|
|
package circuitcompiler
import ( "errors" "fmt" "io" "os" "regexp" "strings" )
// Parser data structure holds the Scanner and the Parsing functions
type Parser struct { s *Scanner buf struct { tok Token // last read token
lit string // last read literal
n int // buffer size (max=1)
} }
// NewParser creates a new parser from a io.Reader
func NewParser(r io.Reader) *Parser { return &Parser{s: NewScanner(r)} }
func (p *Parser) scan() (tok Token, lit string) { // if there is a token in the buffer return it
if p.buf.n != 0 { p.buf.n = 0 return p.buf.tok, p.buf.lit } tok, lit = p.s.scan()
p.buf.tok, p.buf.lit = tok, lit
return }
func (p *Parser) unscan() { p.buf.n = 1 }
func (p *Parser) scanIgnoreWhitespace() (tok Token, lit string) { tok, lit = p.scan() if tok == WS { tok, lit = p.scan() } return }
// parseLine parses the current line
func (p *Parser) parseLine() (*Constraint, error) { /* in this version, line will be for example s3 = s1 * s4 this is: val eq val op val */ c := &Constraint{} tok, lit := p.scanIgnoreWhitespace() c.Out = lit c.Literal += lit
if c.Literal == "func" { // format: `func name(in):`
line, err := p.s.r.ReadString(':') if err != nil { return c, err } // read string inside ( )
rgx := regexp.MustCompile(`\((.*?)\)`) insideParenthesis := rgx.FindStringSubmatch(line) varsString := strings.Replace(insideParenthesis[1], " ", "", -1) allInputs := strings.Split(varsString, ",")
// from allInputs, get the private and the public separated
for _, in := range allInputs { if strings.Contains(in, "private") { input := strings.Replace(in, "private", "", -1) c.PrivateInputs = append(c.PrivateInputs, input) } else if strings.Contains(in, "public") { input := strings.Replace(in, "public", "", -1) c.PublicInputs = append(c.PublicInputs, input) } else { // TODO give more info about the circuit code error
fmt.Println("error on declaration of public and private inputs") os.Exit(0) } } return c, nil } if c.Literal == "equals" { // format: `equals(a, b)`
line, err := p.s.r.ReadString(')') if err != nil { return c, err } // read string inside ( )
rgx := regexp.MustCompile(`\((.*?)\)`) insideParenthesis := rgx.FindStringSubmatch(line) varsString := strings.Replace(insideParenthesis[1], " ", "", -1) params := strings.Split(varsString, ",") fmt.Println("params", params) // TODO
c.V1 = params[0] c.V2 = params[1] return c, nil } // if c.Literal == "out" {
// // TODO
// return c, nil
// }
_, lit = p.scanIgnoreWhitespace() // skip =
c.Literal += lit
// v1
_, lit = p.scanIgnoreWhitespace() c.V1 = lit c.Literal += lit // operator
_, lit = p.scanIgnoreWhitespace() c.Op = lit c.Literal += lit // v2
_, lit = p.scanIgnoreWhitespace() c.V2 = lit c.Literal += lit if tok == EOF { return nil, errors.New("eof in parseline") } return c, nil }
func existInArray(arr []string, elem string) bool { for _, v := range arr { if v == elem { return true } } return false }
func addToArrayIfNotExist(arr []string, elem string) []string { for _, v := range arr { if v == elem { return arr } } arr = append(arr, elem) return arr }
// Parse parses the lines and returns the compiled Circuit
func (p *Parser) Parse() (*Circuit, error) { circuit := &Circuit{} circuit.Signals = append(circuit.Signals, "one") nInputs := 0 for { constraint, err := p.parseLine() if err != nil { break } fmt.Println(constraint) if constraint.Literal == "func" { // one constraint for each input
for _, in := range constraint.PublicInputs { newConstr := &Constraint{ Op: "in", Out: in, } circuit.Constraints = append(circuit.Constraints, *newConstr) nInputs++ circuit.Signals = addToArrayIfNotExist(circuit.Signals, in) circuit.NPublic++ } for _, in := range constraint.PrivateInputs { newConstr := &Constraint{ Op: "in", Out: in, } circuit.Constraints = append(circuit.Constraints, *newConstr) nInputs++ circuit.Signals = addToArrayIfNotExist(circuit.Signals, in) } circuit.PublicInputs = constraint.PublicInputs circuit.PrivateInputs = constraint.PrivateInputs continue } if constraint.Literal == "equals" { // TODO
fmt.Println("circuit.Signals", circuit.Signals) constr1 := &Constraint{ Op: "*", V1: constraint.V2, V2: "1", Out: constraint.V1, Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V1 + "==" + constraint.V2 + " * 1", } circuit.Constraints = append(circuit.Constraints, *constr1) constr2 := &Constraint{ Op: "*", V1: constraint.V1, V2: "1", Out: constraint.V2, Literal: "equals(" + constraint.V1 + ", " + constraint.V2 + "): " + constraint.V2 + "==" + constraint.V1 + " * 1", } circuit.Constraints = append(circuit.Constraints, *constr2) continue } circuit.Constraints = append(circuit.Constraints, *constraint) isVal, _ := isValue(constraint.V1) if !isVal { circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V1) } isVal, _ = isValue(constraint.V2) if !isVal { circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.V2) }
// if constraint.Out == "out" {
// if Out is "out", put it after first value (one) and before the inputs
// if constraint.Out == circuit.PublicInputs[0] {
// if existInArray(circuit.PublicInputs, constraint.Out) {
// // if Out is a public signal, put it after first value (one) and before the private inputs
// if !existInArray(circuit.Signals, constraint.Out) {
// // if already don't exists in signal array
// signalsCopy := copyArray(circuit.Signals)
// var auxSignals []string
// auxSignals = append(auxSignals, signalsCopy[0])
// auxSignals = append(auxSignals, constraint.Out)
// auxSignals = append(auxSignals, signalsCopy[1:]...)
// circuit.Signals = auxSignals
// // circuit.PublicInputs = append(circuit.PublicInputs, constraint.Out)
// circuit.NPublic++
// }
// } else {
circuit.Signals = addToArrayIfNotExist(circuit.Signals, constraint.Out) // }
} circuit.NVars = len(circuit.Signals) circuit.NSignals = len(circuit.Signals) return circuit, nil } func copyArray(in []string) []string { // tmp
var out []string for _, e := range in { out = append(out, e) } return out }
|