arnaucube 7aafcfd5f3 | 6 years ago | |
---|---|---|
bn128 | 6 years ago | |
fields | 6 years ago | |
r1csqap | 6 years ago | |
r1csqapFloat | 6 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 6 years ago | |
go.mod | 6 years ago | |
go.sum | 6 years ago | |
snark.go | 6 years ago | |
snark_test.go | 6 years ago |
zkSNARK library implementation in Go
Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture
, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
Example:
bn, err := bn128.NewBn128()
assert.Nil(t, err)
// new Finite Field
f := fields.NewFq(bn.R)
// new Polynomial Field
pf := r1csqap.NewPolynomialField(f)
/*
suppose that we have the following variables with *big.Int elements:
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
w = [1, 3, 35, 9, 27, 30]
*/
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
hx := pf.DivisorPolinomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, pf.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := pf.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := pf.Mul(hx, zx)
assert.Equal(t, abc, hz)
// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, len(ax))
assert.Nil(t, err)
fmt.Println("trusted setup:")
fmt.Println(setup.G1T)
fmt.Println(setup.G2T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
assert.Nil(t, err)
// verify the proofs with the bn128 pairing
verified := VerifyProof(bn, publicSetup, proof)
assert.True(t, verified)
go test ./... -v
Not finished, work in progress (implementing this in my free time to understand it better, so I don't have much time).
Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand this a little bit.