Let $M$ a fingen $A$-module. Let $\aA$ an ideal of $A$, let $\psi$ an
$A$-module endomorphism of $M$ such that $\psi(M)\subseteq\aA M$.
@ -228,7 +249,7 @@
With the Kronecker delta, $\psi(x_i)$ can be expressed as
$$\psi(x_i)=\sum_{j=1}^n \delta_{ij}\psi(x_j)$$
so the previous matrix ccan be characterized as
so the previous matrix can be characterized as
$$\sum_{j=1}^n (\delta_{ij}\psi- a_{ij}) x_j =0$$
The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$)
@ -278,7 +299,7 @@
\begin{cor}{2.5}\label{2.5}
\begin{cor}{AM.2.5}\label{2.5}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$.
Then, $\exists~ x \equiv1\pmod\aA$ such that $xM =0$.
@ -310,7 +331,7 @@
\begin{prop}{2.6}{Nakayama's lemma}\label{2.6}
\begin{prop}{AM.2.6}{Nakayama's lemma}\label{2.6}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA\subseteq Jac(A)$.
Then $\aA M = M$ implies $M=0$.
@ -318,16 +339,16 @@
\begin{proof}
By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv1\pmod{Jac(A)}$. (notice that at \ref{2.5} is $\pmod\aA$ but here we use $\pmod{Jac(A)}$, since we have $\aA\subseteq Jac(A)$).
By \ref{1.9}, $x$ is a unit in $A$.
By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$).
Let $M$ a fingen $A$-module, let $N \subseteq M$ a submodule of $M$, let $\aA\subseteq Jac(A)$ an ideal.
Then $M =\aA M + N \stackrel{\text{implies}}{\Longrightarrow} M=N$.
@ -404,7 +425,7 @@
\begin{prop}{2.8}\label{2.8}
\begin{prop}{AM.2.8}\label{2.8}
Let $x_i \forall i \in[n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vecctor space. Then the $x_i$ generate $M$.
\end{prop}
\begin{proof}
@ -414,11 +435,85 @@
\end{proof}
\subsection{Noetherean rings}
\begin{prop}{AM.2.10}\label{2.10}
Split exact sequence. TODO
\end{prop}
\section{Noetherean rings}
\begin{defn}{}{Ascending Chain Condition}
A partially orddered set $\Sigma$ has the \emph{ascending chain condition} (a.c.c.) if every chain
$$s_1\leq s_2\leq\ldots\leq s_k \leq\ldots$$
eventually breaks off, that is, $s_k = s_{k+1}=\ldots$ for some $k$.
\end{defn}
$\Longrightarrow~ \Sigma$ has the a.c.c. iff every non-empty subset $S \subset\Sigma$ has a maximal element.\\
\hspace*{2em} if $\empty\neq S \subset\Sigma$ does not have a maximal element, choose $s_1\in S$, and for each $s_k$, an element $s_{k+1}$ with $s_k < s_{k+1}$, thus contradicting the a.c.c.
\begin{defn}{R.3.2}{Noetherian ring}
Let $A$ a ring; 3 equivalent conditions:
\begin{enumerate}[i.]
\item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals
Each of these two chains eventually stop, by the assumption on $L$ and $N$, so that we only need to prove the following lemma which completes the proof.
\end{proof}
\begin{lemma}{R.3.4.L}
for submodules $M_1\subset M_2\subset M$,\\
$L \cap M_1= L \cap M_2$ and $\beta(M_1)=\beta(M_2) ~\Longrightarrow~ M_1= M_2$.
\end{lemma}
\begin{proof}
if $m\in M_2$, then $\beta(m)\in\beta(M_1)=\beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.
Then $\beta(m-n)=0$, so that
$$m - n \in M_2\cap ker(\beta)=M_1\cap ker(\beta)$$