Compare commits

..

8 Commits

Author SHA1 Message Date
arnaucube
048941e5e0 Update to goff v0.2.0 2020-04-08 10:47:26 +02:00
arnau
eb41fe0757 Merge pull request #18 from iden3/feature/fix32bits
Fix compat with 32 bit arch
2020-03-18 11:55:56 +01:00
Eduard S
e10db811aa Fix compat with 32 bit arch 2020-03-17 17:17:45 +01:00
Eduard S
ee467c6215 Merge pull request #16 from iden3/feature/mimc7-goff
Feature/mimc7 goff
2020-03-06 16:27:36 +01:00
arnaucube
4750e9c83c Remove field package which is no longer used 2020-03-06 16:24:41 +01:00
arnaucube
16a8a18a6d Optimize MiMC7 migrating from *big.Int to goff
Optimize MiMC7 migrating from *big.Int to goff generated finite field
operations.

There is still a lot of room for optimization for MiMC7 in the way that is done internally, but will be done in the future.

Benchmarks:
Tested on a Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 16GB of RAM.

- Before:
```
BenchmarkMIMC7-4   	    1026	   1160298 ns/op
```

- After this commit:
```
BenchmarkMIMC7-4   	   19263	     61651 ns/op
```
2020-03-05 17:35:25 +01:00
arnau
e8be761ec7 Merge pull request #15 from iden3/feature/poseidon-opt-goff
Feature/poseidon opt goff
2020-03-04 18:34:17 +01:00
Eduard S
5d88f7c4cd Merge pull request #13 from iden3/feature/update-bbjj-sig
Update BabyJubJub signature with Poseidon
2020-03-03 17:57:27 +01:00
15 changed files with 1543 additions and 459 deletions

View File

@@ -4,5 +4,12 @@ language: go
go:
- "1.12"
jobs:
include:
- name: "Unit Tests 64 bit arch"
env: GOARCH="amd64"
- name: "Unit Test 32 bit arch"
env: GOARCH="386"
env:
- GO111MODULE=on

View File

@@ -12,14 +12,19 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff DO NOT EDIT
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"math/bits"
"golang.org/x/sys/cpu"
)
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
var carry uint64
hi, lo := bits.Mul64(a, b)

View File

@@ -12,29 +12,33 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// field modulus q =
//
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
// Code generated by goff DO NOT EDIT
// goff version: - build:
// Element are assumed to be in Montgomery form in all methods
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff (generated by goff) contains field arithmetics operations
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import (
"crypto/rand"
"encoding/binary"
"io"
"math/big"
"math/bits"
"strconv"
"sync"
"unsafe"
)
// Element represents a field element stored on 4 words (uint64)
// Element are assumed to be in Montgomery form in all methods
// field modulus q =
//
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
type Element [4]uint64
// ElementLimbs number of 64 bits words needed to represent Element
@@ -311,6 +315,7 @@ func (z *Element) SetRandom() *Element {
z[3] %= 3486998266802970665
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@@ -322,6 +327,38 @@ func (z *Element) SetRandom() *Element {
return z
}
// One returns 1 (in montgommery form)
func One() Element {
var one Element
one.SetOne()
return one
}
// FromInterface converts i1 from uint64, int, string, or Element, big.Int into Element
// panic if provided type is not supported
func FromInterface(i1 interface{}) Element {
var val Element
switch c1 := i1.(type) {
case uint64:
val.SetUint64(c1)
case int:
val.SetString(strconv.Itoa(c1))
case string:
val.SetString(c1)
case big.Int:
val.SetBigInt(&c1)
case Element:
val = c1
case *Element:
val.Set(c1)
default:
panic("invalid type")
}
return val
}
// Add z = x + y mod q
func (z *Element) Add(x, y *Element) *Element {
var carry uint64
@@ -332,6 +369,7 @@ func (z *Element) Add(x, y *Element) *Element {
z[3], _ = bits.Add64(x[3], y[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@@ -352,6 +390,7 @@ func (z *Element) AddAssign(x *Element) *Element {
z[3], _ = bits.Add64(z[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@@ -372,6 +411,7 @@ func (z *Element) Double(x *Element) *Element {
z[3], _ = bits.Add64(x[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@@ -416,18 +456,31 @@ func (z *Element) SubAssign(x *Element) *Element {
return z
}
// Exp z = x^e mod q
func (z *Element) Exp(x Element, e uint64) *Element {
if e == 0 {
// Exp z = x^exponent mod q
// (not optimized)
// exponent (non-montgomery form) is ordered from least significant word to most significant word
func (z *Element) Exp(x Element, exponent ...uint64) *Element {
r := 0
msb := 0
for i := len(exponent) - 1; i >= 0; i-- {
if exponent[i] == 0 {
r++
} else {
msb = (i * 64) + bits.Len64(exponent[i])
break
}
}
exponent = exponent[:len(exponent)-r]
if len(exponent) == 0 {
return z.SetOne()
}
z.Set(&x)
l := bits.Len64(e) - 2
l := msb - 2
for i := l; i >= 0; i-- {
z.Square(z)
if e&(1<<uint(i)) != 0 {
if exponent[i/64]&(1<<uint(i%64)) != 0 {
z.MulAssign(&x)
}
}
@@ -478,6 +531,7 @@ func (z *Element) FromMont() *Element {
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
@@ -513,15 +567,33 @@ func (z *Element) String() string {
// ToBigInt returns z as a big.Int in Montgomery form
func (z *Element) ToBigInt(res *big.Int) *big.Int {
bits := (*[4]big.Word)(unsafe.Pointer(z))
return res.SetBits(bits[:])
if bits.UintSize == 64 {
bits := (*[4]big.Word)(unsafe.Pointer(z))
return res.SetBits(bits[:])
} else {
var bits [8]big.Word
for i := 0; i < len(z); i++ {
bits[i*2] = big.Word(z[i])
bits[i*2+1] = big.Word(z[i] >> 32)
}
return res.SetBits(bits[:])
}
}
// ToBigIntRegular returns z as a big.Int in regular form
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
z.FromMont()
bits := (*[4]big.Word)(unsafe.Pointer(&z))
return res.SetBits(bits[:])
if bits.UintSize == 64 {
bits := (*[4]big.Word)(unsafe.Pointer(&z))
return res.SetBits(bits[:])
} else {
var bits [8]big.Word
for i := 0; i < len(z); i++ {
bits[i*2] = big.Word(z[i])
bits[i*2+1] = big.Word(z[i] >> 32)
}
return res.SetBits(bits[:])
}
}
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
@@ -531,6 +603,19 @@ func (z *Element) SetBigInt(v *big.Int) *Element {
zero := big.NewInt(0)
q := elementModulusBigInt()
// fast path
c := v.Cmp(q)
if c == 0 {
return z
} else if c != 1 && v.Cmp(zero) != -1 {
// v should
vBits := v.Bits()
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
}
return z.ToMont()
}
// copy input
vv := new(big.Int).Set(v)
@@ -548,8 +633,18 @@ func (z *Element) SetBigInt(v *big.Int) *Element {
}
// v should
vBits := vv.Bits()
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
if bits.UintSize == 64 {
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
}
} else {
for i := 0; i < len(vBits); i++ {
if i%2 == 0 {
z[i/2] = uint64(vBits[i])
} else {
z[i/2] |= uint64(vBits[i]) << 32
}
}
}
return z.ToMont()
}
@@ -563,202 +658,97 @@ func (z *Element) SetString(s string) *Element {
return z.SetBigInt(x)
}
// Mul z = x * y mod q
func (z *Element) Mul(x, y *Element) *Element {
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
func (z *Element) Legendre() int {
var l Element
// z^((q-1)/2)
l.Exp(*z,
11669102379873075200,
10671829228508198984,
15863968012492123182,
1743499133401485332,
)
var t [4]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
if l.IsZero() {
return 0
}
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
// if l == 1
if (l[3] == 1011752739694698287) && (l[2] == 7381016538464732718) && (l[1] == 3962172157175319849) && (l[0] == 12436184717236109307) {
return 1
}
return z
return -1
}
// MulAssign z = z * x mod q
func (z *Element) MulAssign(x *Element) *Element {
// Sqrt z = x mod q
// if the square root doesn't exist (x is not a square mod q)
// Sqrt leaves z unchanged and returns nil
func (z *Element) Sqrt(x *Element) *Element {
// q ≡ 1 (mod 4)
// see modSqrtTonelliShanks in math/big/int.go
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
var y, b, t, w Element
// w = x^((s-1)/2))
w.Exp(*x,
14829091926808964255,
867720185306366531,
688207751544974772,
6495040407,
)
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
// y = x^((s+1)/2)) = w * x
y.Mul(x, &w)
// b = x^s = w * w * x = y * x
b.Mul(&w, &y)
// g = nonResidue ^ s
var g = Element{
7164790868263648668,
11685701338293206998,
6216421865291908056,
1756667274303109607,
}
r := uint64(28)
// compute legendre symbol
// t = x^((q-1)/2) = r-1 squaring of x^s
t = b
for i := uint64(0); i < r-1; i++ {
t.Square(&t)
}
if t.IsZero() {
return z.SetZero()
}
if !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
// t != 1, we don't have a square root
return nil
}
for {
var m uint64
t = b
// for t != 1
for !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
t.Square(&t)
m++
}
if m == 0 {
return z.Set(&y)
}
// t = g^(2^(r-m-1)) mod q
ge := int(r - m - 1)
t = g
for ge > 0 {
t.Square(&t)
ge--
}
g.Square(&t)
y.MulAssign(&t)
b.MulAssign(&g)
r = m
}
return z
}
// Square z = x * x mod q
func (z *Element) Square(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

170
ff/element_mul.go Normal file
View File

@@ -0,0 +1,170 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Mul z = x * y mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// MulAssign z = z * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

39
ff/element_mul_amd64.go Normal file
View File

@@ -0,0 +1,39 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// MulAssignElement z = z * x mod q (constant time)
// calling this instead of z.MulAssign(x) is prefered for performance critical path
//go:noescape
func MulAssignElement(res, y *Element)
// Mul z = x * y mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
res := *x
MulAssignElement(&res, y)
z.Set(&res)
return z
}
// MulAssign z = z * x mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
MulAssignElement(z, x)
return z
}

695
ff/element_mul_amd64.s Normal file
View File

@@ -0,0 +1,695 @@
// Code generated by goff (v0.2.0) DO NOT EDIT
#include "textflag.h"
// func MulAssignElement(res,y *Element)
// montgomery multiplication of res by y
// stores the result in res
TEXT ·MulAssignElement(SB), NOSPLIT, $0-16
// dereference our parameters
MOVQ res+0(FP), DI
MOVQ y+8(FP), R8
// check if we support adx and mulx
CMPB ·supportAdx(SB), $1
JNE no_adx
// the algorithm is described here
// https://hackmd.io/@zkteam/modular_multiplication
// however, to benefit from the ADCX and ADOX carry chains
// we split the inner loops in 2:
// for i=0 to N-1
// for j=0 to N-1
// (A,t[j]) := t[j] + a[j]*b[i] + A
// m := t[0]*q'[0] mod W
// C,_ := t[0] + m*q[0]
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
// t[N-1] = C + A
// ---------------------------------------------------------------------------------------------
// outter loop 0
// clear up the carry flags
XORQ R9 , R9
// R12 = y[0]
MOVQ 0(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, CX , R9
// DX = res[1]
MOVQ 8(DI), DX
MOVQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
MOVQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
MOVQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// clear up the carry flags
XORQ R9 , R9
// R12 = y[1]
MOVQ 8(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// clear up the carry flags
XORQ R9 , R9
// R12 = y[2]
MOVQ 16(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// clear up the carry flags
XORQ R9 , R9
// R12 = y[3]
MOVQ 24(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
reduce:
// reduce, constant time version
// first we copy registers storing t in a separate set of registers
// as SUBQ modifies the 2nd operand
MOVQ CX, DX
MOVQ BX, R8
MOVQ BP, R9
MOVQ SI, R10
MOVQ $0x43e1f593f0000001, R11
SUBQ R11, DX
MOVQ $0x2833e84879b97091, R11
SBBQ R11, R8
MOVQ $0xb85045b68181585d, R11
SBBQ R11, R9
MOVQ $0x30644e72e131a029, R11
SBBQ R11, R10
JCS t_is_smaller // no borrow, we return t
// borrow is set, we return u
MOVQ DX, (DI)
MOVQ R8, 8(DI)
MOVQ R9, 16(DI)
MOVQ R10, 24(DI)
RET
t_is_smaller:
MOVQ CX, 0(DI)
MOVQ BX, 8(DI)
MOVQ BP, 16(DI)
MOVQ SI, 24(DI)
RET
no_adx:
// ---------------------------------------------------------------------------------------------
// outter loop 0
// (A,t[0]) := t[0] + x[0]*y[0]
MOVQ (DI), AX // x[0]
MOVQ 0(R8), R12
MULQ R12 // x[0] * y[0]
MOVQ DX, R9
MOVQ AX, CX
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[0]
MOVQ R9, BX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[0]
MOVQ R9, BP
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[0]
MOVQ R9, SI
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// (A,t[0]) := t[0] + x[0]*y[1]
MOVQ (DI), AX // x[0]
MOVQ 8(R8), R12
MULQ R12 // x[0] * y[1]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[1]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[1]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[1]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// (A,t[0]) := t[0] + x[0]*y[2]
MOVQ (DI), AX // x[0]
MOVQ 16(R8), R12
MULQ R12 // x[0] * y[2]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[2]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[2]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[2]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// (A,t[0]) := t[0] + x[0]*y[3]
MOVQ (DI), AX // x[0]
MOVQ 24(R8), R12
MULQ R12 // x[0] * y[3]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[3]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[3]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[3]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
JMP reduce

93
ff/element_square.go Normal file
View File

@@ -0,0 +1,93 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

View File

@@ -0,0 +1,34 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// SquareElement z = x * x mod q
// calling this instead of z.Square(x) is prefered for performance critical path
// go - noescape
// func SquareElement(res,x *Element)
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
if z != x {
z.Set(x)
}
MulAssignElement(z, x)
// SquareElement(z, x)
return z
}

View File

@@ -1,9 +1,26 @@
// Code generated by goff DO NOT EDIT
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"crypto/rand"
"math/big"
"math/bits"
mrand "math/rand"
"testing"
)
@@ -21,7 +38,14 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
modulusMinusOne.Sub(modulus, &one)
for i := 0; i < 1000; i++ {
var n int
if testing.Short() {
n = 10
} else {
n = 500
}
for i := 0; i < n; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
@@ -57,7 +81,7 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
rbExp := new(big.Int).SetUint64(rExp)
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bSquare big.Int
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bExp2, bSquare big.Int
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
@@ -106,12 +130,40 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
cmpEandB(&eNeg, &bNeg, "Neg")
cmpEandB(&eInv, &bInv, "Inv")
cmpEandB(&eExp, &bExp, "Exp")
cmpEandB(&eLsh, &bLsh, "Lsh")
// legendre symbol
if e1.Legendre() != big.Jacobi(b1, modulus) {
t.Fatal("legendre symbol computation failed")
}
if e2.Legendre() != big.Jacobi(b2, modulus) {
t.Fatal("legendre symbol computation failed")
}
// these are slow, killing circle ci
if n <= 5 {
// sqrt
var eSqrt, eExp2 Element
var bSqrt big.Int
bSqrt.ModSqrt(b1, modulus)
eSqrt.Sqrt(&e1)
cmpEandB(&eSqrt, &bSqrt, "Sqrt")
bits := b2.Bits()
exponent := make([]uint64, len(bits))
for k := 0; k < len(bits); k++ {
exponent[k] = uint64(bits[k])
}
eExp2.Exp(e1, exponent...)
bExp2.Exp(b1, b2, modulus)
cmpEandB(&eExp2, &bExp2, "Exp multi words")
}
}
}
func TestELEMENTIsRandom(t *testing.T) {
for i := 0; i < 1000; i++ {
for i := 0; i < 50; i++ {
var x, y Element
x.SetRandom()
y.SetRandom()
@@ -125,7 +177,6 @@ func TestELEMENTIsRandom(t *testing.T) {
// benchmarks
// most benchmarks are rudimentary and should sample a large number of random inputs
// or be run multiple times to ensure it didn't measure the fastest path of the function
// TODO: clean up and push benchmarking branch
var benchResElement Element
@@ -219,6 +270,15 @@ func BenchmarkSquareELEMENT(b *testing.B) {
}
}
func BenchmarkSqrtELEMENT(b *testing.B) {
var a Element
a.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Sqrt(&a)
}
}
func BenchmarkMulAssignELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
@@ -232,3 +292,183 @@ func BenchmarkMulAssignELEMENT(b *testing.B) {
benchResElement.MulAssign(&x)
}
}
func BenchmarkMulAssignASMELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
benchResElement.SetOne()
b.ResetTimer()
for i := 0; i < b.N; i++ {
MulAssignElement(&benchResElement, &x)
}
}
func TestELEMENTAsm(t *testing.T) {
// ensure ASM implementations matches the ones using math/bits
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
for i := 0; i < 500; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
b2, _ := rand.Int(rand.Reader, modulus)
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eTestMul, eMulAssign, eSquare, eTestSquare Element
e1.SetBigInt(b1)
e2.SetBigInt(b2)
eTestMul = e1
eTestMul.testMulAssign(&e2)
eMulAssign = e1
eMulAssign.MulAssign(&e2)
if !eTestMul.Equal(&eMulAssign) {
t.Fatal("inconsisntencies between MulAssign and testMulAssign --> check if MulAssign is calling ASM implementaiton on amd64")
}
// square
eSquare.Square(&e1)
eTestSquare.testSquare(&e1)
if !eTestSquare.Equal(&eSquare) {
t.Fatal("inconsisntencies between Square and testSquare --> check if Square is calling ASM implementaiton on amd64")
}
}
}
// this is here for consistency purposes, to ensure MulAssign on AMD64 using asm implementation gives consistent results
func (z *Element) testMulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// this is here for consistency purposes, to ensure Square on AMD64 using asm implementation gives consistent results
func (z *Element) testSquare(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

View File

@@ -1,152 +0,0 @@
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
package field
import (
"bytes"
"crypto/rand"
"math/big"
)
// Fq is the Z field over modulus Q
type Fq struct {
Q *big.Int // Q
}
// NewFq generates a new Fq
func NewFq(q *big.Int) Fq {
return Fq{
q,
}
}
// Zero returns a Zero value on the Fq
func (fq Fq) Zero() *big.Int {
return big.NewInt(int64(0))
}
// One returns a One value on the Fq
func (fq Fq) One() *big.Int {
return big.NewInt(int64(1))
}
// Add performs an addition on the Fq
func (fq Fq) Add(a, b *big.Int) *big.Int {
r := new(big.Int).Add(a, b)
return new(big.Int).Mod(r, fq.Q)
}
// Double performs a doubling on the Fq
func (fq Fq) Double(a *big.Int) *big.Int {
r := new(big.Int).Add(a, a)
return new(big.Int).Mod(r, fq.Q)
}
// Sub performs a subtraction on the Fq
func (fq Fq) Sub(a, b *big.Int) *big.Int {
r := new(big.Int).Sub(a, b)
return new(big.Int).Mod(r, fq.Q)
}
// Neg performs a negation on the Fq
func (fq Fq) Neg(a *big.Int) *big.Int {
m := new(big.Int).Neg(a)
return new(big.Int).Mod(m, fq.Q)
}
// Mul performs a multiplication on the Fq
func (fq Fq) Mul(a, b *big.Int) *big.Int {
m := new(big.Int).Mul(a, b)
return new(big.Int).Mod(m, fq.Q)
}
func (fq Fq) MulScalar(base, e *big.Int) *big.Int {
return fq.Mul(base, e)
}
// Inverse returns the inverse on the Fq
func (fq Fq) Inverse(a *big.Int) *big.Int {
return new(big.Int).ModInverse(a, fq.Q)
}
// Div performs the division over the finite field
func (fq Fq) Div(a, b *big.Int) *big.Int {
d := fq.Mul(a, fq.Inverse(b))
return new(big.Int).Mod(d, fq.Q)
}
// Square performs a square operation on the Fq
func (fq Fq) Square(a *big.Int) *big.Int {
m := new(big.Int).Mul(a, a)
return new(big.Int).Mod(m, fq.Q)
}
// Exp performs the exponential over Fq
func (fq Fq) Exp(base *big.Int, e *big.Int) *big.Int {
res := fq.One()
rem := fq.Copy(e)
exp := base
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
if BigIsOdd(rem) {
res = fq.Mul(res, exp)
}
exp = fq.Square(exp)
rem = new(big.Int).Rsh(rem, 1)
}
return res
}
func (fq Fq) Rand() (*big.Int, error) {
maxbits := fq.Q.BitLen()
b := make([]byte, (maxbits/8)-1)
_, err := rand.Read(b)
if err != nil {
return nil, err
}
r := new(big.Int).SetBytes(b)
rq := new(big.Int).Mod(r, fq.Q)
// r over q, nil
return rq, nil
}
func (fq Fq) IsZero(a *big.Int) bool {
return bytes.Equal(a.Bytes(), fq.Zero().Bytes())
}
func (fq Fq) Copy(a *big.Int) *big.Int {
return new(big.Int).SetBytes(a.Bytes())
}
func (fq Fq) Affine(a *big.Int) *big.Int {
nq := fq.Neg(fq.Q)
aux := a
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
if aux.Cmp(nq) != 1 { // aux less or equal nq
aux = new(big.Int).Mod(aux, fq.Q)
}
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
aux = new(big.Int).Add(aux, fq.Q)
}
} else {
if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
aux = new(big.Int).Mod(aux, fq.Q)
}
}
return aux
}
func (fq Fq) Equal(a, b *big.Int) bool {
aAff := fq.Affine(a)
bAff := fq.Affine(b)
return bytes.Equal(aAff.Bytes(), bAff.Bytes())
}
func BigIsOdd(n *big.Int) bool {
one := big.NewInt(int64(1))
and := new(big.Int).And(n, one)
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
}

View File

@@ -1,39 +0,0 @@
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
package field
import (
"math/big"
"testing"
"github.com/stretchr/testify/assert"
)
func iToBig(a int) *big.Int {
return big.NewInt(int64(a))
}
func TestFq1(t *testing.T) {
fq1 := NewFq(iToBig(7))
res := fq1.Add(iToBig(4), iToBig(4))
assert.Equal(t, iToBig(1), fq1.Affine(res))
res = fq1.Double(iToBig(5))
assert.Equal(t, iToBig(3), fq1.Affine(res))
res = fq1.Sub(iToBig(5), iToBig(7))
assert.Equal(t, iToBig(5), fq1.Affine(res))
res = fq1.Neg(iToBig(5))
assert.Equal(t, iToBig(2), fq1.Affine(res))
res = fq1.Mul(iToBig(5), iToBig(11))
assert.Equal(t, iToBig(6), fq1.Affine(res))
res = fq1.Inverse(iToBig(4))
assert.Equal(t, iToBig(2), res)
res = fq1.Square(iToBig(5))
assert.Equal(t, iToBig(4), res)
}

1
go.mod
View File

@@ -7,4 +7,5 @@ require (
github.com/ethereum/go-ethereum v1.8.27
github.com/stretchr/testify v1.3.0
golang.org/x/crypto v0.0.0-20190621222207-cc06ce4a13d4
golang.org/x/sys v0.0.0-20190412213103-97732733099d
)

View File

@@ -6,7 +6,7 @@ import (
"github.com/ethereum/go-ethereum/crypto"
_constants "github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/field"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
)
@@ -15,73 +15,72 @@ const SEED = "mimc"
var constants = generateConstantsData()
type constantsData struct {
maxFieldVal *big.Int
seedHash *big.Int
iv *big.Int
fqR field.Fq
nRounds int
cts []*big.Int
seedHash *big.Int
iv *big.Int
nRounds int
cts []*ff.Element
}
func generateConstantsData() constantsData {
var constants constantsData
fqR := field.NewFq(_constants.Q)
constants.fqR = fqR
// maxFieldVal is the R value of the Finite Field
constants.maxFieldVal = constants.fqR.Q
constants.seedHash = new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED + "_iv")))
constants.iv = new(big.Int).Mod(c, constants.maxFieldVal)
constants.iv = new(big.Int).Mod(c, _constants.Q)
constants.nRounds = 91
cts := getConstants(constants.fqR, SEED, constants.nRounds)
cts := getConstants(SEED, constants.nRounds)
constants.cts = cts
return constants
}
func getConstants(fqR field.Fq, seed string, nRounds int) []*big.Int {
cts := make([]*big.Int, nRounds)
cts[0] = big.NewInt(int64(0))
func getConstants(seed string, nRounds int) []*ff.Element {
cts := make([]*ff.Element, nRounds)
cts[0] = ff.NewElement()
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
for i := 1; i < nRounds; i++ {
c = new(big.Int).SetBytes(crypto.Keccak256(c.Bytes()))
n := fqR.Affine(c)
cts[i] = n
n := new(big.Int).Mod(c, _constants.Q)
cts[i] = ff.NewElement().SetBigInt(n)
}
return cts
}
// MIMC7HashGeneric performs the MIMC7 hash over a *big.Int, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
func MIMC7HashGeneric(fqR field.Fq, xIn, k *big.Int, nRounds int) *big.Int {
cts := getConstants(fqR, SEED, nRounds)
var r *big.Int
func MIMC7HashGeneric(xInBI, kBI *big.Int, nRounds int) *big.Int {
xIn := ff.NewElement().SetBigInt(xInBI)
k := ff.NewElement().SetBigInt(kBI)
cts := getConstants(SEED, nRounds)
var r *ff.Element
for i := 0; i < nRounds; i++ {
var t *big.Int
var t *ff.Element
if i == 0 {
t = fqR.Add(xIn, k)
t = ff.NewElement().Add(xIn, k)
} else {
t = fqR.Add(fqR.Add(r, k), cts[i])
t = ff.NewElement().Add(ff.NewElement().Add(r, k), cts[i])
}
t2 := fqR.Square(t)
t4 := fqR.Square(t2)
r = fqR.Mul(fqR.Mul(t4, t2), t)
t2 := ff.NewElement().Square(t)
t4 := ff.NewElement().Square(t2)
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
}
return fqR.Affine(fqR.Add(r, k))
rE := ff.NewElement().Add(r, k)
res := big.NewInt(0)
rE.ToBigIntRegular(res)
return res
}
// HashGeneric performs the MIMC7 hash over a *big.Int array, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.Int, error) {
func HashGeneric(iv *big.Int, arr []*big.Int, nRounds int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(arr) {
return nil, errors.New("inputs values not inside Finite Field")
}
r := iv
var err error
for i := 0; i < len(arr); i++ {
r = MIMC7HashGeneric(fqR, r, arr[i], nRounds)
r = MIMC7HashGeneric(r, arr[i], nRounds)
if err != nil {
return r, err
}
@@ -90,20 +89,27 @@ func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.I
}
// MIMC7Hash performs the MIMC7 hash over a *big.Int, using the Finite Field over R and the number of rounds setted in the `constants` variable
func MIMC7Hash(xIn, k *big.Int) *big.Int {
var r *big.Int
func MIMC7Hash(xInBI, kBI *big.Int) *big.Int {
xIn := ff.NewElement().SetBigInt(xInBI)
k := ff.NewElement().SetBigInt(kBI)
var r *ff.Element
for i := 0; i < constants.nRounds; i++ {
var t *big.Int
var t *ff.Element
if i == 0 {
t = constants.fqR.Add(xIn, k)
t = ff.NewElement().Add(xIn, k)
} else {
t = constants.fqR.Add(constants.fqR.Add(r, k), constants.cts[i])
t = ff.NewElement().Add(ff.NewElement().Add(r, k), constants.cts[i])
}
t2 := constants.fqR.Square(t)
t4 := constants.fqR.Square(t2)
r = constants.fqR.Mul(constants.fqR.Mul(t4, t2), t)
t2 := ff.NewElement().Square(t)
t4 := ff.NewElement().Square(t2)
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
}
return constants.fqR.Affine(constants.fqR.Add(r, k))
rE := ff.NewElement().Add(r, k)
res := big.NewInt(0)
rE.ToBigIntRegular(res)
return res
}
// Hash performs the MIMC7 hash over a *big.Int array
@@ -113,17 +119,18 @@ func Hash(arr []*big.Int, key *big.Int) (*big.Int, error) {
}
var r *big.Int
if key == nil {
r = constants.fqR.Zero()
r = big.NewInt(0)
} else {
r = key
}
for i := 0; i < len(arr); i++ {
r = constants.fqR.Add(
constants.fqR.Add(
r = new(big.Int).Add(
new(big.Int).Add(
r,
arr[i],
),
MIMC7Hash(arr[i], r))
r = new(big.Int).Mod(r, _constants.Q)
}
return r, nil
}

View File

@@ -6,7 +6,6 @@ import (
"testing"
"github.com/ethereum/go-ethereum/crypto"
"github.com/iden3/go-iden3-crypto/field"
"github.com/stretchr/testify/assert"
)
@@ -22,16 +21,12 @@ func TestMIMC7Generic(t *testing.T) {
b2 := big.NewInt(int64(2))
b3 := big.NewInt(int64(3))
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
assert.True(t, ok)
fqR := field.NewFq(r)
bigArray := []*big.Int{b1, b2, b3}
// Generic Hash
mhg := MIMC7HashGeneric(fqR, b1, b2, 91)
mhg := MIMC7HashGeneric(b1, b2, 91)
assert.Equal(t, "10594780656576967754230020536574539122676596303354946869887184401991294982664", mhg.String())
hg, err := HashGeneric(fqR.Zero(), bigArray, fqR, 91)
hg, err := HashGeneric(big.NewInt(0), bigArray, 91)
assert.Nil(t, err)
assert.Equal(t, "6464402164086696096195815557694604139393321133243036833927490113253119343397", (*big.Int)(hg).String())
}

View File

@@ -20,7 +20,7 @@ var constC []*ff.Element
var constM [T][T]*ff.Element
func Zero() *ff.Element {
return ff.NewElement().SetZero()
return ff.NewElement()
}
func modQ(v *big.Int) {
@@ -71,7 +71,7 @@ func getMDS() [T][T]*ff.Element {
func checkAllDifferent(v []*ff.Element) bool {
for i := 0; i < len(v); i++ {
if v[i].Equal(ff.NewElement().SetZero()) {
if v[i].Equal(ff.NewElement()) {
return false
}
for j := i + 1; j < len(v); j++ {
@@ -92,7 +92,6 @@ func ark(state [T]*ff.Element, c *ff.Element) {
// cubic performs x^5 mod p
// https://eprint.iacr.org/2019/458.pdf page 8
// var five = big.NewInt(5)
func cubic(a *ff.Element) {
a.Exp(*a, 5)