Browse Source

Renamed symbol a bunch in goldilocks, goldilocks tests pass

main
Uma Roy 2 years ago
parent
commit
1c0235b35a
39 changed files with 195 additions and 184 deletions
  1. +1
    -1
      benchmark.go
  2. +1
    -1
      benchmark_plonk.go
  3. +16
    -16
      challenger/challenger.go
  4. +10
    -10
      fri/fri.go
  5. +1
    -1
      fri/fri_test.go
  6. +1
    -1
      fri/fri_utils.go
  7. +62
    -51
      goldilocks/base.go
  8. +4
    -4
      goldilocks/base_test.go
  9. +26
    -26
      goldilocks/quadratic_extension.go
  10. +5
    -5
      goldilocks/quadratic_extension_algebra.go
  11. +2
    -2
      goldilocks/quadratic_extension_test.go
  12. +2
    -2
      goldilocks/utils.go
  13. +1
    -1
      plonk/gates/arithmetic_extension_gate.go
  14. +1
    -1
      plonk/gates/arithmetic_gate.go
  15. +1
    -1
      plonk/gates/base_sum_gate.go
  16. +1
    -1
      plonk/gates/constant_gate.go
  17. +1
    -1
      plonk/gates/coset_interpolation_gate.go
  18. +3
    -3
      plonk/gates/evaluate_gates.go
  19. +1
    -1
      plonk/gates/exponentiation_gate.go
  20. +1
    -1
      plonk/gates/gates.go
  21. +1
    -1
      plonk/gates/gates_test.go
  22. +1
    -1
      plonk/gates/multiplication_extension_gate.go
  23. +1
    -1
      plonk/gates/noop_gate.go
  24. +1
    -1
      plonk/gates/poseidon_gate.go
  25. +2
    -2
      plonk/gates/poseidon_mds_gate.go
  26. +1
    -1
      plonk/gates/public_input_gate.go
  27. +1
    -1
      plonk/gates/random_access_gate.go
  28. +1
    -1
      plonk/gates/reducing_extension_gate.go
  29. +1
    -1
      plonk/gates/reducing_gate.go
  30. +7
    -7
      plonk/plonk.go
  31. +7
    -7
      poseidon/bn254.go
  32. +12
    -12
      poseidon/goldilocks.go
  33. +1
    -1
      poseidon/goldilocks_test.go
  34. +2
    -2
      poseidon/public_inputs_hash_test.go
  35. +2
    -2
      types/circuit.go
  36. +5
    -5
      types/fri.go
  37. +3
    -3
      types/plonk.go
  38. +4
    -4
      verifier/verifier.go
  39. +1
    -1
      verifier/verifier_test.go

+ 1
- 1
benchmark.go

@ -22,7 +22,7 @@ import (
type BenchmarkPlonky2VerifierCircuit struct {
Proof types.Proof
PublicInputs []gl.Variable `gnark:",public"`
PublicInputs []gl.GoldilocksVariable `gnark:",public"`
verifierChip *verifier.VerifierChip `gnark:"-"`
plonky2CircuitName string `gnark:"-"`

+ 1
- 1
benchmark_plonk.go

@ -23,7 +23,7 @@ import (
type BenchmarkPlonky2VerifierCircuitPlonk struct {
Proof types.Proof
PublicInputs []gl.Variable `gnark:",public"`
PublicInputs []gl.GoldilocksVariable `gnark:",public"`
verifierChip *verifier.VerifierChip `gnark:"-"`
plonky2CircuitName string `gnark:"-"`

+ 16
- 16
challenger/challenger.go

@ -14,15 +14,15 @@ type Chip struct {
api frontend.API `gnark:"-"`
poseidonChip *poseidon.GoldilocksChip
poseidonBN254Chip *poseidon.BN254Chip
spongeState [poseidon.SPONGE_WIDTH]gl.Variable
inputBuffer []gl.Variable
outputBuffer []gl.Variable
spongeState [poseidon.SPONGE_WIDTH]gl.GoldilocksVariable
inputBuffer []gl.GoldilocksVariable
outputBuffer []gl.GoldilocksVariable
}
func NewChip(api frontend.API) *Chip {
var spongeState [poseidon.SPONGE_WIDTH]gl.Variable
var inputBuffer []gl.Variable
var outputBuffer []gl.Variable
var spongeState [poseidon.SPONGE_WIDTH]gl.GoldilocksVariable
var inputBuffer []gl.GoldilocksVariable
var outputBuffer []gl.GoldilocksVariable
for i := 0; i < poseidon.SPONGE_WIDTH; i++ {
spongeState[i] = gl.Zero()
}
@ -38,7 +38,7 @@ func NewChip(api frontend.API) *Chip {
}
}
func (c *Chip) ObserveElement(element gl.Variable) {
func (c *Chip) ObserveElement(element gl.GoldilocksVariable) {
c.outputBuffer = clearBuffer(c.outputBuffer)
c.inputBuffer = append(c.inputBuffer, element)
if len(c.inputBuffer) == poseidon.SPONGE_RATE {
@ -46,7 +46,7 @@ func (c *Chip) ObserveElement(element gl.Variable) {
}
}
func (c *Chip) ObserveElements(elements []gl.Variable) {
func (c *Chip) ObserveElements(elements []gl.GoldilocksVariable) {
for i := 0; i < len(elements); i++ {
c.ObserveElement(elements[i])
}
@ -84,7 +84,7 @@ func (c *Chip) ObserveOpenings(openings fri.Openings) {
}
}
func (c *Chip) GetChallenge() gl.Variable {
func (c *Chip) GetChallenge() gl.GoldilocksVariable {
if len(c.inputBuffer) != 0 || len(c.outputBuffer) == 0 {
c.duplexing()
}
@ -95,8 +95,8 @@ func (c *Chip) GetChallenge() gl.Variable {
return challenge
}
func (c *Chip) GetNChallenges(n uint64) []gl.Variable {
challenges := make([]gl.Variable, n)
func (c *Chip) GetNChallenges(n uint64) []gl.GoldilocksVariable {
challenges := make([]gl.GoldilocksVariable, n)
for i := uint64(0); i < n; i++ {
challenges[i] = c.GetChallenge()
}
@ -109,13 +109,13 @@ func (c *Chip) GetExtensionChallenge() gl.QuadraticExtensionVariable {
}
func (c *Chip) GetHash() poseidon.GoldilocksHashOut {
return [4]gl.Variable{c.GetChallenge(), c.GetChallenge(), c.GetChallenge(), c.GetChallenge()}
return [4]gl.GoldilocksVariable{c.GetChallenge(), c.GetChallenge(), c.GetChallenge(), c.GetChallenge()}
}
func (c *Chip) GetFriChallenges(
commitPhaseMerkleCaps []types.FriMerkleCap,
finalPoly types.PolynomialCoeffs,
powWitness gl.Variable,
powWitness gl.GoldilocksVariable,
degreeBits uint64,
config types.FriConfig,
) types.FriChallenges {
@ -142,8 +142,8 @@ func (c *Chip) GetFriChallenges(
}
}
func clearBuffer(buffer []gl.Variable) []gl.Variable {
return make([]gl.Variable, 0)
func clearBuffer(buffer []gl.GoldilocksVariable) []gl.GoldilocksVariable {
return make([]gl.GoldilocksVariable, 0)
}
func (c *Chip) duplexing() {
@ -152,7 +152,7 @@ func (c *Chip) duplexing() {
panic("something went wrong")
}
glApi := gl.NewChip(c.api)
glApi := gl.NewGoldilocksApi(c.api)
for i := 0; i < len(c.inputBuffer); i++ {
c.spongeState[i] = glApi.Reduce(c.inputBuffer[i])

+ 10
- 10
fri/fri.go

@ -14,8 +14,8 @@ import (
)
type Chip struct {
api frontend.API `gnark:"-"`
gl gl.Chip `gnark:"-"`
api frontend.API `gnark:"-"`
gl gl.GoldilocksApi `gnark:"-"`
poseidonBN254Chip *poseidon.BN254Chip
friParams *types.FriParams `gnark:"-"`
}
@ -29,11 +29,11 @@ func NewChip(
api: api,
poseidonBN254Chip: poseidonBN254Chip,
friParams: friParams,
gl: *gl.NewChip(api),
gl: *gl.NewGoldilocksApi(api),
}
}
func (f *Chip) assertLeadingZeros(powWitness gl.Variable, friConfig types.FriConfig) {
func (f *Chip) assertLeadingZeros(powWitness gl.GoldilocksVariable, friConfig types.FriConfig) {
// Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros.
// Note that this is assuming that the Goldilocks field is being used. Specfically that the
// field is 64 bits long
@ -58,7 +58,7 @@ func (f *Chip) fromOpeningsAndAlpha(
}
func (f *Chip) verifyMerkleProofToCapWithCapIndex(
leafData []gl.Variable,
leafData []gl.GoldilocksVariable,
leafIndexBits []frontend.Variable,
capIndexBits []frontend.Variable,
merkleCap types.FriMerkleCap,
@ -139,7 +139,7 @@ func (f *Chip) assertNoncanonicalIndicesOK() {
func (f *Chip) expFromBitsConstBase(
base goldilocks.Element,
exponentBits []frontend.Variable,
) gl.Variable {
) gl.GoldilocksVariable {
product := gl.One()
for i, bit := range exponentBits {
// If the bit is on, we multiply product by base^pow.
@ -167,7 +167,7 @@ func (f *Chip) expFromBitsConstBase(
func (f *Chip) calculateSubgroupX(
xIndexBits []frontend.Variable,
nLog uint64,
) gl.Variable {
) gl.GoldilocksVariable {
// Compute x from its index
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
// TODO - Make these as global values
@ -284,7 +284,7 @@ func (f *Chip) interpolate(
}
func (f *Chip) computeEvaluation(
x gl.Variable,
x gl.GoldilocksVariable,
xIndexWithinCosetBits []frontend.Variable,
arityBits uint64,
evals []gl.QuadraticExtensionVariable,
@ -359,7 +359,7 @@ func (f *Chip) verifyQueryRound(
precomputedReducedEval []gl.QuadraticExtensionVariable,
initialMerkleCaps []types.FriMerkleCap,
proof *types.FriProof,
xIndex gl.Variable,
xIndex gl.GoldilocksVariable,
n uint64,
nLog uint64,
roundProof *types.FriQueryRound,
@ -437,7 +437,7 @@ func (f *Chip) verifyQueryRound(
)
// Convert evals (array of QE) to fields by taking their 0th degree coefficients
fieldEvals := make([]gl.Variable, 0, 2*len(evals))
fieldEvals := make([]gl.GoldilocksVariable, 0, 2*len(evals))
for j := 0; j < len(evals); j++ {
fieldEvals = append(fieldEvals, evals[j][0])
fieldEvals = append(fieldEvals, evals[j][1])

+ 1
- 1
fri/fri_test.go

@ -25,7 +25,7 @@ func (circuit *TestFriCircuit) Define(api frontend.API) error {
commonCircuitData := verifier.DeserializeCommonCircuitData(circuit.commonCircuitDataFilename)
verifierOnlyCircuitData := verifier.DeserializeVerifierOnlyCircuitData(circuit.verifierOnlyCircuitDataFilename)
glApi := gl.NewChip(api)
glApi := gl.NewGoldilocksApi(api)
poseidonChip := poseidon.NewGoldilocksChip(api)
friChip := fri.NewChip(api, &commonCircuitData.FriParams)
challengerChip := challenger.NewChip(api)

+ 1
- 1
fri/fri_utils.go

@ -178,7 +178,7 @@ func friAllPolys(c *types.CommonCircuitData) []PolynomialInfo {
return returnArr
}
func GetInstance(c *types.CommonCircuitData, glApi *gl.Chip, zeta gl.QuadraticExtensionVariable, degreeBits uint64) InstanceInfo {
func GetInstance(c *types.CommonCircuitData, glApi *gl.GoldilocksApi, zeta gl.QuadraticExtensionVariable, degreeBits uint64) InstanceInfo {
zetaBatch := BatchInfo{
Point: zeta,
Polynomials: friAllPolys(c),

+ 62
- 51
goldilocks/base.go

@ -13,13 +13,14 @@ package goldilocks
import (
"fmt"
"math"
"math/big"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/consensys/gnark/constraint/solver"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/std/math/bits"
"github.com/consensys/gnark/std/math/emulated"
"github.com/consensys/gnark/std/rangecheck"
)
// The multiplicative group generator of the field.
@ -45,77 +46,78 @@ func init() {
solver.RegisterHint(MulAddHint)
solver.RegisterHint(ReduceHint)
solver.RegisterHint(InverseHint)
solver.RegisterHint(SplitLimbsHint)
}
// A type alias used to represent Goldilocks field elements.
type Variable struct {
type GoldilocksVariable struct {
Limb frontend.Variable
}
// Creates a new Goldilocks field element from an existing variable. Assumes that the element is
// already reduced.
func NewVariable(x frontend.Variable) Variable {
return Variable{Limb: x}
func NewVariable(x frontend.Variable) GoldilocksVariable {
return GoldilocksVariable{Limb: x}
}
// The zero element in the Golidlocks field.
func Zero() Variable {
func Zero() GoldilocksVariable {
return NewVariable(0)
}
// The one element in the Goldilocks field.
func One() Variable {
func One() GoldilocksVariable {
return NewVariable(1)
}
// The negative one element in the Goldilocks field.
func NegOne() Variable {
func NegOne() GoldilocksVariable {
return NewVariable(MODULUS.Uint64() - 1)
}
// The chip used for Goldilocks field operations.
type Chip struct {
type GoldilocksApi struct {
api frontend.API
}
// Creates a new Goldilocks chip.
func NewChip(api frontend.API) *Chip {
return &Chip{api: api}
func NewGoldilocksApi(api frontend.API) *GoldilocksApi {
return &GoldilocksApi{api: api}
}
// Adds two field elements such that x + y = z within the Golidlocks field.
func (p *Chip) Add(a Variable, b Variable) Variable {
func (p *GoldilocksApi) Add(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return p.MulAdd(a, NewVariable(1), b)
}
// Adds two field elements such that x + y = z within the Golidlocks field without reducing.
func (p *Chip) AddNoReduce(a Variable, b Variable) Variable {
func (p *GoldilocksApi) AddNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return NewVariable(p.api.Add(a.Limb, b.Limb))
}
// Subtracts two field elements such that x + y = z within the Golidlocks field.
func (p *Chip) Sub(a Variable, b Variable) Variable {
func (p *GoldilocksApi) Sub(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return p.MulAdd(b, NewVariable(MODULUS.Uint64()-1), a)
}
// Subtracts two field elements such that x + y = z within the Golidlocks field without reducing.
func (p *Chip) SubNoReduce(a Variable, b Variable) Variable {
func (p *GoldilocksApi) SubNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return NewVariable(p.api.Add(a.Limb, p.api.Mul(b.Limb, MODULUS.Uint64()-1)))
}
// Multiplies two field elements such that x * y = z within the Golidlocks field.
func (p *Chip) Mul(a Variable, b Variable) Variable {
func (p *GoldilocksApi) Mul(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return p.MulAdd(a, b, Zero())
}
// Multiplies two field elements such that x * y = z within the Golidlocks field without reducing.
func (p *Chip) MulNoReduce(a Variable, b Variable) Variable {
func (p *GoldilocksApi) MulNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
return NewVariable(p.api.Mul(a.Limb, b.Limb))
}
// Multiplies two field elements and adds a field element such that x * y + z = c within the
// Golidlocks field.
func (p *Chip) MulAdd(a Variable, b Variable, c Variable) Variable {
func (p *GoldilocksApi) MulAdd(a GoldilocksVariable, b GoldilocksVariable, c GoldilocksVariable) GoldilocksVariable {
result, err := p.api.Compiler().NewHint(MulAddHint, 2, a.Limb, b.Limb, c.Limb)
if err != nil {
panic(err)
@ -136,7 +138,7 @@ func (p *Chip) MulAdd(a Variable, b Variable, c Variable) Variable {
// Multiplies two field elements and adds a field element such that x * y + z = c within the
// Golidlocks field without reducing.
func (p *Chip) MulAddNoReduce(a Variable, b Variable, c Variable) Variable {
func (p *GoldilocksApi) MulAddNoReduce(a GoldilocksVariable, b GoldilocksVariable, c GoldilocksVariable) GoldilocksVariable {
return p.AddNoReduce(p.MulNoReduce(a, b), c)
}
@ -164,7 +166,7 @@ func MulAddHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
}
// Reduces a field element x such that x % MODULUS = y.
func (p *Chip) Reduce(x Variable) Variable {
func (p *GoldilocksApi) Reduce(x GoldilocksVariable) GoldilocksVariable {
// Witness a `quotient` and `remainder` such that:
//
// MODULUS * quotient + remainder = x
@ -189,7 +191,7 @@ func (p *Chip) Reduce(x Variable) Variable {
}
// Reduces a field element x such that x % MODULUS = y.
func (p *Chip) ReduceWithMaxBits(x Variable, maxNbBits uint64) Variable {
func (p *GoldilocksApi) ReduceWithMaxBits(x GoldilocksVariable, maxNbBits uint64) GoldilocksVariable {
// Witness a `quotient` and `remainder` such that:
//
// MODULUS * quotient + remainder = x
@ -224,7 +226,7 @@ func ReduceHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
}
// Computes the inverse of a field element x such that x * x^-1 = 1.
func (p *Chip) Inverse(x Variable) Variable {
func (p *GoldilocksApi) Inverse(x GoldilocksVariable) GoldilocksVariable {
result, err := p.api.Compiler().NewHint(InverseHint, 1, x.Limb)
if err != nil {
panic(err)
@ -258,7 +260,7 @@ func InverseHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
}
// Computes a field element raised to some power.
func (p *Chip) Exp(x Variable, k *big.Int) Variable {
func (p *GoldilocksApi) Exp(x GoldilocksVariable, k *big.Int) GoldilocksVariable {
if k.IsUint64() && k.Uint64() == 0 {
return One()
}
@ -279,8 +281,31 @@ func (p *Chip) Exp(x Variable, k *big.Int) Variable {
return z
}
// The hint used to split a GoldilocksVariable into 2 32 bit limbs.
func SplitLimbsHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
if len(inputs) != 1 {
panic("SplitLimbsHint expects 1 input operand")
}
// The Goldilocks field element
input := inputs[0]
if input.Cmp(MODULUS) == 0 || input.Cmp(MODULUS) == 1 {
return fmt.Errorf("input is not in the field")
}
two_32 := big.NewInt(int64(math.Pow(2, 32)))
// The most significant bits
results[0] = new(big.Int).Quo(input, two_32)
// The least significant bits
results[1] = new(big.Int).Rem(input, two_32)
return nil
}
// Range checks a field element x to be less than the Golidlocks modulus 2 ^ 64 - 2 ^ 32 + 1.
func (p *Chip) RangeCheck(x Variable) {
func (p *GoldilocksApi) RangeCheck(x GoldilocksVariable) {
// The Goldilocks' modulus is 2^64 - 2^32 + 1, which is:
//
// 1111111111111111111111111111111100000000000000000000000000000001
@ -288,47 +313,33 @@ func (p *Chip) RangeCheck(x Variable) {
// in big endian binary. This function will first verify that x is at most 64 bits wide. Then it
// checks that if the bits[0:31] (in big-endian) are all 1, then bits[32:64] are all zero.
// First decompose x into 64 bits. The bits will be in little-endian order.
bits := bits.ToBinary(p.api, x.Limb, bits.WithNbDigits(64))
// Those bits should compose back to x.
reconstructedX := frontend.Variable(0)
c := uint64(1)
for i := 0; i < 64; i++ {
reconstructedX = p.api.Add(reconstructedX, p.api.Mul(bits[i], c))
c = c << 1
p.api.AssertIsBoolean(bits[i])
}
p.api.AssertIsEqual(x.Limb, reconstructedX)
// Use the range checker component to range-check the variable.
rangeChecker := rangecheck.New(p.api)
rangeChecker.Check(x.Limb, 64)
mostSigBits32Sum := frontend.Variable(0)
for i := 32; i < 64; i++ {
mostSigBits32Sum = p.api.Add(mostSigBits32Sum, bits[i])
result, err := p.api.Compiler().NewHint(SplitLimbsHint, 2, x.Limb)
if err != nil {
panic(err)
}
leastSigBits32Sum := frontend.Variable(0)
for i := 0; i < 32; i++ {
leastSigBits32Sum = p.api.Add(leastSigBits32Sum, bits[i])
}
mostSigBits := result[0]
leastSigBits := result[1]
// If mostSigBits32Sum < 32, then we know that:
//
// x < (2^63 + ... + 2^32 + 0 * 2^31 + ... + 0 * 2^0)
//
// which equals to 2^64 - 2^32. So in that case, we don't need to do any more checks. If
// mostSigBits32Sum == 32, then we need to check that x == 2^64 - 2^32 (max GL value).
shouldCheck := p.api.IsZero(p.api.Sub(mostSigBits32Sum, 32))
// If the most significant bits are all 1, then we need to check that the least significant bits are all zero
// in order for element to be less than the Goldilock's modulus.
// Otherwise, we don't need to do any checks, since we already know that the element is less than the Goldilocks modulus.
shouldCheck := p.api.IsZero(p.api.Sub(mostSigBits, uint64(math.Pow(2, 32))-1))
p.api.AssertIsEqual(
p.api.Select(
shouldCheck,
leastSigBits32Sum,
leastSigBits,
frontend.Variable(0),
),
frontend.Variable(0),
)
}
func (p *Chip) AssertIsEqual(x, y Variable) {
func (p *GoldilocksApi) AssertIsEqual(x, y GoldilocksVariable) {
p.api.AssertIsEqual(x.Limb, y.Limb)
}

+ 4
- 4
goldilocks/base_test.go

@ -15,8 +15,8 @@ type TestGoldilocksRangeCheckCircuit struct {
}
func (c *TestGoldilocksRangeCheckCircuit) Define(api frontend.API) error {
chip := NewChip(api)
chip.RangeCheck(NewVariable(c.X))
glApi := NewGoldilocksApi(api)
glApi.RangeCheck(NewVariable(c.X))
return nil
}
func TestGoldilocksRangeCheck(t *testing.T) {
@ -45,8 +45,8 @@ type TestGoldilocksMulAddCircuit struct {
}
func (c *TestGoldilocksMulAddCircuit) Define(api frontend.API) error {
chip := NewChip(api)
calculateValue := chip.MulAdd(NewVariable(c.X), NewVariable(c.Y), NewVariable(c.Z))
glApi := NewGoldilocksApi(api)
calculateValue := glApi.MulAdd(NewVariable(c.X), NewVariable(c.Y), NewVariable(c.Z))
api.AssertIsEqual(calculateValue.Limb, c.ExpectedResult)
return nil
}

+ 26
- 26
goldilocks/quadratic_extension.go

@ -9,13 +9,13 @@ import (
const W uint64 = 7
const DTH_ROOT uint64 = 18446744069414584320
type QuadraticExtensionVariable [2]Variable
type QuadraticExtensionVariable [2]GoldilocksVariable
func NewQuadraticExtensionVariable(x Variable, y Variable) QuadraticExtensionVariable {
func NewQuadraticExtensionVariable(x GoldilocksVariable, y GoldilocksVariable) QuadraticExtensionVariable {
return QuadraticExtensionVariable{x, y}
}
func (p Variable) ToQuadraticExtension() QuadraticExtensionVariable {
func (p GoldilocksVariable) ToQuadraticExtension() QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(p, Zero())
}
@ -28,35 +28,35 @@ func OneExtension() QuadraticExtensionVariable {
}
// Adds two quadratic extension variables in the Goldilocks field.
func (p *Chip) AddExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) AddExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.Add(a[0], b[0])
c1 := p.Add(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Adds two quadratic extension variables in the Goldilocks field without reducing.
func (p *Chip) AddExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) AddExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.AddNoReduce(a[0], b[0])
c1 := p.AddNoReduce(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Subtracts two quadratic extension variables in the Goldilocks field.
func (p *Chip) SubExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) SubExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.Sub(a[0], b[0])
c1 := p.Sub(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Subtracts two quadratic extension variables in the Goldilocks field without reducing.
func (p *Chip) SubExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) SubExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.SubNoReduce(a[0], b[0])
c1 := p.SubNoReduce(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Multiplies quadratic extension variable in the Goldilocks field.
func (p *Chip) MulExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) MulExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
product[0] = p.Reduce(product[0])
product[1] = p.Reduce(product[1])
@ -64,7 +64,7 @@ func (p *Chip) MulExtension(a, b QuadraticExtensionVariable) QuadraticExtensionV
}
// Multiplies quadratic extension variable in the Goldilocks field without reducing.
func (p *Chip) MulExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) MulExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0o0 := p.MulNoReduce(a[0], b[0])
c0o1 := p.MulNoReduce(p.MulNoReduce(NewVariable(7), a[1]), b[1])
c0 := p.AddNoReduce(c0o0, c0o1)
@ -74,7 +74,7 @@ func (p *Chip) MulExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticEx
// Multiplies two operands a and b and adds to c in the Goldilocks extension field. a * b + c must
// be less than RANGE_CHECK_NB_BITS bits.
func (p *Chip) MulAddExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) MulAddExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
sum := p.AddExtensionNoReduce(product, c)
sum[0] = p.Reduce(sum[0])
@ -82,7 +82,7 @@ func (p *Chip) MulAddExtension(a, b, c QuadraticExtensionVariable) QuadraticExte
return sum
}
func (p *Chip) MulAddExtensionNoReduce(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) MulAddExtensionNoReduce(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
sum := p.AddExtensionNoReduce(product, c)
return sum
@ -90,7 +90,7 @@ func (p *Chip) MulAddExtensionNoReduce(a, b, c QuadraticExtensionVariable) Quadr
// Multiplies two operands a and b and subtracts to c in the Goldilocks extension field. a * b - c must
// be less than RANGE_CHECK_NB_BITS bits.
func (p *Chip) SubMulExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) SubMulExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
difference := p.SubExtensionNoReduce(a, b)
product := p.MulExtensionNoReduce(difference, c)
product[0] = p.Reduce(product[0])
@ -99,9 +99,9 @@ func (p *Chip) SubMulExtension(a, b, c QuadraticExtensionVariable) QuadraticExte
}
// Multiplies quadratic extension variable in the Goldilocks field by a scalar.
func (p *Chip) ScalarMulExtension(
func (p *GoldilocksApi) ScalarMulExtension(
a QuadraticExtensionVariable,
b Variable,
b GoldilocksVariable,
) QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(
p.Mul(a[0], b),
@ -110,8 +110,8 @@ func (p *Chip) ScalarMulExtension(
}
// Computes an inner product over quadratic extension variable vectors in the Goldilocks field.
func (p *Chip) InnerProductExtension(
constant Variable,
func (p *GoldilocksApi) InnerProductExtension(
constant GoldilocksVariable,
startingAcc QuadraticExtensionVariable,
pairs [][2]QuadraticExtensionVariable,
) QuadraticExtensionVariable {
@ -126,7 +126,7 @@ func (p *Chip) InnerProductExtension(
}
// Computes the inverse of a quadratic extension variable in the Goldilocks field.
func (p *Chip) InverseExtension(a QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) InverseExtension(a QuadraticExtensionVariable) QuadraticExtensionVariable {
a0IsZero := p.api.IsZero(a[0].Limb)
a1IsZero := p.api.IsZero(a[1].Limb)
p.api.AssertIsEqual(p.api.Mul(a0IsZero, a1IsZero), frontend.Variable(0))
@ -139,12 +139,12 @@ func (p *Chip) InverseExtension(a QuadraticExtensionVariable) QuadraticExtension
}
// Divides two quadratic extension variables in the Goldilocks field.
func (p *Chip) DivExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) DivExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
return p.MulExtension(a, p.InverseExtension(b))
}
// Exponentiates a quadratic extension variable to some exponent in the Golidlocks field.
func (p *Chip) ExpExtension(
func (p *GoldilocksApi) ExpExtension(
a QuadraticExtensionVariable,
exponent uint64,
) QuadraticExtensionVariable {
@ -173,12 +173,12 @@ func (p *Chip) ExpExtension(
return product
}
func (p *Chip) ReduceExtension(x QuadraticExtensionVariable) QuadraticExtensionVariable {
func (p *GoldilocksApi) ReduceExtension(x QuadraticExtensionVariable) QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(p.Reduce(x[0]), p.Reduce(x[1]))
}
// Reduces a list of extension field terms with a scalar power in the Goldilocks field.
func (p *Chip) ReduceWithPowers(
func (p *GoldilocksApi) ReduceWithPowers(
terms []QuadraticExtensionVariable,
scalar QuadraticExtensionVariable,
) QuadraticExtensionVariable {
@ -197,14 +197,14 @@ func (p *Chip) ReduceWithPowers(
}
// Outputs whether the quadratic extension variable is zero.
func (p *Chip) IsZero(x QuadraticExtensionVariable) frontend.Variable {
func (p *GoldilocksApi) IsZero(x QuadraticExtensionVariable) frontend.Variable {
x0IsZero := p.api.IsZero(x[0].Limb)
x1IsZero := p.api.IsZero(x[1].Limb)
return p.api.Mul(x0IsZero, x1IsZero)
}
// Lookup is similar to select, but returns the first variable if the bit is zero and vice-versa.
func (p *Chip) Lookup(
func (p *GoldilocksApi) Lookup(
b frontend.Variable,
x, y QuadraticExtensionVariable,
) QuadraticExtensionVariable {
@ -214,7 +214,7 @@ func (p *Chip) Lookup(
}
// Lookup2 is similar to select2, but returns the first variable if the bit is zero and vice-versa.
func (p *Chip) Lookup2(
func (p *GoldilocksApi) Lookup2(
b0 frontend.Variable,
b1 frontend.Variable,
qe0, qe1, qe2, qe3 QuadraticExtensionVariable,
@ -225,7 +225,7 @@ func (p *Chip) Lookup2(
}
// Asserts that two quadratic extension variables are equal.
func (p *Chip) AssertIsEqualExtension(
func (p *GoldilocksApi) AssertIsEqualExtension(
a QuadraticExtensionVariable,
b QuadraticExtensionVariable,
) {
@ -233,7 +233,7 @@ func (p *Chip) AssertIsEqualExtension(
p.AssertIsEqual(a[1], b[1])
}
func (p *Chip) RangeCheckQE(a QuadraticExtensionVariable) {
func (p *GoldilocksApi) RangeCheckQE(a QuadraticExtensionVariable) {
p.RangeCheck(a[0])
p.RangeCheck(a[1])
}

+ 5
- 5
goldilocks/quadratic_extension_algebra.go

@ -25,7 +25,7 @@ func OneExtensionAlgebra() QuadraticExtensionAlgebraVariable {
return OneExtension().ToQuadraticExtensionAlgebra()
}
func (p *Chip) AddExtensionAlgebra(
func (p *GoldilocksApi) AddExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
@ -36,7 +36,7 @@ func (p *Chip) AddExtensionAlgebra(
return sum
}
func (p *Chip) SubExtensionAlgebra(
func (p *GoldilocksApi) SubExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
@ -47,7 +47,7 @@ func (p *Chip) SubExtensionAlgebra(
return diff
}
func (p Chip) MulExtensionAlgebra(
func (p GoldilocksApi) MulExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
@ -74,7 +74,7 @@ func (p Chip) MulExtensionAlgebra(
return product
}
func (p *Chip) ScalarMulExtensionAlgebra(
func (p *GoldilocksApi) ScalarMulExtensionAlgebra(
a QuadraticExtensionVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
@ -85,7 +85,7 @@ func (p *Chip) ScalarMulExtensionAlgebra(
return product
}
func (p *Chip) PartialInterpolateExtAlgebra(
func (p *GoldilocksApi) PartialInterpolateExtAlgebra(
domain []goldilocks.Element,
values []QuadraticExtensionAlgebraVariable,
barycentricWeights []goldilocks.Element,

+ 2
- 2
goldilocks/quadratic_extension_test.go

@ -15,7 +15,7 @@ type TestQuadraticExtensionMulCircuit struct {
}
func (c *TestQuadraticExtensionMulCircuit) Define(api frontend.API) error {
glApi := NewChip(api)
glApi := NewGoldilocksApi(api)
actualRes := glApi.MulExtension(c.Operand1, c.Operand2)
glApi.AssertIsEqual(actualRes[0], c.ExpectedResult[0])
glApi.AssertIsEqual(actualRes[1], c.ExpectedResult[1])
@ -58,7 +58,7 @@ type TestQuadraticExtensionDivCircuit struct {
}
func (c *TestQuadraticExtensionDivCircuit) Define(api frontend.API) error {
glAPI := NewChip(api)
glAPI := NewGoldilocksApi(api)
actualRes := glAPI.DivExtension(c.Operand1, c.Operand2)
glAPI.AssertIsEqual(actualRes[0], c.ExpectedResult[0])
glAPI.AssertIsEqual(actualRes[1], c.ExpectedResult[1])

+ 2
- 2
goldilocks/utils.go

@ -24,8 +24,8 @@ func StrArrayToFrontendVariableArray(input []string) []frontend.Variable {
return output
}
func Uint64ArrayToVariableArray(input []uint64) []Variable {
var output []Variable
func Uint64ArrayToVariableArray(input []uint64) []GoldilocksVariable {
var output []GoldilocksVariable
for i := 0; i < len(input); i++ {
output = append(output, NewVariable(input[i]))
}

+ 1
- 1
plonk/gates/arithmetic_extension_gate.go

@ -58,7 +58,7 @@ func (g *ArithmeticExtensionGate) wiresIthOutput(i uint64) Range {
func (g *ArithmeticExtensionGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
const0 := vars.localConstants[0]

+ 1
- 1
plonk/gates/arithmetic_gate.go

@ -59,7 +59,7 @@ func (g *ArithmeticGate) WireIthOutput(i uint64) uint64 {
func (g *ArithmeticGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
const0 := vars.localConstants[0]

+ 1
- 1
plonk/gates/base_sum_gate.go

@ -65,7 +65,7 @@ func (g *BaseSumGate) limbs() []uint64 {
func (g *BaseSumGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
sum := vars.localWires[BASESUM_GATE_WIRE_SUM]

+ 1
- 1
plonk/gates/constant_gate.go

@ -56,7 +56,7 @@ func (g *ConstantGate) WireOutput(i uint64) uint64 {
func (g *ConstantGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
constraints := []gl.QuadraticExtensionVariable{}

+ 1
- 1
plonk/gates/coset_interpolation_gate.go

@ -147,7 +147,7 @@ func (g *CosetInterpolationGate) wiresShiftedEvaluationPoint() Range {
func (g *CosetInterpolationGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
constraints := []gl.QuadraticExtensionVariable{}

+ 3
- 3
plonk/gates/evaluate_gates.go

@ -36,7 +36,7 @@ func (g *EvaluateGatesChip) computeFilter(
s gl.QuadraticExtensionVariable,
manySelector bool,
) gl.QuadraticExtensionVariable {
glApi := gl.NewChip(g.api)
glApi := gl.NewGoldilocksApi(g.api)
product := gl.OneExtension()
for i := groupRange.start; i < groupRange.end; i++ {
if i == uint64(row) {
@ -62,7 +62,7 @@ func (g *EvaluateGatesChip) evalFiltered(
groupRange Range,
numSelectors uint64,
) []gl.QuadraticExtensionVariable {
glApi := gl.NewChip(g.api)
glApi := gl.NewGoldilocksApi(g.api)
filter := g.computeFilter(row, groupRange, vars.localConstants[selectorIndex], numSelectors > 1)
vars.RemovePrefix(numSelectors)
@ -75,7 +75,7 @@ func (g *EvaluateGatesChip) evalFiltered(
}
func (g *EvaluateGatesChip) EvaluateGateConstraints(vars EvaluationVars) []gl.QuadraticExtensionVariable {
glApi := gl.NewChip(g.api)
glApi := gl.NewGoldilocksApi(g.api)
constraints := make([]gl.QuadraticExtensionVariable, g.numGateConstraints)
for i := range constraints {
constraints[i] = gl.ZeroExtension()

+ 1
- 1
plonk/gates/exponentiation_gate.go

@ -65,7 +65,7 @@ func (g *ExponentiationGate) wireIntermediateValue(i uint64) uint64 {
func (g *ExponentiationGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
base := vars.localWires[g.wireBase()]

+ 1
- 1
plonk/gates/gates.go

@ -12,7 +12,7 @@ type Gate interface {
Id() string
EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable
}

+ 1
- 1
plonk/gates/gates_test.go

@ -693,7 +693,7 @@ func (circuit *TestGateCircuit) Define(api frontend.API) error {
commonCircuitData := verifier.DeserializeCommonCircuitData("../../data/decode_block/common_circuit_data.json")
numSelectors := commonCircuitData.SelectorsInfo.NumSelectors()
glApi := gl.NewChip(api)
glApi := gl.NewGoldilocksApi(api)
vars := gates.NewEvaluationVars(localConstants[numSelectors:], localWires, publicInputsHash)

+ 1
- 1
plonk/gates/multiplication_extension_gate.go

@ -54,7 +54,7 @@ func (g *MultiplicationExtensionGate) wiresIthOutput(i uint64) Range {
func (g *MultiplicationExtensionGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
const0 := vars.localConstants[0]

+ 1
- 1
plonk/gates/noop_gate.go

@ -27,7 +27,7 @@ func (g *NoopGate) Id() string {
func (g *NoopGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
return []gl.QuadraticExtensionVariable{}

+ 1
- 1
plonk/gates/poseidon_gate.go

@ -91,7 +91,7 @@ func (g *PoseidonGate) WiresEnd() uint64 {
func (g *PoseidonGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
constraints := []gl.QuadraticExtensionVariable{}

+ 2
- 2
plonk/gates/poseidon_mds_gate.go

@ -45,7 +45,7 @@ func (g *PoseidonMdsGate) mdsRowShfAlgebra(
v [poseidon.SPONGE_WIDTH]gl.QuadraticExtensionAlgebraVariable,
api frontend.API,
) gl.QuadraticExtensionAlgebraVariable {
glApi := gl.NewChip(api)
glApi := gl.NewGoldilocksApi(api)
if r >= poseidon.SPONGE_WIDTH {
panic("MDS row index out of range")
}
@ -75,7 +75,7 @@ func (g *PoseidonMdsGate) mdsLayerAlgebra(
func (g *PoseidonMdsGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
constraints := []gl.QuadraticExtensionVariable{}

+ 1
- 1
plonk/gates/public_input_gate.go

@ -31,7 +31,7 @@ func (g *PublicInputGate) WiresPublicInputsHash() []uint64 {
func (g *PublicInputGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
constraints := []gl.QuadraticExtensionVariable{}

+ 1
- 1
plonk/gates/random_access_gate.go

@ -116,7 +116,7 @@ func (g *RandomAccessGate) WireBit(i uint64, copy uint64) uint64 {
func (g *RandomAccessGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
two := gl.NewVariable(2).ToQuadraticExtension()

+ 1
- 1
plonk/gates/reducing_extension_gate.go

@ -76,7 +76,7 @@ func (g *ReducingExtensionGate) wiresAccs(i uint64) Range {
func (g *ReducingExtensionGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
alpha := vars.GetLocalExtAlgebra(g.wiresAlpha())

+ 1
- 1
plonk/gates/reducing_gate.go

@ -76,7 +76,7 @@ func (g *ReducingGate) wiresAccs(i uint64) Range {
func (g *ReducingGate) EvalUnfiltered(
api frontend.API,
glApi gl.Chip,
glApi gl.GoldilocksApi,
vars EvaluationVars,
) []gl.QuadraticExtensionVariable {
alpha := vars.GetLocalExtAlgebra(g.wiresAlpha())

+ 7
- 7
plonk/plonk.go

@ -13,8 +13,8 @@ type PlonkChip struct {
commonData types.CommonCircuitData `gnark:"-"`
DEGREE gl.Variable `gnark:"-"`
DEGREE_BITS_F gl.Variable `gnark:"-"`
DEGREE gl.GoldilocksVariable `gnark:"-"`
DEGREE_BITS_F gl.GoldilocksVariable `gnark:"-"`
DEGREE_QE gl.QuadraticExtensionVariable `gnark:"-"`
evaluateGatesChip *gates.EvaluateGatesChip
@ -44,7 +44,7 @@ func NewPlonkChip(api frontend.API, commonData types.CommonCircuitData) *PlonkCh
}
func (p *PlonkChip) expPowerOf2Extension(x gl.QuadraticExtensionVariable) gl.QuadraticExtensionVariable {
glApi := gl.NewChip(p.api)
glApi := gl.NewGoldilocksApi(p.api)
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
x = glApi.MulExtension(x, x)
}
@ -53,7 +53,7 @@ func (p *PlonkChip) expPowerOf2Extension(x gl.QuadraticExtensionVariable) gl.Qua
func (p *PlonkChip) evalL0(x gl.QuadraticExtensionVariable, xPowN gl.QuadraticExtensionVariable) gl.QuadraticExtensionVariable {
// L_0(x) = (x^n - 1) / (n * (x - 1))
glApi := gl.NewChip(p.api)
glApi := gl.NewGoldilocksApi(p.api)
evalZeroPoly := glApi.SubExtension(
xPowN,
gl.OneExtension(),
@ -74,7 +74,7 @@ func (p *PlonkChip) checkPartialProducts(
challengeNum uint64,
openings types.OpeningSet,
) []gl.QuadraticExtensionVariable {
glApi := gl.NewChip(p.api)
glApi := gl.NewGoldilocksApi(p.api)
numPartProds := p.commonData.NumPartialProducts
quotDegreeFactor := p.commonData.QuotientDegreeFactor
@ -110,7 +110,7 @@ func (p *PlonkChip) evalVanishingPoly(
openings types.OpeningSet,
zetaPowN gl.QuadraticExtensionVariable,
) []gl.QuadraticExtensionVariable {
glApi := gl.NewChip(p.api)
glApi := gl.NewGoldilocksApi(p.api)
constraintTerms := p.evaluateGatesChip.EvaluateGateConstraints(vars)
// Calculate the k[i] * x
@ -197,7 +197,7 @@ func (p *PlonkChip) Verify(
openings types.OpeningSet,
publicInputsHash poseidon.GoldilocksHashOut,
) {
glApi := gl.NewChip(p.api)
glApi := gl.NewGoldilocksApi(p.api)
// Calculate zeta^n
zetaPowN := p.expPowerOf2Extension(proofChallenges.PlonkZeta)

+ 7
- 7
poseidon/bn254.go

@ -20,15 +20,15 @@ const BN254_SPONGE_WIDTH int = 4
const BN254_SPONGE_RATE int = 3
type BN254Chip struct {
api frontend.API `gnark:"-"`
gl gl.Chip `gnark:"-"`
api frontend.API `gnark:"-"`
gl gl.GoldilocksApi `gnark:"-"`
}
type BN254State = [BN254_SPONGE_WIDTH]frontend.Variable
type BN254HashOut = frontend.Variable
func NewBN254Chip(api frontend.API) *BN254Chip {
return &BN254Chip{api: api, gl: *gl.NewChip(api)}
return &BN254Chip{api: api, gl: *gl.NewGoldilocksApi(api)}
}
func (c *BN254Chip) Poseidon(state BN254State) BN254State {
@ -39,7 +39,7 @@ func (c *BN254Chip) Poseidon(state BN254State) BN254State {
return state
}
func (c *BN254Chip) HashNoPad(input []gl.Variable) BN254HashOut {
func (c *BN254Chip) HashNoPad(input []gl.GoldilocksVariable) BN254HashOut {
state := BN254State{
frontend.Variable(0),
frontend.Variable(0),
@ -69,7 +69,7 @@ func (c *BN254Chip) HashNoPad(input []gl.Variable) BN254HashOut {
return BN254HashOut(state[0])
}
func (c *BN254Chip) HashOrNoop(input []gl.Variable) BN254HashOut {
func (c *BN254Chip) HashOrNoop(input []gl.GoldilocksVariable) BN254HashOut {
if len(input) <= 3 {
returnVal := frontend.Variable(0)
@ -94,10 +94,10 @@ func (c *BN254Chip) TwoToOne(left BN254HashOut, right BN254HashOut) BN254HashOut
return state[0]
}
func (c *BN254Chip) ToVec(hash BN254HashOut) []gl.Variable {
func (c *BN254Chip) ToVec(hash BN254HashOut) []gl.GoldilocksVariable {
bits := c.api.ToBinary(hash)
returnElements := []gl.Variable{}
returnElements := []gl.GoldilocksVariable{}
// Split into 7 byte chunks, since 8 byte chunks can result in collisions
chunkSize := 56

+ 12
- 12
poseidon/goldilocks.go

@ -11,17 +11,17 @@ const MAX_WIDTH = 12
const SPONGE_WIDTH = 12
const SPONGE_RATE = 8
type GoldilocksState = [SPONGE_WIDTH]gl.Variable
type GoldilocksState = [SPONGE_WIDTH]gl.GoldilocksVariable
type GoldilocksStateExtension = [SPONGE_WIDTH]gl.QuadraticExtensionVariable
type GoldilocksHashOut = [4]gl.Variable
type GoldilocksHashOut = [4]gl.GoldilocksVariable
type GoldilocksChip struct {
api frontend.API `gnark:"-"`
gl gl.Chip `gnark:"-"`
api frontend.API `gnark:"-"`
gl gl.GoldilocksApi `gnark:"-"`
}
func NewGoldilocksChip(api frontend.API) *GoldilocksChip {
return &GoldilocksChip{api: api, gl: *gl.NewChip(api)}
return &GoldilocksChip{api: api, gl: *gl.NewGoldilocksApi(api)}
}
// The permutation function.
@ -38,7 +38,7 @@ func (c *GoldilocksChip) Poseidon(input GoldilocksState) GoldilocksState {
// The input elements MUST have all it's elements be within Goldilocks field.
// The returned slice's elements will all be within Goldilocks field.
func (c *GoldilocksChip) HashNToMNoPad(input []gl.Variable, nbOutputs int) []gl.Variable {
func (c *GoldilocksChip) HashNToMNoPad(input []gl.GoldilocksVariable, nbOutputs int) []gl.GoldilocksVariable {
var state GoldilocksState
for i := 0; i < SPONGE_WIDTH; i++ {
@ -54,7 +54,7 @@ func (c *GoldilocksChip) HashNToMNoPad(input []gl.Variable, nbOutputs int) []gl.
state = c.Poseidon(state)
}
var outputs []gl.Variable
var outputs []gl.GoldilocksVariable
for {
for i := 0; i < SPONGE_RATE; i++ {
@ -69,9 +69,9 @@ func (c *GoldilocksChip) HashNToMNoPad(input []gl.Variable, nbOutputs int) []gl.
// The input elements can be outside of the Goldilocks field.
// The returned slice's elements will all be within Goldilocks field.
func (c *GoldilocksChip) HashNoPad(input []gl.Variable) GoldilocksHashOut {
func (c *GoldilocksChip) HashNoPad(input []gl.GoldilocksVariable) GoldilocksHashOut {
var hash GoldilocksHashOut
inputVars := []gl.Variable{}
inputVars := []gl.GoldilocksVariable{}
for i := 0; i < len(input); i++ {
inputVars = append(inputVars, c.gl.Reduce(input[i]))
@ -85,7 +85,7 @@ func (c *GoldilocksChip) HashNoPad(input []gl.Variable) GoldilocksHashOut {
return hash
}
func (c *GoldilocksChip) ToVec(hash GoldilocksHashOut) []gl.Variable {
func (c *GoldilocksChip) ToVec(hash GoldilocksHashOut) []gl.GoldilocksVariable {
return hash[:]
}
@ -135,7 +135,7 @@ func (c *GoldilocksChip) ConstantLayerExtension(state GoldilocksStateExtension,
return state
}
func (c *GoldilocksChip) sBoxMonomial(x gl.Variable) gl.Variable {
func (c *GoldilocksChip) sBoxMonomial(x gl.GoldilocksVariable) gl.GoldilocksVariable {
x2 := c.gl.MulNoReduce(x, x)
x3 := c.gl.MulNoReduce(x, x2)
x3 = c.gl.ReduceWithMaxBits(x3, 192)
@ -169,7 +169,7 @@ func (c *GoldilocksChip) SBoxLayerExtension(state GoldilocksStateExtension) Gold
return state
}
func (c *GoldilocksChip) mdsRowShf(r int, v [SPONGE_WIDTH]gl.Variable) gl.Variable {
func (c *GoldilocksChip) mdsRowShf(r int, v [SPONGE_WIDTH]gl.GoldilocksVariable) gl.GoldilocksVariable {
res := gl.Zero()
for i := 0; i < 12; i++ {

+ 1
- 1
poseidon/goldilocks_test.go

@ -25,7 +25,7 @@ func (circuit *TestPoseidonCircuit) Define(api frontend.API) error {
poseidonChip := NewGoldilocksChip(api)
output := poseidonChip.Poseidon(input)
glApi := gl.NewChip(api)
glApi := gl.NewGoldilocksApi(api)
for i := 0; i < 12; i++ {
glApi.AssertIsEqual(output[i], gl.NewVariable(circuit.Out[i]))

+ 2
- 2
poseidon/public_inputs_hash_test.go

@ -18,10 +18,10 @@ type TestPublicInputsHashCircuit struct {
}
func (circuit *TestPublicInputsHashCircuit) Define(api frontend.API) error {
glAPI := gl.NewChip(api)
glAPI := gl.NewGoldilocksApi(api)
// BN254 -> Binary(64) -> F
var input [3]gl.Variable
var input [3]gl.GoldilocksVariable
for i := 0; i < 3; i++ {
input[i] = gl.NewVariable(api.FromBinary(api.ToBinary(circuit.In[i], 64)...))
}

+ 2
- 2
types/circuit.go

@ -16,7 +16,7 @@ type Proof struct {
type ProofWithPublicInputs struct {
Proof Proof
PublicInputs []gl.Variable // Length = CommonCircuitData.NumPublicInputs
PublicInputs []gl.GoldilocksVariable // Length = CommonCircuitData.NumPublicInputs
}
type VerifierOnlyCircuitData struct {
@ -46,6 +46,6 @@ type CommonCircuitData struct {
NumGateConstraints uint64
NumConstants uint64
NumPublicInputs uint64
KIs []gl.Variable
KIs []gl.GoldilocksVariable
NumPartialProducts uint64
}

+ 5
- 5
types/fri.go

@ -47,11 +47,11 @@ func NewFriMerkleProof(merkleProofLen uint64) FriMerkleProof {
}
type FriEvalProof struct {
Elements []gl.Variable // Length = [CommonCircuitData.Constants + CommonCircuitData.NumRoutedWires, CommonCircuitData.NumWires + CommonCircuitData.FriParams.Hiding ? 4 : 0, CommonCircuitData.NumChallenges * (1 + CommonCircuitData.NumPartialProducts) + salt, CommonCircuitData.NumChallenges * CommonCircuitData.QuotientDegreeFactor + salt]
Elements []gl.GoldilocksVariable // Length = [CommonCircuitData.Constants + CommonCircuitData.NumRoutedWires, CommonCircuitData.NumWires + CommonCircuitData.FriParams.Hiding ? 4 : 0, CommonCircuitData.NumChallenges * (1 + CommonCircuitData.NumPartialProducts) + salt, CommonCircuitData.NumChallenges * CommonCircuitData.QuotientDegreeFactor + salt]
MerkleProof FriMerkleProof
}
func NewFriEvalProof(elements []gl.Variable, merkleProof FriMerkleProof) FriEvalProof {
func NewFriEvalProof(elements []gl.GoldilocksVariable, merkleProof FriMerkleProof) FriEvalProof {
return FriEvalProof{Elements: elements, MerkleProof: merkleProof}
}
@ -88,12 +88,12 @@ type FriProof struct {
CommitPhaseMerkleCaps []FriMerkleCap // Length = Len(CommonCircuitData.FriParams.ReductionArityBits)
QueryRoundProofs []FriQueryRound // Length = CommonCircuitData.FriConfig.FriParams.NumQueryRounds
FinalPoly PolynomialCoeffs
PowWitness gl.Variable
PowWitness gl.GoldilocksVariable
}
type FriChallenges struct {
FriAlpha gl.QuadraticExtensionVariable
FriBetas []gl.QuadraticExtensionVariable
FriPowResponse gl.Variable
FriQueryIndices []gl.Variable
FriPowResponse gl.GoldilocksVariable
FriQueryIndices []gl.GoldilocksVariable
}

+ 3
- 3
types/plonk.go

@ -25,9 +25,9 @@ func NewOpeningSet(numConstants uint64, numRoutedWires uint64, numWires uint64,
}
type ProofChallenges struct {
PlonkBetas []gl.Variable
PlonkGammas []gl.Variable
PlonkAlphas []gl.Variable
PlonkBetas []gl.GoldilocksVariable
PlonkGammas []gl.GoldilocksVariable
PlonkAlphas []gl.GoldilocksVariable
PlonkZeta gl.QuadraticExtensionVariable
FriChallenges FriChallenges
}

+ 4
- 4
verifier/verifier.go

@ -12,7 +12,7 @@ import (
type VerifierChip struct {
api frontend.API `gnark:"-"`
glChip *gl.Chip `gnark:"-"`
glChip *gl.GoldilocksApi `gnark:"-"`
poseidonGlChip *poseidon.GoldilocksChip `gnark:"-"`
poseidonBN254Chip *poseidon.BN254Chip `gnark:"-"`
plonkChip *plonk.PlonkChip `gnark:"-"`
@ -20,7 +20,7 @@ type VerifierChip struct {
}
func NewVerifierChip(api frontend.API, commonCircuitData types.CommonCircuitData) *VerifierChip {
glChip := gl.NewChip(api)
glChip := gl.NewGoldilocksApi(api)
friChip := fri.NewChip(api, &commonCircuitData.FriParams)
plonkChip := plonk.NewPlonkChip(api, commonCircuitData)
poseidonGlChip := poseidon.NewGoldilocksChip(api)
@ -35,7 +35,7 @@ func NewVerifierChip(api frontend.API, commonCircuitData types.CommonCircuitData
}
}
func (c *VerifierChip) GetPublicInputsHash(publicInputs []gl.Variable) poseidon.GoldilocksHashOut {
func (c *VerifierChip) GetPublicInputsHash(publicInputs []gl.GoldilocksVariable) poseidon.GoldilocksHashOut {
return c.poseidonGlChip.HashNoPad(publicInputs)
}
@ -206,7 +206,7 @@ func (c *VerifierChip) rangeCheckProof(proof types.Proof) {
func (c *VerifierChip) Verify(
proof types.Proof,
publicInputs []gl.Variable,
publicInputs []gl.GoldilocksVariable,
verifierData types.VerifierOnlyCircuitData,
commonData types.CommonCircuitData,
) {

+ 1
- 1
verifier/verifier_test.go

@ -15,7 +15,7 @@ import (
type TestVerifierCircuit struct {
Proof types.Proof
PublicInputs []gl.Variable `gnark:",public"`
PublicInputs []gl.GoldilocksVariable `gnark:",public"`
verifierChip *verifier.VerifierChip `gnark:"-"`
plonky2CircuitName string `gnark:"-"`

Loading…
Cancel
Save