422412445027709227188579564747101592991722834452325077642517");
|
||||
|
||||
type TEModelParameters = BandersnatchParameters;
|
||||
}
|
||||
|
||||
// The TE form generator is generated following Zcash's fashion:
|
||||
// "The generators of G1 and G2 are computed by finding the lexicographically smallest
|
||||
// valid x-coordinate, and its lexicographically smallest y-coordinate and scaling it
|
||||
// by the cofactor such that the result is not the point at infinity."
|
||||
// The SW form generator is the same TE generator converted into SW form, obtained from the scripts:
|
||||
// <https://github.com/zhenfeizhang/bandersnatch/blob/main/bandersnatch/script/bandersnatch.sage>
|
||||
|
||||
/// x coordinate for TE curve generator
|
||||
#[rustfmt::skip]
|
||||
const TE_GENERATOR_X: Fq = field_new!(Fq, "18886178867200960497001835917649091219057080094937609519140440539760939937304");
|
||||
/// y coordinate for TE curve generator
|
||||
#[rustfmt::skip]
|
||||
const TE_GENERATOR_Y: Fq = field_new!(Fq, "19188667384257783945677642223292697773471335439753913231509108946878080696678");
|
||||
/// x coordinate for SW curve generator
|
||||
#[rustfmt::skip]
|
||||
const SW_GENERATOR_X: Fq = field_new!(Fq, "30900340493481298850216505686589334086208278925799850409469406976849338430199");
|
||||
/// y coordinate for SW curve generator
|
||||
#[rustfmt::skip]
|
||||
const SW_GENERATOR_Y: Fq = field_new!(Fq, "12663882780877899054958035777720958383845500985908634476792678820121468453298");
|
||||
|
||||
impl SWModelParameters for BandersnatchParameters {
|
||||
/// COEFF_A = 10773120815616481058602537765553212789256758185246796157495669123169359657269
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Self::BaseField = field_new!(Fq, "10773120815616481058602537765553212789256758185246796157495669123169359657269");
|
||||
|
||||
/// COEFF_B = 29569587568322301171008055308580903175558631321415017492731745847794083609535
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Self::BaseField = field_new!(Fq, "29569587568322301171008055308580903175558631321415017492731745847794083609535");
|
||||
|
||||
/// COFACTOR = 4
|
||||
const COFACTOR: &'static [u64] = &[4];
|
||||
|
||||
/// COFACTOR^(-1) mod r =
|
||||
/// 9831726595336160714896451345284868594481866920080427688839802480047265754601
|
||||
#[rustfmt::skip]
|
||||
const COFACTOR_INV: Fr = field_new!(Fr, "9831726595336160714896451345284868594481866920080427688839802480047265754601");
|
||||
|
||||
/// generators
|
||||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
||||
(SW_GENERATOR_X, SW_GENERATOR_Y);
|
||||
}
|
||||
125
ed_on_bls12_381_bandersnatch/src/curves/tests.rs
Normal file
125
ed_on_bls12_381_bandersnatch/src/curves/tests.rs
Normal file
@@ -0,0 +1,125 @@
|
||||
use crate::*;
|
||||
use ark_algebra_test_templates::{curves::*, groups::*};
|
||||
use ark_ec::{AffineCurve, ProjectiveCurve};
|
||||
use ark_ff::{bytes::FromBytes, Zero};
|
||||
use ark_std::{rand::Rng, str::FromStr, test_rng};
|
||||
|
||||
#[test]
|
||||
fn test_projective_curve() {
|
||||
curve_tests::<EdwardsProjective>();
|
||||
|
||||
edwards_tests::<BandersnatchParameters>();
|
||||
montgomery_conversion_test::<BandersnatchParameters>();
|
||||
sw_tests::<BandersnatchParameters>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_projective_group() {
|
||||
let mut rng = test_rng();
|
||||
let a = rng.gen();
|
||||
let b = rng.gen();
|
||||
|
||||
let c = rng.gen();
|
||||
let d = rng.gen();
|
||||
|
||||
for _i in 0..100 {
|
||||
group_test::<EdwardsProjective>(a, b);
|
||||
group_test::<SWProjective>(c, d);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_affine_group() {
|
||||
let mut rng = test_rng();
|
||||
let a: EdwardsAffine = rng.gen();
|
||||
let b: EdwardsAffine = rng.gen();
|
||||
for _i in 0..100 {
|
||||
group_test::<EdwardsAffine>(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_generator() {
|
||||
// edward curve
|
||||
let generator = EdwardsAffine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
// weierstrass curve
|
||||
let generator = SWAffine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_conversion() {
|
||||
// edward curve
|
||||
let mut rng = test_rng();
|
||||
let a: EdwardsAffine = rng.gen();
|
||||
let b: EdwardsAffine = rng.gen();
|
||||
let a_b = {
|
||||
use ark_ec::group::Group;
|
||||
(a + &b).double().double()
|
||||
};
|
||||
let a_b2 = (a.into_projective() + &b.into_projective())
|
||||
.double()
|
||||
.double();
|
||||
assert_eq!(a_b, a_b2.into_affine());
|
||||
assert_eq!(a_b.into_projective(), a_b2);
|
||||
|
||||
// weierstrass curve
|
||||
let mut rng = test_rng();
|
||||
let a: SWProjective = rng.gen();
|
||||
let b: SWProjective = rng.gen();
|
||||
let a_b = { (a + &b).double().double() };
|
||||
let a_b2 = (a + &b).double().double();
|
||||
assert_eq!(a_b.into_affine(), a_b2.into_affine());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_scalar_multiplication() {
|
||||
let f1 = Fr::from_str(
|
||||
"4257185345094557079734489188109952172285839137338142340240392707284963971010",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fr::from_str(
|
||||
"1617998875791656082457755819308421023664764572929977389209373068350490665160",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let g = EdwardsAffine::from_str(
|
||||
"(29627151942733444043031429156003786749302466371339015363120350521834195802525, \
|
||||
27488387519748396681411951718153463804682561779047093991696427532072116857978)",
|
||||
)
|
||||
.unwrap();
|
||||
let f1f2g = EdwardsAffine::from_str(
|
||||
"(16530491029447613915334753043669938793793987372416328257719459807614119987301, \
|
||||
42481140308370805476764840229335460092474682686441442216596889726548353970772)",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
assert!(!g.is_zero());
|
||||
assert!(!f1f2g.is_zero());
|
||||
|
||||
let f1g = g.mul(f1).into_affine();
|
||||
assert_eq!(g.mul(f1 * &f2).into_affine(), f1f2g);
|
||||
assert_eq!(f1g.mul(f2).into_affine(), f1f2g);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bytes() {
|
||||
let g_from_repr = EdwardsAffine::from_str(
|
||||
"(29627151942733444043031429156003786749302466371339015363120350521834195802525, \
|
||||
27488387519748396681411951718153463804682561779047093991696427532072116857978)",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let g_bytes = ark_ff::to_bytes![g_from_repr].unwrap();
|
||||
let g = EdwardsAffine::read(g_bytes.as_slice()).unwrap();
|
||||
assert_eq!(g_from_repr, g);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_montgomery_conversion() {
|
||||
montgomery_conversion_test::<BandersnatchParameters>();
|
||||
}
|
||||
1
ed_on_bls12_381_bandersnatch/src/fields/fq.rs
Normal file
1
ed_on_bls12_381_bandersnatch/src/fields/fq.rs
Normal file
@@ -0,0 +1 @@
|
||||
pub use ark_bls12_381::{Fr as Fq, FrParameters as FqParameters};
|
||||
115
ed_on_bls12_381_bandersnatch/src/fields/fr.rs
Normal file
115
ed_on_bls12_381_bandersnatch/src/fields/fr.rs
Normal file
@@ -0,0 +1,115 @@
|
||||
use ark_ff::{
|
||||
biginteger::BigInteger256 as BigInteger,
|
||||
fields::{FftParameters, Fp256, Fp256Parameters, FpParameters},
|
||||
};
|
||||
|
||||
pub type Fr = Fp256<FrParameters>;
|
||||
|
||||
pub struct FrParameters;
|
||||
|
||||
impl Fp256Parameters for FrParameters {}
|
||||
impl FftParameters for FrParameters {
|
||||
type BigInt = BigInteger;
|
||||
|
||||
/// Let `N` be the size of the multiplicative group defined by the field.
|
||||
/// Then `TWO_ADICITY` is the two-adicity of `N`, i.e. the integer `s`
|
||||
/// such that `N = 2^s * t` for some odd integer `t`.
|
||||
const TWO_ADICITY: u32 = 5;
|
||||
|
||||
/// 2^s root of unity computed by GENERATOR^t
|
||||
/// 4740934665446857387895054948191089665295030226009829406950782728666658007874
|
||||
#[rustfmt::skip]
|
||||
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
|
||||
0xa4dcdba087826b42,
|
||||
0x6e4ab162f57f862a,
|
||||
0xabc5492749348d6a,
|
||||
0xa7b462035f8c169,
|
||||
]);
|
||||
}
|
||||
impl FpParameters for FrParameters {
|
||||
/// The modulus of the field.
|
||||
/// MODULUS = 13108968793781547619861935127046491459309155893440570251786403306729687672801.
|
||||
#[rustfmt::skip]
|
||||
const MODULUS: BigInteger = BigInteger([
|
||||
0x74fd06b52876e7e1,
|
||||
0xff8f870074190471,
|
||||
0x0cce760202687600,
|
||||
0x1cfb69d4ca675f52,
|
||||
]);
|
||||
|
||||
/// The number of bits needed to represent the `Self::MODULUS`.
|
||||
const MODULUS_BITS: u32 = 253;
|
||||
|
||||
/// The number of bits that can be reliably stored.
|
||||
/// (Should equal `SELF::MODULUS_BITS - 1`)
|
||||
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
|
||||
|
||||
/// The number of bits that must be shaved from the beginning of
|
||||
/// the representation when randomly sampling.
|
||||
const REPR_SHAVE_BITS: u32 = 4;
|
||||
|
||||
/// Let `M` be the power of 2^64 nearest to `Self::MODULUS_BITS`. Then
|
||||
/// `R = M % Self::MODULUS`.
|
||||
/// R = 10920338887063814464675503992315976178796737518116002025166357554075628257528
|
||||
#[rustfmt::skip]
|
||||
const R: BigInteger = BigInteger([
|
||||
0x5817ca56bc48c0f8,
|
||||
0x0383c7fc5f37dc74,
|
||||
0x998c4fefecbc4ff8,
|
||||
0x1824b159acc5056f,
|
||||
]);
|
||||
|
||||
/// R2 = R^2 % Self::MODULUS
|
||||
/// R2 = 4932290691328759802879919559207542894238895193980447506221046538067943049163
|
||||
#[rustfmt::skip]
|
||||
const R2: BigInteger = BigInteger([
|
||||
0xdbb4f5d658db47cb,
|
||||
0x40fa7ca27fecb938,
|
||||
0xaa9e6daec0055cea,
|
||||
0xae793ddb14aec7d
|
||||
]);
|
||||
|
||||
/// INV = -MODULUS^{-1} mod 2^64
|
||||
/// INV = 17410672245482742751
|
||||
const INV: u64 = 0xf19f22295cc063df;
|
||||
|
||||
/// A multiplicative generator of the field.
|
||||
/// `Self::GENERATOR` is an element having multiplicative order
|
||||
/// `Self::MODULUS - 1`.
|
||||
/// n = 9962557815892774795293348142308860067333132192265356416788884706064406244838
|
||||
#[rustfmt::skip]
|
||||
const GENERATOR: BigInteger = BigInteger([
|
||||
0x56b6f3ab7b616de6,
|
||||
0x114f419d6c9083e5,
|
||||
0xbf518d217780c4b9,
|
||||
0x16069b9f45dbce7f,
|
||||
]);
|
||||
|
||||
/// (Self::MODULUS - 1) / 2
|
||||
/// 6554484396890773809930967563523245729654577946720285125893201653364843836400
|
||||
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
||||
0xba7e835a943b73f0,
|
||||
0x7fc7c3803a0c8238,
|
||||
0x06673b0101343b00,
|
||||
0xe7db4ea6533afa9,
|
||||
]);
|
||||
|
||||
/// t for 2^s * t = MODULUS - 1, and t coprime to 2.
|
||||
/// t = 409655274805673363120685472720202858103411121670017820368325103335302739775
|
||||
/// = (modulus-1)/2^5
|
||||
const T: BigInteger = BigInteger([
|
||||
0x8ba7e835a943b73f,
|
||||
0x07fc7c3803a0c823,
|
||||
0x906673b0101343b0,
|
||||
0xe7db4ea6533afa,
|
||||
]);
|
||||
|
||||
/// (t - 1) / 2
|
||||
/// = 204827637402836681560342736360101429051705560835008910184162551667651369887
|
||||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
||||
0xc5d3f41ad4a1db9f,
|
||||
0x03fe3e1c01d06411,
|
||||
0x483339d80809a1d8,
|
||||
0x73eda753299d7d,
|
||||
]);
|
||||
}
|
||||
8
ed_on_bls12_381_bandersnatch/src/fields/mod.rs
Normal file
8
ed_on_bls12_381_bandersnatch/src/fields/mod.rs
Normal file
@@ -0,0 +1,8 @@
|
||||
pub mod fq;
|
||||
pub mod fr;
|
||||
|
||||
pub use fq::*;
|
||||
pub use fr::*;
|
||||
|
||||
#[cfg(all(feature = "ed_on_bls12_381_bandersnatch", test))]
|
||||
mod tests;
|
||||
423
ed_on_bls12_381_bandersnatch/src/fields/tests.rs
Normal file
423
ed_on_bls12_381_bandersnatch/src/fields/tests.rs
Normal file
@@ -0,0 +1,423 @@
|
||||
use crate::{Fq, Fr};
|
||||
use ark_algebra_test_templates::fields::*;
|
||||
use ark_ff::{
|
||||
biginteger::BigInteger256 as BigInteger,
|
||||
bytes::{FromBytes, ToBytes},
|
||||
fields::{Field, LegendreSymbol::*, SquareRootField},
|
||||
One, Zero,
|
||||
};
|
||||
use ark_std::{rand::Rng, str::FromStr, test_rng};
|
||||
|
||||
#[test]
|
||||
fn test_fr() {
|
||||
let mut rng = test_rng();
|
||||
let a: Fr = rng.gen();
|
||||
let b: Fr = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fr>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq() {
|
||||
let mut rng = test_rng();
|
||||
let a: Fq = rng.gen();
|
||||
let b: Fq = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fq>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_add() {
|
||||
let f1 = Fq::from_str(
|
||||
"18386742314266644595564329008376577163854043021652781768352795308532764650733",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"39786307610986038981023499868190793548353538256264351797285876981647142458383",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"5737174750126493097140088368381404874517028777389495743035013590241325924603",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
assert_eq!(f1 + &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_add_one() {
|
||||
let f1 = Fq::from_str(
|
||||
"4946875394261337176810256604189376311946643975348516311606738923340201185904",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"4946875394261337176810256604189376311946643975348516311606738923340201185905",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert_eq!(f1 + &Fq::one(), f2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_mul() {
|
||||
let f1 = Fq::from_str(
|
||||
"24703123148064348394273033316595937198355721297494556079070134653139656190956",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"38196797080882758914424853878212529985425118523754343117256179679117054302131",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"38057113854472161555556064369220825628027487067886761874351491955834635348140",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
assert_eq!(f1 * &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_triple_mul() {
|
||||
let f1 = Fq::from_str(
|
||||
"23834398828139479510988224171342199299644042568628082836691700490363123893905",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"48343809612844640454129919255697536258606705076971130519928764925719046689317",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"22704845471524346880579660022678666462201713488283356385810726260959369106033",
|
||||
)
|
||||
.unwrap();
|
||||
let f4 = Fq::from_str(
|
||||
"18897508522635316277030308074760673440128491438505204942623624791502972539393",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
assert_eq!(f1 * &f2 * &f3, f4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_div() {
|
||||
let f1 = Fq::from_str(
|
||||
"31892744363926593013886463524057935370302352424137349660481695792871889573091",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"47695868328933459965610498875668250916462767196500056002116961816137113470902",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"29049672724678710659792141917402891276693777283079976086581207190825261000580",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
assert_eq!(f1 / &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sub() {
|
||||
let f1 = Fq::from_str(
|
||||
"18695869713129401390241150743745601908470616448391638969502807001833388904079",
|
||||
)
|
||||
.unwrap();
|
||||
let f2 = Fq::from_str(
|
||||
"10105476028534616828778879109836101003805485072436929139123765141153277007373",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"8590393684594784561462271633909500904665131375954709830379041860680111896706",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f2.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
assert_eq!(f1 - &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_double_in_place() {
|
||||
let mut f1 = Fq::from_str(
|
||||
"29729289787452206300641229002276778748586801323231253291984198106063944136114",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"7022704399778222121834717496367591659483050145934868761364737512189307087715",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
f1.double_in_place();
|
||||
assert_eq!(f1, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_double_in_place_thrice() {
|
||||
let mut f1 = Fq::from_str(
|
||||
"32768907806651393940832831055386272949401004221411141755415956893066040832473",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"52407761752706389608871686410346320244445823769178582752913020344774001921732",
|
||||
)
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
f1.double_in_place();
|
||||
f1.double_in_place();
|
||||
f1.double_in_place();
|
||||
assert_eq!(f1, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_generate_random_ed_on_bls12_381_point() {
|
||||
let d = Fq::from_str(
|
||||
"19257038036680949359750312669786877991949435402254120286184196891950884077233",
|
||||
)
|
||||
.unwrap();
|
||||
let y = Fq::from_str(
|
||||
"20269054604167148422407276086932743904275456233139568486008667107872965128512",
|
||||
)
|
||||
.unwrap();
|
||||
let x2 = Fq::from_str(
|
||||
"35041048504708632193693740149219726446678304552734087046982753200179718192840",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let computed_y2 = y.square();
|
||||
let y2 = Fq::from_str(
|
||||
"22730681238307918419349440108285755984465605552827817317611903495170775437833",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(y2, computed_y2);
|
||||
|
||||
let computed_dy2 = d * &computed_y2;
|
||||
let dy2 = Fq::from_str(
|
||||
"24720347560552809545835752815204882739669031262711919770503096707526812943411",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(dy2, computed_dy2);
|
||||
|
||||
let computed_divisor = computed_dy2 + &Fq::one();
|
||||
let divisor = Fq::from_str(
|
||||
"24720347560552809545835752815204882739669031262711919770503096707526812943412",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(divisor, computed_divisor);
|
||||
|
||||
let computed_x2 = (computed_y2 - &Fq::one()) / &computed_divisor;
|
||||
assert_eq!(x2, computed_x2);
|
||||
|
||||
let x = Fq::from_str(
|
||||
"15337652609730546173818014678723269532482775720866471265774032070871608223361",
|
||||
)
|
||||
.unwrap();
|
||||
let computed_x = computed_x2.sqrt().unwrap();
|
||||
assert_eq!(computed_x.square(), x2);
|
||||
assert_eq!(x, computed_x);
|
||||
|
||||
fn add<'a>(curr: (Fq, Fq), other: &'a (Fq, Fq)) -> (Fq, Fq) {
|
||||
let y1y2 = curr.1 * &other.1;
|
||||
let x1x2 = curr.0 * &other.0;
|
||||
let d = Fq::from_str(
|
||||
"19257038036680949359750312669786877991949435402254120286184196891950884077233",
|
||||
)
|
||||
.unwrap();
|
||||
let dx1x2y1y2 = d * &y1y2 * &x1x2;
|
||||
|
||||
let d1 = Fq::one() + &dx1x2y1y2;
|
||||
let d2 = Fq::one() - &dx1x2y1y2;
|
||||
|
||||
let x1y2 = curr.0 * &other.1;
|
||||
let y1x2 = curr.1 * &other.0;
|
||||
|
||||
let x = (x1y2 + &y1x2) / &d1;
|
||||
let y = (y1y2 + &x1x2) / &d2;
|
||||
|
||||
(x, y)
|
||||
}
|
||||
|
||||
let result = add((x, y), &(x, y));
|
||||
let result = add(result, &result);
|
||||
let result = add(result, &result);
|
||||
|
||||
let point_x = Fq::from_str(
|
||||
"47259664076168047050113154262636619161204477920503059672059915868534495873964",
|
||||
)
|
||||
.unwrap();
|
||||
let point_y = Fq::from_str(
|
||||
"19016409245280491801573912449420132838852726543024859389273314249842195919690",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!((point_x, point_y), result);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_square_in_place() {
|
||||
let mut f1 = Fq::from_str(
|
||||
"34864651240005695523200639428464570946052769938774601449735727714436878540682",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 =
|
||||
Fq::from_str("213133100629336594719108316042277780359104840987226496279264105585804377948")
|
||||
.unwrap();
|
||||
assert!(!f1.is_zero());
|
||||
assert!(!f3.is_zero());
|
||||
f1.square_in_place();
|
||||
assert_eq!(f1, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sqrt() {
|
||||
let f1 = Fq::from_str(
|
||||
"10875927553327821418567659853801220899541454800710193788767706167237535308235",
|
||||
)
|
||||
.unwrap();
|
||||
let f3 = Fq::from_str(
|
||||
"10816221372957505053219354782681292880545918527618367765651802809826238616708",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(f1.sqrt().unwrap(), f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_from_str() {
|
||||
let f1_from_repr = Fq::from(BigInteger([
|
||||
0xab8a2535947d1a77,
|
||||
0x9ba74cbfda0bbcda,
|
||||
0xe928b59724d60baf,
|
||||
0x1cccaaeb9bb1680a,
|
||||
]));
|
||||
let f1 = Fq::from_str(
|
||||
"13026376210409056429264774981357153555336288129100724591327877625017068755575",
|
||||
)
|
||||
.unwrap();
|
||||
let f2_from_repr = Fq::from(BigInteger([
|
||||
0x97e9103775d2f35c,
|
||||
0xbe6756b6c587544b,
|
||||
0x6ee38c3afd88ef4b,
|
||||
0x2bacd150f540c677,
|
||||
]));
|
||||
let f2 = Fq::from_str(
|
||||
"19754794831832707859764530223239420866832328728734160755396495950822165902172",
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(f1_from_repr, f1);
|
||||
assert_eq!(f2_from_repr, f2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_legendre() {
|
||||
assert_eq!(QuadraticResidue, Fq::one().legendre());
|
||||
assert_eq!(Zero, Fq::zero().legendre());
|
||||
|
||||
let e = BigInteger([
|
||||
0x0dbc5349cd5664da,
|
||||
0x8ac5b6296e3ae29d,
|
||||
0x127cb819feceaa3b,
|
||||
0x3a6b21fb03867191,
|
||||
]);
|
||||
assert_eq!(QuadraticResidue, Fq::from(e).legendre());
|
||||
let e = BigInteger([
|
||||
0x96341aefd047c045,
|
||||
0x9b5f4254500a4d65,
|
||||
0x1ee08223b68ac240,
|
||||
0x31d9cd545c0ec7c6,
|
||||
]);
|
||||
assert_eq!(QuadraticNonResidue, Fq::from(e).legendre());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_bytes() {
|
||||
let f1_from_repr = Fq::from(BigInteger([
|
||||
0xab8a2535947d1a77,
|
||||
0x9ba74cbfda0bbcda,
|
||||
0xe928b59724d60baf,
|
||||
0x1cccaaeb9bb1680a,
|
||||
]));
|
||||
|
||||
let mut f1_bytes = [0u8; 32];
|
||||
f1_from_repr.write(f1_bytes.as_mut()).unwrap();
|
||||
|
||||
let f1 = Fq::read(f1_bytes.as_ref()).unwrap();
|
||||
assert_eq!(f1_from_repr, f1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_add() {
|
||||
let f1 = Fr::from(BigInteger([
|
||||
0xc81265fb4130fe0c,
|
||||
0xb308836c14e22279,
|
||||
0x699e887f96bff372,
|
||||
0x84ecc7e76c11ad,
|
||||
]));
|
||||
let f2 = Fr::from(BigInteger([
|
||||
0x71875719b422efb8,
|
||||
0x0043658e68a93612,
|
||||
0x9fa756be2011e833,
|
||||
0xaa2b2cb08dac497,
|
||||
]));
|
||||
let f3 = Fr::from(BigInteger([
|
||||
0x3999bd14f553edc4,
|
||||
0xb34be8fa7d8b588c,
|
||||
0x0945df3db6d1dba5,
|
||||
0xb279f92f046d645,
|
||||
]));
|
||||
assert_eq!(f1 + &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_mul() {
|
||||
let f1 = Fr::from(BigInteger([
|
||||
0xc81265fb4130fe0c,
|
||||
0xb308836c14e22279,
|
||||
0x699e887f96bff372,
|
||||
0x84ecc7e76c11ad,
|
||||
]));
|
||||
let f2 = Fr::from(BigInteger([
|
||||
0x71875719b422efb8,
|
||||
0x43658e68a93612,
|
||||
0x9fa756be2011e833,
|
||||
0xaa2b2cb08dac497,
|
||||
]));
|
||||
let f3 = Fr::from(BigInteger([
|
||||
0xbe3e50c164fe3381,
|
||||
0x5ac45bc180974585,
|
||||
0x1c234ad6dcdc70c9,
|
||||
0x15a75fba99bc8ad,
|
||||
]));
|
||||
assert_eq!(f1 * &f2, f3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_bytes() {
|
||||
let f1_from_repr = Fr::from(BigInteger([
|
||||
0xc81265fb4130fe0c,
|
||||
0xb308836c14e22279,
|
||||
0x699e887f96bff372,
|
||||
0x84ecc7e76c11ad,
|
||||
]));
|
||||
|
||||
let mut f1_bytes = [0u8; 32];
|
||||
f1_from_repr.write(f1_bytes.as_mut()).unwrap();
|
||||
|
||||
let f1 = Fr::read(f1_bytes.as_ref()).unwrap();
|
||||
assert_eq!(f1_from_repr, f1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_from_str() {
|
||||
let f100_from_repr = Fr::from(BigInteger([0x64, 0, 0, 0]));
|
||||
let f100 = Fr::from_str("100").unwrap();
|
||||
assert_eq!(f100_from_repr, f100);
|
||||
}
|
||||
37
ed_on_bls12_381_bandersnatch/src/lib.rs
Normal file
37
ed_on_bls12_381_bandersnatch/src/lib.rs
Normal file
@@ -0,0 +1,37 @@
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![deny(
|
||||
warnings,
|
||||
unused,
|
||||
future_incompatible,
|
||||
nonstandard_style,
|
||||
rust_2018_idioms
|
||||
)]
|
||||
#![forbid(unsafe_code)]
|
||||
|
||||
//! This library implements the Bendersnatch curve, a twisted Edwards curve
|
||||
//! whose base field is the scalar field of the curve BLS12-381. This allows
|
||||
//! defining cryptographic primitives that use elliptic curves over the scalar
|
||||
//! field of the latter curve. This curve was generated by Simon Masson from
|
||||
//! Anoma, and Antonio Sanso from Ethereum Foundation, and is also known as [bandersnatch](https://ethresear.ch/t/introducing-bandersnatch-a-fast-elliptic-curve-built-over-the-bls12-381-scalar-field/9957).
|
||||
//!
|
||||
//! See [here](https://github.com/asanso/Bandersnatch/blob/main/README.md) for the specification of the curve.
|
||||
//! There was also a Python implementation [here](https://github.com/asanso/Bandersnatch/).
|
||||
//!
|
||||
//! Curve information:
|
||||
//! * Base field: q =
|
||||
//! 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
//! * Scalar field: r =
|
||||
//! 13108968793781547619861935127046491459309155893440570251786403306729687672801
|
||||
//! * Valuation(q - 1, 2) = 32
|
||||
//! * Valuation(r - 1, 2) = 5
|
||||
//! * Curve equation: ax^2 + y^2 =1 + dx^2y^2, where
|
||||
//! * a = -5
|
||||
//! * d = 45022363124591815672509500913686876175488063829319466900776701791074614335719
|
||||
|
||||
#[cfg(feature = "r1cs")]
|
||||
pub mod constraints;
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
pub use curves::*;
|
||||
pub use fields::*;
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-bn254"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the BN254 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-bn254/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-bn254 = { version = "^0.2.0", path = "../bn254", default-features = false, features = [ "scalar_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bn254 = { version = "^0.3.0", path = "../bn254", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-bw6-761"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the BW6-761 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-bw6-761/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,13 +13,13 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ed-on-cp6-782 = { version = "^0.2.0", path = "../ed_on_cp6_782", default-features = false }
|
||||
ark-ed-on-cp6-782 = { version = "^0.3.0", path = "../ed_on_cp6_782", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false }
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-cp6-782"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the CP6-782 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-cp6-782/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-bls12-377 = { version = "^0.2.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-377 = { version = "^0.3.0", path = "../bls12_377", default-features = false, features = [ "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-mnt4-298"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the MNT4-298 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-mnt4-298/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-mnt4-298 = { version = "^0.2.0", path = "../mnt4_298", default-features = false, features = [ "scalar_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-mnt4-298 = { version = "^0.3.0", path = "../mnt4_298", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-ed-on-mnt4-753"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "A Twisted Edwards curve defined over the scalar field of the MNT4-753 curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-ed-on-mnt4-753/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-mnt4-753 = { version = "^0.2.0", path = "../mnt4_753", default-features = false, features = [ "scalar_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-mnt4-753 = { version = "^0.3.0", path = "../mnt4_753", default-features = false, features = [ "scalar_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-mnt4-298"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The MNT4-298 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-mnt4-298/"
|
||||
keywords = ["cryptography", "finite-fields" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,15 +13,15 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -19,12 +19,12 @@ impl ModelParameters for Parameters {
|
||||
|
||||
impl SWModelParameters for Parameters {
|
||||
/// COEFF_A = 2
|
||||
/// Reference: https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L116
|
||||
/// Reference: <https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L116>
|
||||
#[rustfmt::skip]
|
||||
const COEFF_A: Fq = field_new!(Fq, "2");
|
||||
|
||||
/// COEFF_B = 423894536526684178289416011533888240029318103673896002803341544124054745019340795360841685
|
||||
/// Reference: https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L117
|
||||
/// Reference: <https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L117>
|
||||
#[rustfmt::skip]
|
||||
const COEFF_B: Fq = field_new!(Fq, "423894536526684178289416011533888240029318103673896002803341544124054745019340795360841685");
|
||||
|
||||
@@ -45,11 +45,11 @@ impl SWModelParameters for Parameters {
|
||||
// X = 60760244141852568949126569781626075788424196370144486719385562369396875346601926534016838,
|
||||
// Y = 363732850702582978263902770815145784459747722357071843971107674179038674942891694705904306,
|
||||
/// G1_GENERATOR_X
|
||||
/// Reference: https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L137
|
||||
/// Reference: <https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L137>
|
||||
#[rustfmt::skip]
|
||||
pub const G1_GENERATOR_X: Fq = field_new!(Fq, "60760244141852568949126569781626075788424196370144486719385562369396875346601926534016838");
|
||||
|
||||
/// G1_GENERATOR_Y
|
||||
/// Reference: https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L138
|
||||
/// Reference: <https://github.com/scipr-lab/libff/blob/c927821ebe02e0a24b5e0f9170cec5e211a35f08/libff/algebra/curves/mnt/mnt4/mnt4_init.cpp#L138>
|
||||
#[rustfmt::skip]
|
||||
pub const G1_GENERATOR_Y: Fq = field_new!(Fq, "363732850702582978263902770815145784459747722357071843971107674179038674942891694705904306");
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-mnt4-753"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The MNT4-753 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-mnt4-753/"
|
||||
keywords = ["cryptography", "finite-fields" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,15 +13,15 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-mnt6-298"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The MNT6-298 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-mnt6-298/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves"]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-mnt4-298 = { version = "^0.2.0", path = "../mnt4_298", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-mnt4-298 = { version = "^0.3.0", path = "../mnt4_298", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
[package]
|
||||
name = "ark-mnt6-753"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "arkworks contributors" ]
|
||||
description = "The MNT6-753 pairing-friendly elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
repository = "https://github.com/arkworks-rs/algebra"
|
||||
repository = "https://github.com/arkworks-rs/curves"
|
||||
documentation = "https://docs.rs/ark-mnt6-753/"
|
||||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ]
|
||||
categories = ["cryptography"]
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-mnt4-753 = { version = "^0.2.0", path = "../mnt4_753", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-mnt4-753 = { version = "^0.3.0", path = "../mnt4_753", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "ark-pallas"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ]
|
||||
description = "The Pallas prime-order elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
@@ -13,15 +13,15 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "ark-vesta"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ]
|
||||
description = "The Vesta prime-order elliptic curve"
|
||||
homepage = "https://arkworks.rs"
|
||||
@@ -13,16 +13,16 @@ license = "MIT/Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.2.0", default-features = false }
|
||||
ark-ec = { version = "^0.2.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.2.0", default-features = false, optional = true }
|
||||
ark-std = { version = "^0.2.0", default-features = false }
|
||||
ark-pallas = { version = "^0.2.0", path = "../pallas", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-pallas = { version = "^0.3.0", path = "../pallas", default-features = false, features = [ "scalar_field", "base_field" ] }
|
||||
|
||||
[dev-dependencies]
|
||||
ark-relations = { version = "^0.2.0", default-features = false }
|
||||
ark-serialize = { version = "^0.2.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.2.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false }
|
||||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false }
|
||||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
|
||||
|
||||
[features]
|
||||
|
||||
Reference in New Issue
Block a user