9 Commits

Author SHA1 Message Date
druiz0992
86621a0dbe reduced test time 2020-05-03 20:17:57 +02:00
druiz0992
9ed6e14fad Leave prover_test untouched 2020-05-03 20:07:39 +02:00
druiz0992
2d45cb7039 Update tables.md 2020-05-03 19:58:04 +02:00
druiz0992
68b0c2fb54 Fixed merge conflicts 2020-05-03 19:53:52 +02:00
druiz0992
e3b5f88660 Added G2 and included tables to prover 2020-05-03 19:51:02 +02:00
druiz0992
36b48215f0 Update tables.md 2020-05-03 03:39:22 +02:00
druiz0992
a110eb4ca1 Update tables.md 2020-05-03 03:32:23 +02:00
druiz0992
72913bc801 Added a description file 2020-05-03 03:30:52 +02:00
druiz0992
8c81f5041e G1 Functionality to precomput G1 tables 2020-05-03 03:02:49 +02:00
8 changed files with 510 additions and 598 deletions

View File

@@ -467,35 +467,8 @@ func stringToG2(h [][]string) (*bn256.G2, error) {
return p, err
}
// ProofStringToSmartContractFormat converts the ProofString to a ProofString in the SmartContract format in a ProofString structure
func ProofStringToSmartContractFormat(s ProofString) ProofString {
var rs ProofString
rs.A = make([]string, 2)
rs.B = make([][]string, 2)
rs.B[0] = make([]string, 2)
rs.B[1] = make([]string, 2)
rs.C = make([]string, 2)
rs.A[0] = s.A[0]
rs.A[1] = s.A[1]
rs.B[0][0] = s.B[0][1]
rs.B[0][1] = s.B[0][0]
rs.B[1][0] = s.B[1][1]
rs.B[1][1] = s.B[1][0]
rs.C[0] = s.C[0]
rs.C[1] = s.C[1]
rs.Protocol = s.Protocol
return rs
}
// ProofToSmartContractFormat converts the *types.Proof to a ProofString in the SmartContract format in a ProofString structure
func ProofToSmartContractFormat(p *types.Proof) ProofString {
s := ProofToString(p)
return ProofStringToSmartContractFormat(s)
}
// ProofToString converts the Proof to ProofString
func ProofToString(p *types.Proof) ProofString {
// ProofToJson outputs the Proof i Json format
func ProofToJson(p *types.Proof) ([]byte, error) {
var ps ProofString
ps.A = make([]string, 3)
ps.B = make([][]string, 3)
@@ -524,55 +497,10 @@ func ProofToString(p *types.Proof) ProofString {
ps.Protocol = "groth"
return ps
}
// ProofToJson outputs the Proof i Json format
func ProofToJson(p *types.Proof) ([]byte, error) {
ps := ProofToString(p)
return json.Marshal(ps)
}
// ProofToHex converts the Proof to ProofString with hexadecimal strings
func ProofToHex(p *types.Proof) ProofString {
var ps ProofString
ps.A = make([]string, 3)
ps.B = make([][]string, 3)
ps.B[0] = make([]string, 2)
ps.B[1] = make([]string, 2)
ps.B[2] = make([]string, 2)
ps.C = make([]string, 3)
a := p.A.Marshal()
ps.A[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[:32]).Bytes())
ps.A[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[32:64]).Bytes())
ps.A[2] = "1"
b := p.B.Marshal()
ps.B[0][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[:32]).Bytes())
ps.B[0][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[32:64]).Bytes())
ps.B[1][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[64:96]).Bytes())
ps.B[1][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[96:128]).Bytes())
ps.B[2][0] = "1"
ps.B[2][1] = "0"
c := p.C.Marshal()
ps.C[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[:32]).Bytes())
ps.C[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[32:64]).Bytes())
ps.C[2] = "1"
ps.Protocol = "groth"
return ps
}
// ProofToJsonHex outputs the Proof i Json format with hexadecimal strings
func ProofToJsonHex(p *types.Proof) ([]byte, error) {
ps := ProofToHex(p)
return json.Marshal(ps)
}
// ParseWitnessBin parses binary file representation of the Witness into the Witness struct
// ParseWitness parses binary file representation of the Witness into the Witness struct
func ParseWitnessBin(f *os.File) (types.Witness, error) {
var w types.Witness
r := bufio.NewReader(f)

View File

@@ -172,27 +172,3 @@ func TestParseWitnessBin(t *testing.T) {
testCircuitParseWitnessBin(t, "circuit1k")
testCircuitParseWitnessBin(t, "circuit5k")
}
func TestProofSmartContractFormat(t *testing.T) {
proofJson, err := ioutil.ReadFile("../testdata/circuit1k/proof.json")
require.Nil(t, err)
proof, err := ParseProof(proofJson)
require.Nil(t, err)
pS := ProofToString(proof)
pSC := ProofToSmartContractFormat(proof)
assert.Nil(t, err)
assert.Equal(t, pS.A[0], pSC.A[0])
assert.Equal(t, pS.A[1], pSC.A[1])
assert.Equal(t, pS.B[0][0], pSC.B[0][1])
assert.Equal(t, pS.B[0][1], pSC.B[0][0])
assert.Equal(t, pS.B[1][0], pSC.B[1][1])
assert.Equal(t, pS.B[1][1], pSC.B[1][0])
assert.Equal(t, pS.C[0], pSC.C[0])
assert.Equal(t, pS.C[1], pSC.C[1])
assert.Equal(t, pS.Protocol, pSC.Protocol)
pSC2 := ProofStringToSmartContractFormat(pS)
assert.Equal(t, pSC, pSC2)
}

View File

@@ -2,19 +2,20 @@ package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
)
type tableG1 struct {
type TableG1 struct{
data []*bn256.G1
}
func (t tableG1) getData() []*bn256.G1 {
func (t TableG1) GetData() []*bn256.G1 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
@@ -22,91 +23,77 @@ func (t tableG1) getData() []*bn256.G1 {
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int){
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
aExt := make([]*bn256.G1, 0)
aExt = append(aExt, a...)
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
for i:=len(a); i<gsize; i++ {
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
a_ext = append(a_ext,new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table,elG1)
lastPow2 := 1
last_pow2 := 1
nelems := 0
for i :=1; i< 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i & (i-1) == 0{
lastPow2 = i
elG1.Set(aExt[nelems])
last_pow2 = i
elG1.Set(a_ext[nelems])
nelems++
} else {
elG1.Add(table[lastPow2], table[i-lastPow2])
elG1.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG1)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t tableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G1 elements
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i:=len(k); i < gsize; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(kExt)
msb := getMsb(k_ext)
for i := msb-1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q,Q)
b := getBit(kExt, i)
b := getBit(k_ext,i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if qPrev != nil {
return Q.Add(Q, qPrev)
}
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -118,10 +105,10 @@ func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *
// Perform bitwise addition
for j:=0; j < len(t); j++ {
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -137,43 +124,45 @@ func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *
R.Add(R,Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG1{}
table := TableG1{}
Q:= new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
table.NewTableG1( a[i*gsize:(i+1)*gsize], gsize)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if qPrev != nil {
return Q.Add(Q, qPrev)
}
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG1{}
table := TableG1{}
// We need at least gsize elements. If not enough, fill with 0
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -185,22 +174,22 @@ func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize in
// Perform bitwise addition
for j:=0; j < ntables-1; j++ {
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
table.NewTableG1( a[j*gsize:(j+1)*gsize], gsize)
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[(ntables-1)*gsize:], i)
b := getBit(k_ext[(ntables-1)*gsize:],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -214,25 +203,28 @@ func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize in
R = new(bn256.G1).Add(R,R)
R.Add(R,Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
/////
// TODO - How can avoid replicating code in G2?
//G2
type tableG2 struct {
type TableG2 struct{
data []*bn256.G2
}
func (t tableG2) getData() []*bn256.G2 {
func (t TableG2) GetData() []*bn256.G2 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
@@ -240,92 +232,77 @@ func (t tableG2) getData() []*bn256.G2 {
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int){
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
aExt := make([]*bn256.G2, 0)
aExt = append(aExt, a...)
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
for i:=len(a); i<gsize; i++ {
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
a_ext = append(a_ext,new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table,elG2)
lastPow2 := 1
last_pow2 := 1
nelems := 0
for i :=1; i< 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i & (i-1) == 0{
lastPow2 = i
elG2.Set(aExt[nelems])
last_pow2 = i
elG2.Set(a_ext[nelems])
nelems++
} else {
elG2.Add(table[lastPow2], table[i-lastPow2])
elG2.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG2)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t tableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G2 elements
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i:=len(k); i < gsize; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(kExt)
msb := getMsb(k_ext)
for i := msb-1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q,Q)
b := getBit(kExt, i)
b := getBit(k_ext,i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if qPrev != nil {
return Q.Add(Q, qPrev)
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -337,10 +314,10 @@ func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *
// Perform bitwise addition
for j:=0; j < len(t); j++ {
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -355,43 +332,45 @@ func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *
R = new(bn256.G2).Add(R,R)
R.Add(R,Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG2{}
table := TableG2{}
Q:= new(bn256.G2).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
table.NewTableG2( a[i*gsize:(i+1)*gsize], gsize)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if qPrev != nil {
return Q.Add(Q, qPrev)
}
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := tableG2{}
table := TableG2{}
// We need at least gsize elements. If not enough, fill with 0
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -403,22 +382,22 @@ func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize in
// Perform bitwise addition
for j:=0; j < ntables-1; j++ {
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
table.NewTableG2( a[j*gsize:(j+1)*gsize], gsize)
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb-1; i >= 0; i-- {
b := getBit(kExt[(ntables-1)*gsize:], i)
b := getBit(k_ext[(ntables-1)*gsize:],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -432,20 +411,21 @@ func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize in
R = new(bn256.G2).Add(R,R)
R.Add(R,Q[i-1])
}
if qPrev != nil {
return R.Add(R, qPrev)
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Return most significant bit position in a group of Big Integers
func getMsb(k []*big.Int) int{
msb := 0
for _, el := range k {
tmpMsb := el.BitLen()
if tmpMsb > msb {
msb = tmpMsb
for _, el := range(k){
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
}
}
return msb
@@ -453,11 +433,11 @@ func getMsb(k []*big.Int) int {
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
tableIdx := uint(0)
table_idx := uint(0)
for idx, el := range k {
for idx, el := range(k){
b := el.Bit(i)
tableIdx += (b << idx)
table_idx += (b << idx)
}
return tableIdx
return table_idx
}

View File

@@ -1,14 +1,13 @@
package prover
import (
"bytes"
"crypto/rand"
"fmt"
"math/big"
"testing"
"time"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"time"
"bytes"
"fmt"
)
const (
@@ -44,6 +43,8 @@ func randomG2Array(n int) []*bn256.G2 {
return arrayG2
}
func TestTableG1(t *testing.T){
n := N1
@@ -61,33 +62,34 @@ func TestTableG1(t *testing.T) {
for gsize:=2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]tableG1, ntables)
table := make([]TableG1, ntables)
for i:=0; i<ntables-1; i++ {
table[i].newTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
table[i].NewTableG1( arrayG1[i*gsize:(i+1)*gsize], gsize)
}
table[ntables-1].newTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
table[ntables-1].NewTableG1( arrayG1[(ntables-1)*gsize:], gsize)
beforeT = time.Now()
Q2:= new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
Q2 = table[i].mulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].mulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q3 := scalarMultG1(arrayG1, arrayW, nil, gsize)
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q4 := mulTableNoDoubleG1(table, arrayW, nil, gsize)
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q5 := scalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
if bytes.Compare(Q1.Marshal(),Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}
@@ -120,33 +122,34 @@ func TestTableG2(t *testing.T) {
for gsize:=2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]tableG2, ntables)
table := make([]TableG2, ntables)
for i:=0; i<ntables-1; i++ {
table[i].newTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
table[i].NewTableG2( arrayG2[i*gsize:(i+1)*gsize], gsize)
}
table[ntables-1].newTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
table[ntables-1].NewTableG2( arrayG2[(ntables-1)*gsize:], gsize)
beforeT = time.Now()
Q2:= new(bn256.G2).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
Q2 = table[i].mulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 =table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].mulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q3 := scalarMultG2(arrayG2, arrayW, nil, gsize)
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q4 := mulTableNoDoubleG2(table, arrayW, nil, gsize)
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q5 := scalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
if bytes.Compare(Q1.Marshal(),Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}

View File

@@ -87,25 +87,25 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
// split 1
go func(cpu int, ranges [2]int) {
proofA[cpu] = scalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = scalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = scalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
minLim := pk.NPublic + 1
min_lim := pk.NPublic+1
if ranges[0] > pk.NPublic+1 {
minLim = ranges[0]
min_lim = ranges[0]
}
if ranges[1] > pk.NPublic + 1 {
proofC[cpu] = scalarMultNoDoubleG1(pk.C[minLim:ranges[1]],
w[minLim:ranges[1]],
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
w[min_lim:ranges[1]],
proofC[cpu],
gsize)
}
@@ -142,7 +142,7 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(len(h), numcpu) {
// split 2
go func(cpu int, ranges [2]int) {
proofC[cpu] = scalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)

View File

@@ -16,7 +16,7 @@ There may be some concern on the additional size of the tables since they need t
| Algorithm (G1) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|--|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|
| Naive | 6.63s | - | - | - | - | - | - | - |
| Strauss | 13.16s | 9.03s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s |
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
@@ -26,7 +26,7 @@ There may be some concern on the additional size of the tables since they need t
There are 5000 G2 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
| Algorithm (G2) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|--|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|
| Naive | 3.55s | | | | | | | |
| Strauss | 3.55s | 2.54s | 1.96s | 1.58s | 1.38s | 1.20s | 1.03s | 937ms |
| Strauss + Table Computation | 3.59s | 2.58s | 2.04s | 1.71s | 1.51s | 1.46s | 1.51s | 1.82s |

25
tables.md Normal file
View File

@@ -0,0 +1,25 @@
# Tables Pre-calculation
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation.
There are two potential improvements to the naive approach:
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method).
2. Leave the doubling operation for the last step
Both options can be combined.
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order.
There are 5000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach.
| Algorithm | GS / Time |
|---|---|---|
| Naive | 6.63s | | | | | | | |
| Strauss | 13.16s | 9.033s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s | 1.44 s |
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s|
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s |