|
|
# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark)
zkSNARK library implementation in Go
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
## Caution
Implementation from scratch in Go to understand the concepts. Do not use in production.
Not finished, implementing this in my free time to understand it better, so I don't have much time.
Current implementation status: - [x] Finite Fields (1, 2, 6, 12) operations - [x] G1 and G2 operations - [x] BN128 Pairing - [x] circuit code compiler - [ ] code to flat code - [x] flat code compiler - [x] circuit to R1CS - [x] polynomial operations - [x] R1CS to QAP - [x] generate trusted setup - [x] generate proofs - [x] verify proofs with BN128 pairing
### Usage
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark?status.svg)](https://godoc.org/github.com/arnaucube/go-snark) zkSnark - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/bn128?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/fields?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/fields) Finite Fields operations - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler) Circuit Compiler
Example: ```go bn, err := bn128.NewBn128() assert.Nil(t, err)
// new Finite Field fqR := fields.NewFq(bn.R)
// new Polynomial Field pf := r1csqap.NewPolynomialField(f)
// compile circuit and get the R1CS flatCode := ` func test(x): aux = x*x y = aux*x z = x + y out = z + 5 ` // parse the code parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err) fmt.Println(circuit) // flat code to R1CS fmt.Println("generating R1CS from flat code") a, b, c := circuit.GenerateR1CS()
/* now we have the R1CS from the circuit: a == [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]] b == [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]] c == [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]] */
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness b3 := big.NewInt(int64(3)) inputs := []*big.Int{b3} w := circuit.CalculateWitness(inputs) fmt.Println("\nwitness", w)
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
hx := pf.DivisorPolinomial(px, zx)
// hx==px/zx so px==hx*zx assert.Equal(t, px, pf.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := pf.Sub(pf.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := pf.Mul(hx, zx) assert.Equal(t, abc, hz) div, rem := pf.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx) assert.Nil(t, err) fmt.Println("t", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w) assert.Nil(t, err)
assert.True(t, VerifyProof(bn, circuit, setup, proof)) ```
### Test
``` go test ./... -v ```
---
Thanks to [@jbaylina](https://github.com/jbaylina), [@bellesmarta](https://github.com/bellesmarta), [@adriamb](https://github.com/adriamb) for their explanations that helped to understand this a little bit. Also thanks to [@vbuterin](https://github.com/vbuterin) for all the published articles explaining the zkSNARKs.
|