You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Veselkov Konstantin 97a77a4401
Update color.go
6 years ago
build readme update 7 years ago
screenshots avoiding reply to other bots of the botnet, and readme explanation 7 years ago
.gitignore implemented text generation with markov chains, need to thing something to avoid sentence loops 7 years ago
LICENSE Initial commit 7 years ago
README.md readme update 7 years ago
color.go Update color.go 6 years ago
flock.go streaming keywords implemented, replying from the flock (botnet) to tweets with text generated with Markov chains 7 years ago
main.go renamed 7 years ago
markov.go streaming keywords implemented, replying from the flock (botnet) to tweets with text generated with Markov chains 7 years ago
optionManualTweetFromFlock.go streaming keywords implemented, replying from the flock (botnet) to tweets with text generated with Markov chains 7 years ago
optionMarkovFlockBotnet.go avoiding reply to other bots of the botnet, and readme explanation 7 years ago
optionTweetMarkov.go added progress bar on generting markov chains 7 years ago
readConfigTokensAndConnect.go implemented tweet from flock (set a text, and send it from each one of the configured accounts) 7 years ago
readTxt.go added progress bar on generting markov chains 7 years ago
text.txt implemented text generation with markov chains, need to thing something to avoid sentence loops 7 years ago
waitTime.go avoiding reply to other bots of the botnet, and readme explanation 7 years ago

README.md

flock-botnet Go Report Card

A twitter botnet with autonomous bots replying tweets with text generated based on probabilities in Markov chains

generating text with Markov chains

Markov chain: https://en.wikipedia.org/wiki/Markov_chain

The algorithm calculates the probabilities of Markov chains, analyzing a considerable amount of text, for the examples, I've done it with the book "The Critique of Pure Reason", by Immanuel Kant (http://www.gutenberg.org/cache/epub/4280/pg4280.txt).

Replying tweets with Markov chains

When the botnet is up working, the bots start streaming all the twitter new tweets containing the configured keywords. Each bot takes a tweet, analyzes the containing words, and generates a reply using the Markov chains previously calculated, and posts the tweet as reply.

In the following examples, the bots ("andreimarkov", "dodecahedron", "projectNSA") are replying some people.

flock-botnet

flock-botnet

flock-botnet

flock-botnet

configuration file example (flockConfig.json):

[{
        "title": "account1",
        "consumer_key": "xxxxxxxxxxxxx",
        "consumer_secret": "xxxxxxxxxxxxx",
        "access_token_key": "xxxxxxxxxxxxx",
        "access_token_secret": "xxxxxxxxxxxxx"
    },
    {
        "title": "account2",
        "consumer_key": "xxxxxxxxxxxxx",
        "consumer_secret": "xxxxxxxxxxxxx",
        "access_token_key": "xxxxxxxxxxxxx",
        "access_token_secret": "xxxxxxxxxxxxx"
    },
    {
        "title": "account3",
        "consumer_key": "xxxxxxxxxxxxx",
        "consumer_secret": "xxxxxxxxxxxxx",
        "access_token_key": "xxxxxxxxxxxxx",
        "access_token_secret": "xxxxxxxxxxxxx"
    }
]