|
|
/* Package txprocessor is the module that takes the transactions from the input and processes them, updating the Balances and Nonces of the Accounts in the StateDB.
It's a package used by 3 other different packages, and its behaviour will differ depending on the Type of the StateDB of the TxProcessor:
- TypeSynchronizer: - The StateDB contains the full State MerkleTree, where the leafs are the accounts - Updates the StateDB and as output returns: ExitInfos, CreatedAccounts, CoordinatorIdxsMap, CollectedFees, UpdatedAccounts - Internally computes the ExitTree - TypeTxSelector: - The StateDB contains only the Accounts, which are the equivalent to only the leafs of the State MerkleTree - Updates the Accounts from the StateDB - TypeBatchBuilder: - The StateDB contains the full State MerkleTree, where the leafs are the accounts - Updates the StateDB. As output returns: ZKInputs, CoordinatorIdxsMap - Internally computes the ZKInputs
Packages dependency overview: Outputs: + ExitInfos + + + | CreatedAccounts | | | | CoordinatorIdxsMap | | ZKInputs | | CollectedFees | | CoordinatorIdxsMap | | UpdatedAccounts | | | +------------------------+----------------+ +-----------------------+
+------------+ +----------+ +------------+ |Synchronizer| |TxSelector| |BatchBuilder| +-----+------+ +-----+----+ +-----+------+ | | | v v v TxProcessor TxProcessor TxProcessor + + + | | | +----+----+ v +----+----+ | | StateDB | | v v + v v StateDB ExitTree | StateDB ExitTree + +----+----+ + | | | | +----+----+ v v +----+----+ | | KVDB AccountsDB | | v v v v KVDB MerkleTree KVDB MerkleTree
The structure of the TxProcessor can be understand as: - StateDB: where the Rollup state is stored. It contains the Accounts & MerkleTree. - Config: parameters of the configuration of the circuit - ZKInputs: computed inputs for the circuit, depends on the Config parameters - ExitTree: only in the TypeSynchronizer & TypeBatchBuilder, contains the MerkleTree with the processed Exits of the Batch
The main exposed method of the TxProcessor is `ProcessTxs`, which as general lines does: - if type==(Synchronizer || BatchBuilder), creates an ephemeral ExitTree - processes: - L1UserTxs --> for each tx calls ProcessL1Tx() - L1CoordinatorTxs --> for each tx calls ProcessL1Tx() - L2Txs --> for each tx calls ProcessL2Tx() - internally, it computes the Fees - each transaction processment includes: - updating the Account Balances (for sender & receiver, and in case that there is fee, updates the fee receiver account) - which includes updating the State MerkleTree (except for the type==TxSelector, which only updates the Accounts (leafs)) - in case of Synchronizer & BatchBuilder, updates the ExitTree for the txs of type Exit (L1 & L2) - in case of BatchBuilder, computes the ZKInputs while processing the txs - if type==Synchronizer, once all the txs are processed, for each Exit it generates the ExitInfo data */ package txprocessor
import ( "bytes" "errors" "fmt" "io/ioutil" "math/big" "os"
"github.com/hermeznetwork/hermez-node/common" "github.com/hermeznetwork/hermez-node/db/statedb" "github.com/hermeznetwork/hermez-node/log" "github.com/hermeznetwork/tracerr" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/iden3/go-merkletree" "github.com/iden3/go-merkletree/db" "github.com/iden3/go-merkletree/db/pebble" )
// TxProcessor represents the TxProcessor object
type TxProcessor struct { s *statedb.StateDB zki *common.ZKInputs // i is the current transaction index in the ZKInputs generation (zki)
i int // AccumulatedFees contains the accumulated fees for each token (Coord
// Idx) in the processed batch
AccumulatedFees map[common.Idx]*big.Int // updatedAccounts stores the last version of the account when it has
// been created/updated by any of the processed transactions.
updatedAccounts map[common.Idx]*common.Account config Config }
// Config contains the TxProcessor configuration parameters
type Config struct { NLevels uint32 // MaxFeeTx is the maximum number of coordinator accounts that can receive fees
MaxFeeTx uint32 MaxTx uint32 MaxL1Tx uint32 // ChainID of the blockchain
ChainID uint16 }
type processedExit struct { exit bool newExit bool idx common.Idx acc common.Account }
// ProcessTxOutput contains the output of the ProcessTxs method
type ProcessTxOutput struct { ZKInputs *common.ZKInputs ExitInfos []common.ExitInfo CreatedAccounts []common.Account CoordinatorIdxsMap map[common.TokenID]common.Idx CollectedFees map[common.TokenID]*big.Int // UpdatedAccounts returns the current state of each account
// created/updated by any of the processed transactions.
UpdatedAccounts map[common.Idx]*common.Account }
func newErrorNotEnoughBalance(tx common.Tx) error { var msg error if tx.IsL1 { msg = fmt.Errorf("Invalid transaction, not enough balance on sender account. "+ "TxID: %s, TxType: %s, FromIdx: %d, ToIdx: %d, Amount: %d", tx.TxID, tx.Type, tx.FromIdx, tx.ToIdx, tx.Amount) } else { msg = fmt.Errorf("Invalid transaction, not enough balance on sender account. "+ "TxID: %s, TxType: %s, FromIdx: %d, ToIdx: %d, Amount: %d, Fee: %d", tx.TxID, tx.Type, tx.FromIdx, tx.ToIdx, tx.Amount, tx.Fee) } return tracerr.Wrap(msg) }
// NewTxProcessor returns a new TxProcessor with the given *StateDB & Config
func NewTxProcessor(sdb *statedb.StateDB, config Config) *TxProcessor { return &TxProcessor{ s: sdb, zki: nil, i: 0, config: config, } }
// StateDB returns a pointer to the StateDB of the TxProcessor
func (tp *TxProcessor) StateDB() *statedb.StateDB { return tp.s }
func (tp *TxProcessor) resetZKInputs() { tp.zki = nil tp.i = 0 // initialize current transaction index in the ZKInputs generation
}
// ProcessTxs process the given L1Txs & L2Txs applying the needed updates to
// the StateDB depending on the transaction Type. If StateDB
// type==TypeBatchBuilder, returns the common.ZKInputs to generate the
// SnarkProof later used by the BatchBuilder. If StateDB
// type==TypeSynchronizer, assumes that the call is done from the Synchronizer,
// returns common.ExitTreeLeaf that is later used by the Synchronizer to update
// the HistoryDB, and adds Nonce & TokenID to the L2Txs.
// And if TypeSynchronizer returns an array of common.Account with all the
// created accounts.
func (tp *TxProcessor) ProcessTxs(coordIdxs []common.Idx, l1usertxs, l1coordinatortxs []common.L1Tx, l2txs []common.PoolL2Tx) (ptOut *ProcessTxOutput, err error) { defer func() { if err == nil { err = tp.s.MakeCheckpoint() } }()
var exitTree *merkletree.MerkleTree var createdAccounts []common.Account
if tp.zki != nil { return nil, tracerr.Wrap( errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty")) } defer tp.resetZKInputs()
if len(coordIdxs) >= int(tp.config.MaxFeeTx) { return nil, tracerr.Wrap( fmt.Errorf("CoordIdxs (%d) length must be smaller than MaxFeeTx (%d)", len(coordIdxs), tp.config.MaxFeeTx)) }
nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs)
if nTx > int(tp.config.MaxTx) { return nil, tracerr.Wrap( fmt.Errorf("L1UserTx + L1CoordinatorTx + L2Tx (%d) can not be bigger than MaxTx (%d)", nTx, tp.config.MaxTx)) } if len(l1usertxs)+len(l1coordinatortxs) > int(tp.config.MaxL1Tx) { return nil, tracerr.Wrap(fmt.Errorf("L1UserTx + L1CoordinatorTx (%d) can not be bigger than MaxL1Tx (%d)", len(l1usertxs)+len(l1coordinatortxs), tp.config.MaxTx)) }
if tp.s.Type() == statedb.TypeSynchronizer { tp.updatedAccounts = make(map[common.Idx]*common.Account) }
exits := make([]processedExit, nTx)
if tp.s.Type() == statedb.TypeBatchBuilder { tp.zki = common.NewZKInputs(tp.config.ChainID, tp.config.MaxTx, tp.config.MaxL1Tx, tp.config.MaxFeeTx, tp.config.NLevels, (tp.s.CurrentBatch() + 1).BigInt()) tp.zki.OldLastIdx = tp.s.CurrentIdx().BigInt() tp.zki.OldStateRoot = tp.s.MT.Root().BigInt() tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx() }
// TBD if ExitTree is only in memory or stored in disk, for the moment
// is only needed in memory
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { tmpDir, err := ioutil.TempDir("", "hermez-statedb-exittree") if err != nil { return nil, tracerr.Wrap(err) } defer func() { if err := os.RemoveAll(tmpDir); err != nil { log.Errorw("Deleting statedb temp exit tree", "err", err) } }() sto, err := pebble.NewPebbleStorage(tmpDir, false) if err != nil { return nil, tracerr.Wrap(err) } defer sto.Close() exitTree, err = merkletree.NewMerkleTree(sto, tp.s.MT.MaxLevels()) if err != nil { return nil, tracerr.Wrap(err) } }
// Process L1UserTxs
for i := 0; i < len(l1usertxs); i++ { // assumption: l1usertx are sorted by L1Tx.Position
exitIdx, exitAccount, newExit, createdAccount, err := tp.ProcessL1Tx(exitTree, &l1usertxs[i]) if err != nil { return nil, tracerr.Wrap(err) } if tp.s.Type() == statedb.TypeSynchronizer { if createdAccount != nil { createdAccounts = append(createdAccounts, *createdAccount) l1usertxs[i].EffectiveFromIdx = createdAccount.Idx } else { l1usertxs[i].EffectiveFromIdx = l1usertxs[i].FromIdx } } if tp.zki != nil { l1TxData, err := l1usertxs[i].BytesGeneric() if err != nil { return nil, tracerr.Wrap(err) } tp.zki.Metadata.L1TxsData = append(tp.zki.Metadata.L1TxsData, l1TxData)
l1TxDataAvailability, err := l1usertxs[i].BytesDataAvailability(tp.zki.Metadata.NLevels) if err != nil { return nil, tracerr.Wrap(err) } tp.zki.Metadata.L1TxsDataAvailability = append(tp.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability)
tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt() tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt() if exitIdx == nil { tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt() } } if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { if exitIdx != nil && exitTree != nil && exitAccount != nil { exits[tp.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } tp.i++ } }
// Process L1CoordinatorTxs
for i := 0; i < len(l1coordinatortxs); i++ { exitIdx, _, _, createdAccount, err := tp.ProcessL1Tx(exitTree, &l1coordinatortxs[i]) if err != nil { return nil, tracerr.Wrap(err) } if exitIdx != nil { log.Error("Unexpected Exit in L1CoordinatorTx") } if tp.s.Type() == statedb.TypeSynchronizer { if createdAccount != nil { createdAccounts = append(createdAccounts, *createdAccount) l1coordinatortxs[i].EffectiveFromIdx = createdAccount.Idx } else { l1coordinatortxs[i].EffectiveFromIdx = l1coordinatortxs[i].FromIdx } } if tp.zki != nil { l1TxData, err := l1coordinatortxs[i].BytesGeneric() if err != nil { return nil, tracerr.Wrap(err) } tp.zki.Metadata.L1TxsData = append(tp.zki.Metadata.L1TxsData, l1TxData) l1TxDataAvailability, err := l1coordinatortxs[i].BytesDataAvailability(tp.zki.Metadata.NLevels) if err != nil { return nil, tracerr.Wrap(err) } tp.zki.Metadata.L1TxsDataAvailability = append(tp.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability)
tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt() tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt() tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt() tp.i++ } }
// remove repeated CoordIdxs that are for the same TokenID (use the
// first occurrence)
usedCoordTokenIDs := make(map[common.TokenID]bool) var filteredCoordIdxs []common.Idx for i := 0; i < len(coordIdxs); i++ { accCoord, err := tp.s.GetAccount(coordIdxs[i]) if err != nil { return nil, tracerr.Wrap(err) } if !usedCoordTokenIDs[accCoord.TokenID] { usedCoordTokenIDs[accCoord.TokenID] = true filteredCoordIdxs = append(filteredCoordIdxs, coordIdxs[i]) } } coordIdxs = filteredCoordIdxs
tp.AccumulatedFees = make(map[common.Idx]*big.Int) for _, idx := range coordIdxs { tp.AccumulatedFees[idx] = big.NewInt(0) }
// once L1UserTxs & L1CoordinatorTxs are processed, get TokenIDs of
// coordIdxs. In this way, if a coordIdx uses an Idx that is being
// created in the current batch, at this point the Idx will be created
coordIdxsMap, err := tp.s.GetTokenIDsFromIdxs(coordIdxs) if err != nil { return nil, tracerr.Wrap(err) } // collectedFees will contain the amount of fee collected for each
// TokenID
var collectedFees map[common.TokenID]*big.Int if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { collectedFees = make(map[common.TokenID]*big.Int) for tokenID := range coordIdxsMap { collectedFees[tokenID] = big.NewInt(0) } }
if tp.zki != nil { // get the feePlanTokens
feePlanTokens, err := tp.getFeePlanTokens(coordIdxs) if err != nil { log.Error(err) return nil, tracerr.Wrap(err) } copy(tp.zki.FeePlanTokens, feePlanTokens) }
// Process L2Txs
for i := 0; i < len(l2txs); i++ { exitIdx, exitAccount, newExit, err := tp.ProcessL2Tx(coordIdxsMap, collectedFees, exitTree, &l2txs[i]) if err != nil { return nil, tracerr.Wrap(err) } if tp.zki != nil { l2TxData, err := l2txs[i].L2Tx().BytesDataAvailability(tp.zki.Metadata.NLevels) if err != nil { return nil, tracerr.Wrap(err) } tp.zki.Metadata.L2TxsData = append(tp.zki.Metadata.L2TxsData, l2TxData)
// Intermediate States
if tp.i < nTx-1 { tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt() tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt() tp.zki.ISAccFeeOut[tp.i] = formatAccumulatedFees(collectedFees, tp.zki.FeePlanTokens, coordIdxs) if exitIdx == nil { tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt() } } } if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[tp.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } tp.i++ } }
if tp.zki != nil { // Fill the empty slots in the ZKInputs remaining after
// processing all L1 & L2 txs
txCompressedDataEmpty := common.TxCompressedDataEmpty(tp.config.ChainID) last := tp.i - 1 if tp.i == 0 { last = 0 } for i := last; i < int(tp.config.MaxTx); i++ { if i < int(tp.config.MaxTx)-1 { tp.zki.ISOutIdx[i] = tp.s.CurrentIdx().BigInt() tp.zki.ISStateRoot[i] = tp.s.MT.Root().BigInt() tp.zki.ISAccFeeOut[i] = formatAccumulatedFees(collectedFees, tp.zki.FeePlanTokens, coordIdxs) tp.zki.ISExitRoot[i] = exitTree.Root().BigInt() } if i >= tp.i { tp.zki.TxCompressedData[i] = txCompressedDataEmpty } } isFinalAccFee := formatAccumulatedFees(collectedFees, tp.zki.FeePlanTokens, coordIdxs) copy(tp.zki.ISFinalAccFee, isFinalAccFee) // before computing the Fees txs, set the ISInitStateRootFee
tp.zki.ISInitStateRootFee = tp.s.MT.Root().BigInt() }
// distribute the AccumulatedFees from the processed L2Txs into the
// Coordinator Idxs
iFee := 0 for _, idx := range coordIdxs { accumulatedFee := tp.AccumulatedFees[idx]
// send the fee to the Idx of the Coordinator for the TokenID
// (even if the AccumulatedFee==0, as is how the zk circuit
// works)
accCoord, err := tp.s.GetAccount(idx) if err != nil { log.Errorw("Can not distribute accumulated fees to coordinator account: "+ "No coord Idx to receive fee", "idx", idx) return nil, tracerr.Wrap(err) } if tp.zki != nil { tp.zki.TokenID3[iFee] = accCoord.TokenID.BigInt() tp.zki.Nonce3[iFee] = accCoord.Nonce.BigInt() coordBJJSign, coordBJJY := babyjub.UnpackSignY(accCoord.BJJ) if coordBJJSign { tp.zki.Sign3[iFee] = big.NewInt(1) } tp.zki.Ay3[iFee] = coordBJJY tp.zki.Balance3[iFee] = accCoord.Balance tp.zki.EthAddr3[iFee] = common.EthAddrToBigInt(accCoord.EthAddr) } accCoord.Balance = new(big.Int).Add(accCoord.Balance, accumulatedFee) pFee, err := tp.updateAccount(idx, accCoord) if err != nil { log.Error(err) return nil, tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings3[iFee] = siblingsToZKInputFormat(pFee.Siblings) tp.zki.ISStateRootFee[iFee] = tp.s.MT.Root().BigInt() } iFee++ } if tp.zki != nil { for i := len(tp.AccumulatedFees); i < int(tp.config.MaxFeeTx)-1; i++ { tp.zki.ISStateRootFee[i] = tp.s.MT.Root().BigInt() } // add Coord Idx to ZKInputs.FeeTxsData
for i := 0; i < len(coordIdxs); i++ { tp.zki.FeeIdxs[i] = coordIdxs[i].BigInt() } }
if tp.s.Type() == statedb.TypeTxSelector { return nil, nil }
if tp.s.Type() == statedb.TypeSynchronizer { // once all txs processed (exitTree root frozen), for each Exit,
// generate common.ExitInfo data
var exitInfos []common.ExitInfo exitInfosByIdx := make(map[common.Idx]*common.ExitInfo) for i := 0; i < nTx; i++ { if !exits[i].exit { continue } exitIdx := exits[i].idx exitAccount := exits[i].acc
// 0. generate MerkleProof
p, err := exitTree.GenerateSCVerifierProof(exitIdx.BigInt(), nil) if err != nil { return nil, tracerr.Wrap(err) }
// 1. generate common.ExitInfo
ei := common.ExitInfo{ AccountIdx: exitIdx, MerkleProof: p, Balance: exitAccount.Balance, } if prevExit, ok := exitInfosByIdx[exitIdx]; !ok { exitInfos = append(exitInfos, ei) exitInfosByIdx[exitIdx] = &exitInfos[len(exitInfos)-1] } else { *prevExit = ei } }
// retun exitInfos, createdAccounts and collectedFees, so Synchronizer will
// be able to store it into HistoryDB for the concrete BatchNum
return &ProcessTxOutput{ ZKInputs: nil, ExitInfos: exitInfos, CreatedAccounts: createdAccounts, CoordinatorIdxsMap: coordIdxsMap, CollectedFees: collectedFees, UpdatedAccounts: tp.updatedAccounts, }, nil }
// compute last ZKInputs parameters
tp.zki.GlobalChainID = big.NewInt(int64(tp.config.ChainID)) tp.zki.Metadata.NewStateRootRaw = tp.s.MT.Root() tp.zki.Metadata.NewExitRootRaw = exitTree.Root()
// return ZKInputs as the BatchBuilder will return it to forge the Batch
return &ProcessTxOutput{ ZKInputs: tp.zki, ExitInfos: nil, CreatedAccounts: nil, CoordinatorIdxsMap: coordIdxsMap, CollectedFees: nil, }, nil }
// getFeePlanTokens returns an array of *big.Int containing a list of tokenIDs
// corresponding to the given CoordIdxs and the processed L2Txs
func (tp *TxProcessor) getFeePlanTokens(coordIdxs []common.Idx) ([]*big.Int, error) { var tBI []*big.Int for i := 0; i < len(coordIdxs); i++ { acc, err := tp.s.GetAccount(coordIdxs[i]) if err != nil { log.Errorf("could not get account to determine TokenID of CoordIdx %d not found: %s", coordIdxs[i], err.Error()) return nil, tracerr.Wrap(err) } tBI = append(tBI, acc.TokenID.BigInt()) } return tBI, nil }
// ProcessL1Tx process the given L1Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
// And another *common.Account parameter which contains the created account in
// case that has been a new created account and that the StateDB is of type
// TypeSynchronizer.
func (tp *TxProcessor) ProcessL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, bool, *common.Account, error) { // ZKInputs
if tp.zki != nil { // Txs
var err error tp.zki.TxCompressedData[tp.i], err = tx.TxCompressedData(tp.config.ChainID) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } tp.zki.FromIdx[tp.i] = tx.FromIdx.BigInt() tp.zki.ToIdx[tp.i] = tx.ToIdx.BigInt() tp.zki.OnChain[tp.i] = big.NewInt(1)
// L1Txs
depositAmountF40, err := common.NewFloat40(tx.DepositAmount) if err != nil { return nil, nil, false, nil, tracerr.Wrap(err) } tp.zki.DepositAmountF[tp.i] = big.NewInt(int64(depositAmountF40)) tp.zki.FromEthAddr[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr) if tx.FromBJJ != common.EmptyBJJComp { tp.zki.FromBJJCompressed[tp.i] = BJJCompressedTo256BigInts(tx.FromBJJ) }
// Intermediate States, for all the transactions except for the last one
if tp.i < len(tp.zki.ISOnChain) { // len(tp.zki.ISOnChain) == nTx
tp.zki.ISOnChain[tp.i] = big.NewInt(1) }
if tx.Type == common.TxTypeForceTransfer || tx.Type == common.TxTypeDepositTransfer || tx.Type == common.TxTypeCreateAccountDepositTransfer || tx.Type == common.TxTypeForceExit { // in the cases where at L1Tx there is usage of the
// Amount parameter, add it at the ZKInputs.AmountF
// slot
amountF40, err := common.NewFloat40(tx.Amount) if err != nil { return nil, nil, false, nil, tracerr.Wrap(err) } tp.zki.AmountF[tp.i] = big.NewInt(int64(amountF40)) } }
switch tx.Type { case common.TxTypeForceTransfer: tp.computeEffectiveAmounts(tx)
// go to the MT account of sender and receiver, and update balance
// & nonce
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees.
// 0 for the parameter toIdx, as at L1Tx ToIdx can only be 0 in
// the Deposit type case.
err := tp.applyTransfer(nil, nil, tx.Tx(), 0) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeCreateAccountDeposit: tp.computeEffectiveAmounts(tx)
// add new account to the MT, update balance of the MT account
err := tp.applyCreateAccount(tx) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } // TODO applyCreateAccount will return the created account,
// which in the case type==TypeSynchronizer will be added to an
// array of created accounts that will be returned
case common.TxTypeDeposit: tp.computeEffectiveAmounts(tx)
// update balance of the MT account
err := tp.applyDeposit(tx, false) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeDepositTransfer: tp.computeEffectiveAmounts(tx)
// update balance in MT account, update balance & nonce of sender
// & receiver
err := tp.applyDeposit(tx, true) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeCreateAccountDepositTransfer: tp.computeEffectiveAmounts(tx)
// add new account to the merkletree, update balance in MT account,
// update balance & nonce of sender & receiver
err := tp.applyCreateAccountDepositTransfer(tx) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeForceExit: tp.computeEffectiveAmounts(tx)
// execute exit flow
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees
exitAccount, newExit, err := tp.applyExit(nil, nil, exitTree, tx.Tx(), tx.Amount) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } return &tx.FromIdx, exitAccount, newExit, nil, nil default: }
var createdAccount *common.Account if tp.s.Type() == statedb.TypeSynchronizer && (tx.Type == common.TxTypeCreateAccountDeposit || tx.Type == common.TxTypeCreateAccountDepositTransfer) { var err error createdAccount, err = tp.s.GetAccount(tp.s.CurrentIdx()) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } }
return nil, nil, false, createdAccount, nil }
// ProcessL2Tx process the given L2Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (tp *TxProcessor) ProcessL2Tx(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) { var err error // if tx.ToIdx==0, get toIdx by ToEthAddr or ToBJJ
if tx.ToIdx == common.Idx(0) && tx.AuxToIdx == common.Idx(0) { if tp.s.Type() == statedb.TypeSynchronizer { // thisTypeould never be reached
log.Error("WARNING: In StateDB with Synchronizer mode L2.ToIdx can't be 0") return nil, nil, false, tracerr.Wrap(fmt.Errorf("In StateDB with Synchronizer mode L2.ToIdx can't be 0")) } // case when tx.Type== common.TxTypeTransferToEthAddr or common.TxTypeTransferToBJJ
accSender, err := tp.s.GetAccount(tx.FromIdx) if err != nil { return nil, nil, false, tracerr.Wrap(err) } tx.AuxToIdx, err = tp.s.GetIdxByEthAddrBJJ(tx.ToEthAddr, tx.ToBJJ, accSender.TokenID) if err != nil { return nil, nil, false, tracerr.Wrap(err) } }
// ZKInputs
if tp.zki != nil { // Txs
tp.zki.TxCompressedData[tp.i], err = tx.TxCompressedData(tp.config.ChainID) if err != nil { return nil, nil, false, tracerr.Wrap(err) } tp.zki.TxCompressedDataV2[tp.i], err = tx.TxCompressedDataV2() if err != nil { return nil, nil, false, tracerr.Wrap(err) } tp.zki.FromIdx[tp.i] = tx.FromIdx.BigInt() tp.zki.ToIdx[tp.i] = tx.ToIdx.BigInt()
// fill AuxToIdx if needed
if tx.ToIdx == 0 { // use toIdx that can have been filled by tx.ToIdx or
// if tx.Idx==0 (this case), toIdx is filled by the Idx
// from db by ToEthAddr&ToBJJ
tp.zki.AuxToIdx[tp.i] = tx.AuxToIdx.BigInt() }
if tx.ToBJJ != common.EmptyBJJComp { _, tp.zki.ToBJJAy[tp.i] = babyjub.UnpackSignY(tx.ToBJJ) } tp.zki.ToEthAddr[tp.i] = common.EthAddrToBigInt(tx.ToEthAddr)
tp.zki.OnChain[tp.i] = big.NewInt(0) amountF40, err := common.NewFloat40(tx.Amount) if err != nil { return nil, nil, false, tracerr.Wrap(err) } tp.zki.AmountF[tp.i] = big.NewInt(int64(amountF40)) tp.zki.NewAccount[tp.i] = big.NewInt(0)
// L2Txs
// tp.zki.RqOffset[tp.i] = // TODO Rq once TxSelector is ready
// tp.zki.RqTxCompressedDataV2[tp.i] = // TODO
// tp.zki.RqToEthAddr[tp.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO
// tp.zki.RqToBJJAy[tp.i] = tx.ToBJJ.Y // TODO
signature, err := tx.Signature.Decompress() if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } tp.zki.S[tp.i] = signature.S tp.zki.R8x[tp.i] = signature.R8.X tp.zki.R8y[tp.i] = signature.R8.Y }
// if StateDB type==TypeSynchronizer, will need to add Nonce
if tp.s.Type() == statedb.TypeSynchronizer { // as tType==TypeSynchronizer, always tx.ToIdx!=0
acc, err := tp.s.GetAccount(tx.FromIdx) if err != nil { log.Errorw("GetAccount", "fromIdx", tx.FromIdx, "err", err) return nil, nil, false, tracerr.Wrap(err) } tx.Nonce = acc.Nonce tx.TokenID = acc.TokenID }
switch tx.Type { case common.TxTypeTransfer, common.TxTypeTransferToEthAddr, common.TxTypeTransferToBJJ: // go to the MT account of sender and receiver, and update
// balance & nonce
err = tp.applyTransfer(coordIdxsMap, collectedFees, tx.Tx(), tx.AuxToIdx) if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } case common.TxTypeExit: // execute exit flow
exitAccount, newExit, err := tp.applyExit(coordIdxsMap, collectedFees, exitTree, tx.Tx(), tx.Amount) if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } return &tx.FromIdx, exitAccount, newExit, nil default: } return nil, nil, false, nil }
// applyCreateAccount creates a new account in the account of the depositer, it
// stores the deposit value
func (tp *TxProcessor) applyCreateAccount(tx *common.L1Tx) error { account := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.EffectiveDepositAmount, BJJ: tx.FromBJJ, EthAddr: tx.FromEthAddr, }
p, err := tp.createAccount(common.Idx(tp.s.CurrentIdx()+1), account) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.TokenID1[tp.i] = tx.TokenID.BigInt() tp.zki.Nonce1[tp.i] = big.NewInt(0) fromBJJSign, fromBJJY := babyjub.UnpackSignY(tx.FromBJJ) if fromBJJSign { tp.zki.Sign1[tp.i] = big.NewInt(1) } tp.zki.Ay1[tp.i] = fromBJJY tp.zki.Balance1[tp.i] = tx.EffectiveDepositAmount tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr) tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { tp.zki.IsOld0_1[tp.i] = big.NewInt(1) } tp.zki.OldKey1[tp.i] = p.OldKey.BigInt() tp.zki.OldValue1[tp.i] = p.OldValue.BigInt()
tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx() + 1
tp.zki.AuxFromIdx[tp.i] = common.Idx(tp.s.CurrentIdx() + 1).BigInt() tp.zki.NewAccount[tp.i] = big.NewInt(1)
if tp.i < len(tp.zki.ISOnChain) { // len(tp.zki.ISOnChain) == nTx
// intermediate states
tp.zki.ISOnChain[tp.i] = big.NewInt(1) } }
return tp.s.SetCurrentIdx(tp.s.CurrentIdx() + 1) }
// createAccount is a wrapper over the StateDB.CreateAccount method that also
// stores the created account in the updatedAccounts map in case the StateDB is
// of TypeSynchronizer
func (tp *TxProcessor) createAccount(idx common.Idx, account *common.Account) ( *merkletree.CircomProcessorProof, error) { if tp.s.Type() == statedb.TypeSynchronizer { account.Idx = idx tp.updatedAccounts[idx] = account } return tp.s.CreateAccount(idx, account) }
// updateAccount is a wrapper over the StateDB.UpdateAccount method that also
// stores the updated account in the updatedAccounts map in case the StateDB is
// of TypeSynchronizer
func (tp *TxProcessor) updateAccount(idx common.Idx, account *common.Account) ( *merkletree.CircomProcessorProof, error) { if tp.s.Type() == statedb.TypeSynchronizer { account.Idx = idx tp.updatedAccounts[idx] = account } return tp.s.UpdateAccount(idx, account) }
// applyDeposit updates the balance in the account of the depositer, if
// andTransfer parameter is set to true, the method will also apply the
// Transfer of the L1Tx/DepositTransfer
func (tp *TxProcessor) applyDeposit(tx *common.L1Tx, transfer bool) error { accSender, err := tp.s.GetAccount(tx.FromIdx) if err != nil { return tracerr.Wrap(err) }
if tp.zki != nil { tp.zki.TokenID1[tp.i] = accSender.TokenID.BigInt() tp.zki.Nonce1[tp.i] = accSender.Nonce.BigInt() senderBJJSign, senderBJJY := babyjub.UnpackSignY(accSender.BJJ) if senderBJJSign { tp.zki.Sign1[tp.i] = big.NewInt(1) } tp.zki.Ay1[tp.i] = senderBJJY tp.zki.Balance1[tp.i] = accSender.Balance tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(accSender.EthAddr) }
// add the deposit to the sender
accSender.Balance = new(big.Int).Add(accSender.Balance, tx.EffectiveDepositAmount) // subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount) if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx.Tx()) }
// update sender account in localStateDB
p, err := tp.updateAccount(tx.FromIdx, accSender) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert
}
// in case that the tx is a L1Tx>DepositTransfer
var accReceiver *common.Account if transfer { if tx.ToIdx == tx.FromIdx { accReceiver = accSender } else { accReceiver, err = tp.s.GetAccount(tx.ToIdx) if err != nil { return tracerr.Wrap(err) } }
if tp.zki != nil { tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt() tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt() receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ) if receiverBJJSign { tp.zki.Sign2[tp.i] = big.NewInt(1) } tp.zki.Ay2[tp.i] = receiverBJJY tp.zki.Balance2[tp.i] = accReceiver.Balance tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr) }
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
// update receiver account in localStateDB
p, err := tp.updateAccount(tx.ToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert
} }
return nil }
// applyTransfer updates the balance & nonce in the account of the sender, and
// the balance in the account of the receiver.
// Parameter 'toIdx' should be at 0 if the tx already has tx.ToIdx!=0, if
// tx.ToIdx==0, then toIdx!=0, and will be used the toIdx parameter as Idx of
// the receiver. This parameter is used when the tx.ToIdx is not specified and
// the real ToIdx is found trhrough the ToEthAddr or ToBJJ.
func (tp *TxProcessor) applyTransfer(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, tx common.Tx, auxToIdx common.Idx) error { if auxToIdx == common.Idx(0) { auxToIdx = tx.ToIdx } // get sender and receiver accounts from localStateDB
accSender, err := tp.s.GetAccount(tx.FromIdx) if err != nil { log.Error(err) return tracerr.Wrap(err) }
if tp.zki != nil { // Set the State1 before updating the Sender leaf
tp.zki.TokenID1[tp.i] = accSender.TokenID.BigInt() tp.zki.Nonce1[tp.i] = accSender.Nonce.BigInt() senderBJJSign, senderBJJY := babyjub.UnpackSignY(accSender.BJJ) if senderBJJSign { tp.zki.Sign1[tp.i] = big.NewInt(1) } tp.zki.Ay1[tp.i] = senderBJJY tp.zki.Balance1[tp.i] = accSender.Balance tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(accSender.EthAddr) } if !tx.IsL1 { // L2
// increment nonce
accSender.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee) if err != nil { return tracerr.Wrap(err) } feeAndAmount := new(big.Int).Add(tx.Amount, fee) accSender.Balance = new(big.Int).Sub(accSender.Balance, feeAndAmount) if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx) }
if _, ok := coordIdxsMap[accSender.TokenID]; ok { accCoord, err := tp.s.GetAccount(coordIdxsMap[accSender.TokenID]) if err != nil { return tracerr.Wrap( fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d", accSender.TokenID, coordIdxsMap[accSender.TokenID])) } // accumulate the fee for the Coord account
accumulated := tp.AccumulatedFees[accCoord.Idx] accumulated.Add(accumulated, fee)
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { collected := collectedFees[accCoord.TokenID] collected.Add(collected, fee) } } else { log.Debugw("No coord Idx to receive fee", "tx", tx) } } else { accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx) } }
// update sender account in localStateDB
pSender, err := tp.updateAccount(tx.FromIdx, accSender) if err != nil { log.Error(err) return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(pSender.Siblings) }
var accReceiver *common.Account if auxToIdx == tx.FromIdx { // if Sender is the Receiver, reuse 'accSender' pointer,
// because in the DB the account for 'auxToIdx' won't be
// updated yet
accReceiver = accSender } else { accReceiver, err = tp.s.GetAccount(auxToIdx) if err != nil { log.Error(err, auxToIdx) return tracerr.Wrap(err) } } if tp.zki != nil { // Set the State2 before updating the Receiver leaf
tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt() tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt() receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ) if receiverBJJSign { tp.zki.Sign2[tp.i] = big.NewInt(1) } tp.zki.Ay2[tp.i] = receiverBJJY tp.zki.Balance2[tp.i] = accReceiver.Balance tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr) }
// add amount-feeAmount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update receiver account in localStateDB
pReceiver, err := tp.updateAccount(auxToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(pReceiver.Siblings) }
return nil }
// applyCreateAccountDepositTransfer, in a single tx, creates a new account,
// makes a deposit, and performs a transfer to another account
func (tp *TxProcessor) applyCreateAccountDepositTransfer(tx *common.L1Tx) error { auxFromIdx := common.Idx(tp.s.CurrentIdx() + 1) accSender := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.EffectiveDepositAmount, BJJ: tx.FromBJJ, EthAddr: tx.FromEthAddr, }
if tp.zki != nil { // Set the State1 before updating the Sender leaf
tp.zki.TokenID1[tp.i] = tx.TokenID.BigInt() tp.zki.Nonce1[tp.i] = big.NewInt(0) fromBJJSign, fromBJJY := babyjub.UnpackSignY(tx.FromBJJ) if fromBJJSign { tp.zki.Sign1[tp.i] = big.NewInt(1) } tp.zki.Ay1[tp.i] = fromBJJY tp.zki.Balance1[tp.i] = tx.EffectiveDepositAmount tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr) }
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount) if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx.Tx()) }
// create Account of the Sender
p, err := tp.createAccount(common.Idx(tp.s.CurrentIdx()+1), accSender) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { tp.zki.IsOld0_1[tp.i] = big.NewInt(1) } tp.zki.OldKey1[tp.i] = p.OldKey.BigInt() tp.zki.OldValue1[tp.i] = p.OldValue.BigInt()
tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx() + 1
tp.zki.AuxFromIdx[tp.i] = auxFromIdx.BigInt() tp.zki.NewAccount[tp.i] = big.NewInt(1)
// intermediate states
tp.zki.ISOnChain[tp.i] = big.NewInt(1) } var accReceiver *common.Account if tx.ToIdx == auxFromIdx { accReceiver = accSender } else { accReceiver, err = tp.s.GetAccount(tx.ToIdx) if err != nil { log.Error(err) return tracerr.Wrap(err) } }
if tp.zki != nil { // Set the State2 before updating the Receiver leaf
tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt() tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt() receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ) if receiverBJJSign { tp.zki.Sign2[tp.i] = big.NewInt(1) } tp.zki.Ay2[tp.i] = receiverBJJY tp.zki.Balance2[tp.i] = accReceiver.Balance tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr) }
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
// update receiver account in localStateDB
p, err = tp.updateAccount(tx.ToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings) }
return tp.s.SetCurrentIdx(tp.s.CurrentIdx() + 1) }
// It returns the ExitAccount and a boolean determining if the Exit created a
// new Leaf in the ExitTree.
func (tp *TxProcessor) applyExit(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree, tx common.Tx, originalAmount *big.Int) (*common.Account, bool, error) { // 0. subtract tx.Amount from current Account in StateMT
// add the tx.Amount into the Account (tx.FromIdx) in the ExitMT
acc, err := tp.s.GetAccount(tx.FromIdx) if err != nil { return nil, false, tracerr.Wrap(err) } if tp.zki != nil { tp.zki.TokenID1[tp.i] = acc.TokenID.BigInt() tp.zki.Nonce1[tp.i] = acc.Nonce.BigInt() accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ) if accBJJSign { tp.zki.Sign1[tp.i] = big.NewInt(1) } tp.zki.Ay1[tp.i] = accBJJY tp.zki.Balance1[tp.i] = acc.Balance tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(acc.EthAddr) }
if !tx.IsL1 { // increment nonce
acc.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee) if err != nil { return nil, false, tracerr.Wrap(err) } feeAndAmount := new(big.Int).Add(tx.Amount, fee) acc.Balance = new(big.Int).Sub(acc.Balance, feeAndAmount) if acc.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return nil, false, newErrorNotEnoughBalance(tx) }
if _, ok := coordIdxsMap[acc.TokenID]; ok { accCoord, err := tp.s.GetAccount(coordIdxsMap[acc.TokenID]) if err != nil { return nil, false, tracerr.Wrap( fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d", acc.TokenID, coordIdxsMap[acc.TokenID])) }
// accumulate the fee for the Coord account
accumulated := tp.AccumulatedFees[accCoord.Idx] accumulated.Add(accumulated, fee)
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder { collected := collectedFees[accCoord.TokenID] collected.Add(collected, fee) } } else { log.Debugw("No coord Idx to receive fee", "tx", tx) } } else { acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount) if acc.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return nil, false, newErrorNotEnoughBalance(tx) } }
p, err := tp.updateAccount(tx.FromIdx, acc) if err != nil { return nil, false, tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings) }
if exitTree == nil { return nil, false, nil }
// Do not add the Exit when Amount=0, not EffectiveAmount=0. In
// txprocessor.applyExit function, the tx.Amount is in reality the
// EffectiveAmount, that's why is used here the originalAmount
// parameter, which contains the real value of the tx.Amount (not
// tx.EffectiveAmount). This is a particularity of the approach of the
// circuit, the idea will be in the future to update the circuit and
// when Amount>0 but EffectiveAmount=0, to not add the Exit in the
// Exits MerkleTree, but for the moment the Go code is adapted to the
// circuit.
if originalAmount.Cmp(big.NewInt(0)) == 0 { // Amount == 0
// if the Exit Amount==0, the Exit is not added to the ExitTree
return nil, false, nil }
exitAccount, err := statedb.GetAccountInTreeDB(exitTree.DB(), tx.FromIdx) if tracerr.Unwrap(err) == db.ErrNotFound { // 1a. if idx does not exist in exitTree:
// add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance =
// exitAmount (exitAmount=tx.Amount)
exitAccount := &common.Account{ TokenID: acc.TokenID, Nonce: common.Nonce(0), // as is a common.Tx, the tx.Amount is already an
// EffectiveAmount
Balance: tx.Amount, BJJ: acc.BJJ, EthAddr: acc.EthAddr, } if tp.zki != nil { // Set the State2 before creating the Exit leaf
tp.zki.TokenID2[tp.i] = acc.TokenID.BigInt() tp.zki.Nonce2[tp.i] = big.NewInt(0) accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ) if accBJJSign { tp.zki.Sign2[tp.i] = big.NewInt(1) } tp.zki.Ay2[tp.i] = accBJJY // Balance2 contains the ExitLeaf Balance before the
// leaf update, which is 0
tp.zki.Balance2[tp.i] = big.NewInt(0) tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(acc.EthAddr) // as Leaf didn't exist in the ExitTree, set NewExit[i]=1
tp.zki.NewExit[tp.i] = big.NewInt(1) } p, err = statedb.CreateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) if err != nil { return nil, false, tracerr.Wrap(err) } if tp.zki != nil { tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { tp.zki.IsOld0_2[tp.i] = big.NewInt(1) } tp.zki.OldKey2[tp.i] = p.OldKey.BigInt() tp.zki.OldValue2[tp.i] = p.OldValue.BigInt() tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt() } return exitAccount, true, nil } else if err != nil { return nil, false, tracerr.Wrap(err) }
// 1b. if idx already exist in exitTree:
if tp.zki != nil { // Set the State2 before updating the Exit leaf
tp.zki.TokenID2[tp.i] = acc.TokenID.BigInt() // increment nonce from existing ExitLeaf
tp.zki.Nonce2[tp.i] = exitAccount.Nonce.BigInt() accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ) if accBJJSign { tp.zki.Sign2[tp.i] = big.NewInt(1) } tp.zki.Ay2[tp.i] = accBJJY // Balance2 contains the ExitLeaf Balance before the leaf
// update
tp.zki.Balance2[tp.i] = exitAccount.Balance tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(acc.EthAddr) }
// update account, where account.Balance += exitAmount
exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount) p, err = statedb.UpdateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) if err != nil { return nil, false, tracerr.Wrap(err) }
if tp.zki != nil { tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { tp.zki.IsOld0_2[tp.i] = big.NewInt(1) } tp.zki.OldKey2[tp.i] = p.OldKey.BigInt() tp.zki.OldValue2[tp.i] = p.OldValue.BigInt() tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt() }
return exitAccount, false, nil }
// computeEffectiveAmounts checks that the L1Tx data is correct
func (tp *TxProcessor) computeEffectiveAmounts(tx *common.L1Tx) { tx.EffectiveAmount = tx.Amount tx.EffectiveDepositAmount = tx.DepositAmount
if !tx.UserOrigin { // case where the L1Tx is generated by the Coordinator
tx.EffectiveAmount = big.NewInt(0) tx.EffectiveDepositAmount = big.NewInt(0) return }
if tx.Type == common.TxTypeCreateAccountDeposit { return }
if tx.ToIdx >= common.UserThreshold && tx.FromIdx == common.Idx(0) { // CreateAccountDepositTransfer case
cmp := tx.DepositAmount.Cmp(tx.Amount) if cmp == -1 { // DepositAmount<Amount
tx.EffectiveAmount = big.NewInt(0) return }
// check if tx.TokenID==receiver.TokenID
accReceiver, err := tp.s.GetAccount(tx.ToIdx) if err != nil { log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.ToIdx: %d", tx.ToIdx) tx.EffectiveDepositAmount = big.NewInt(0) tx.EffectiveAmount = big.NewInt(0) return } if tx.TokenID != accReceiver.TokenID { log.Debugf("EffectiveAmount = 0: tx TokenID (%d) != receiver account TokenID (%d)", tx.TokenID, accReceiver.TokenID) tx.EffectiveAmount = big.NewInt(0) return } return }
accSender, err := tp.s.GetAccount(tx.FromIdx) if err != nil { log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.FromIdx: %d", tx.FromIdx) tx.EffectiveDepositAmount = big.NewInt(0) tx.EffectiveAmount = big.NewInt(0) return }
// check that tx.TokenID corresponds to the Sender account TokenID
if tx.TokenID != accSender.TokenID { log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: "+ "tx.TokenID (%d) !=sender account TokenID (%d)", tx.TokenID, accSender.TokenID) tx.EffectiveDepositAmount = big.NewInt(0) tx.EffectiveAmount = big.NewInt(0) return }
// check that Sender has enough balance
bal := accSender.Balance if tx.DepositAmount != nil { bal = new(big.Int).Add(bal, tx.EffectiveDepositAmount) } cmp := bal.Cmp(tx.Amount) if cmp == -1 { log.Debugf("EffectiveAmount = 0: Not enough funds (%s<%s)", bal.String(), tx.Amount.String()) tx.EffectiveAmount = big.NewInt(0) return }
// check that the tx.FromEthAddr is the same than the EthAddress of the
// Sender
if !bytes.Equal(tx.FromEthAddr.Bytes(), accSender.EthAddr.Bytes()) { log.Debugf("EffectiveAmount = 0: tx.FromEthAddr (%s) must be the same EthAddr of "+ "the sender account by the Idx (%s)", tx.FromEthAddr.Hex(), accSender.EthAddr.Hex()) tx.EffectiveAmount = big.NewInt(0) }
if tx.ToIdx == common.Idx(1) || tx.ToIdx == common.Idx(0) { // if transfer is Exit type, there are no more checks
return }
// check that TokenID is the same for Sender & Receiver account
accReceiver, err := tp.s.GetAccount(tx.ToIdx) if err != nil { log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.ToIdx: %d", tx.ToIdx) tx.EffectiveDepositAmount = big.NewInt(0) tx.EffectiveAmount = big.NewInt(0) return } if accSender.TokenID != accReceiver.TokenID { log.Debugf("EffectiveAmount = 0: sender account TokenID (%d) != receiver account TokenID (%d)", accSender.TokenID, accReceiver.TokenID) tx.EffectiveAmount = big.NewInt(0) return } if tx.TokenID != accReceiver.TokenID { log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: "+ "tx TokenID (%d) != receiver account TokenID (%d)", tx.TokenID, accReceiver.TokenID) tx.EffectiveAmount = big.NewInt(0) return } }
// CheckEnoughBalance returns true if the sender of the transaction has enough
// balance in the account to send the Amount+Fee, and also returns the account
// Balance and the Fee+Amount (which is used to give information about why the
// transaction is not selected in case that this method returns false.
func (tp *TxProcessor) CheckEnoughBalance(tx common.PoolL2Tx) (bool, *big.Int, *big.Int) { acc, err := tp.s.GetAccount(tx.FromIdx) if err != nil { return false, nil, nil } fee, err := common.CalcFeeAmount(tx.Amount, tx.Fee) if err != nil { return false, nil, nil } feeAndAmount := new(big.Int).Add(tx.Amount, fee) return acc.Balance.Cmp(feeAndAmount) != -1, // !=-1 balance<amount
acc.Balance, feeAndAmount }
|