|
|
# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark)
zkSNARK library implementation in Go
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
## Caution, Warning
UNDER CONSTRUCTION!
Implementation of the zkSNARK [Pinocchio protocol](https://eprint.iacr.org/2013/279.pdf) from scratch in Go to understand the concepts. Do not use in production.
This fork aims to extend its functionalities s.t. one can prove set-membership in zero knowledge.
Current implementation status: - [x] Finite Fields (1, 2, 6, 12) operations - [x] G1 and G2 curve operations - [x] BN128 Pairing (to be replaced with less unsecure curve) - [x] circuit code compiler - [ ] code to flat code (improve circuit compiler) (in progress) - [x] flat code compiler - [x] circuit to R1CS with gate reduction optimisation - [x] polynomial operations - [x] R1CS to QAP - [x] generate trusted setup - [x] generate proofs - [x] verify proofs with BN128 pairing - [x] move witness calculation outside the setup phase - [ ] Groth16 (in progress) - [ ] multiple optimizations
## Usage
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark?status.svg)](https://godoc.org/github.com/arnaucube/go-snark) zkSnark - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/bn128?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/fields?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/fields) Finite Fields operations - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler) Circuit Compiler
### CLI usage
#### Compile circuit
Having a circuit file `test.circuit`: ``` func test(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ``` And a private inputs file `privateInputs.json` ``` [ 3 ] ``` And a public inputs file `publicInputs.json` ``` [ 35 ] ```
In the command line, execute: ``` > ./go-snark-cli compile test.circuit
```
This will output the `compiledcircuit.json` file.
#### Trusted Setup
Having the `compiledcircuit.json`, now we can generate the `TrustedSetup`: ``` > ./go-snark-cli trustedsetup
``` This will create the file `trustedsetup.json` with the TrustedSetup data, and also a `toxic.json` file, with the parameters to delete from the `Trusted Setup`.
#### Generate Proofs
Assumming that we have the `compiledcircuit.json`, `trustedsetup.json`, `privateInputs.json` and the `publicInputs.json` we can now generate the `Proofs` with the following command: ``` > ./go-snark-cli genproofs
```
This will store the file `proofs.json`, that contains all the SNARK proofs.
#### Verify Proofs
Having the `proofs.json`, `compiledcircuit.json`, `trustedsetup.json` `publicInputs.json` files, we can now verify the `Pairings` of the proofs, in order to verify the proofs. ``` > ./go-snark-cli verify
``` This will return a `true` if the proofs are verified, or a `false` if the proofs are not verified.
### Library usage
Warning: not finished.
Example: ```go // compile circuit and get the R1CS flatCode := ` func test(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 `
// parse the code parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err) fmt.Println(circuit)
b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35}
// witness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) fmt.Println("witness", w)
// now we have the witness: // w = [1 35 3 9 27 30 35 1]
// flat code to R1CS fmt.Println("generating R1CS from flat code") a, b, c := circuit.GenerateR1CS()
/* now we have the R1CS from the circuit: a: [[0 0 1 0 0 0 0 0] [0 0 0 1 0 0 0 0] [0 0 1 0 1 0 0 0] [5 0 0 0 0 1 0 0] [0 0 0 0 0 0 1 0] [0 1 0 0 0 0 0 0] [1 0 0 0 0 0 0 0]] b: [[0 0 1 0 0 0 0 0] [0 0 1 0 0 0 0 0] [1 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0]] c: [[0 0 0 1 0 0 0 0] [0 0 0 0 1 0 0 0] [0 0 0 0 0 1 0 0] [0 0 0 0 0 0 1 0] [0 1 0 0 0 0 0 0] [0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 1]] */
alphas, betas, gammas, _ := snark.Utils.PF.R1CSToQAP(a, b, c)
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
// calculate trusted setup setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
proof, err := GenerateProofs(*circuit, setup, w, px)
b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true)) ```
## Test
``` go test ./... -v ```
---
Thanks to [@jbaylina](https://github.com/jbaylina), [@bellesmarta](https://github.com/bellesmarta), [@adriamb](https://github.com/adriamb) for their explanations that helped to understand this a little bit. Also thanks to [@vbuterin](https://github.com/vbuterin) for all the published articles explaining the zkSNARKs.
|