Browse Source

add ideals related definitions

commutative-alg
arnaucube 1 week ago
parent
commit
25a8538245
2 changed files with 89 additions and 5 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +89
    -5
      commutative-algebra-notes.tex

BIN
commutative-algebra-notes.pdf


+ 89
- 5
commutative-algebra-notes.tex

@ -92,7 +92,91 @@
\section{Ideals} \section{Ideals}
\subsection{Definitions} \subsection{Definitions}
% WIP
\begin{defn}{ideal}
$I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\
\hspace*{2em} ie. $I$ absorbs products in $R$.
\end{defn}
\begin{defn}{prime ideal}
if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$.
\end{defn}
\begin{defn}{principal ideal}
generated by a single element, $(a)$.
$(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$.
\end{defn}
\begin{defn}{maximal ideal}
$\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$.
\end{defn}
\begin{defn}{unit}
$x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}.
\end{defn}
\begin{defn}{zerodivisor}
$x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}..
If a ring does not have zerodivisors is an integral domain.
\end{defn}
\begin{defn}{prime spectrum - $Spec(A)$}
set of prime ideals of $A$. ie.
$$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$
\end{defn}
\begin{defn}{integral domain}
Ring in which the product of any two nonzero elements is nonzero.
ie. no zerodivisors.
ie. $\forall~ 0 \neq a,~ 0 \neq b \in A,~ ab \neq 0 \in A$.
Every field is an integral domain, not the converse.
\end{defn}
\begin{defn}{principal ideal domain - PID}
integral domain in which every ideal is principal. ie.
ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$.
\end{defn}
\begin{defn}{nilpotent}
$a \in A$ such that $a^n=0$ for some $n>0$.
\end{defn}
\begin{defn}{nilrad A}
set of all nilpotent elements of $A$; is an ideal of $A$.
if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents.
$$nilrad A = \bigcap_{P \in Spec(A)} P$$
\end{defn}
\begin{defn}{idempotent}
$e \in A$ such that $e^2=e$.
\end{defn}
\begin{defn}{radical of an ideal}
$$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$
$rad I$ is an ideal.
$nilrad A = rad 0$
$rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$
\end{defn}
\begin{defn}{local ring}
A \emph{local ring} has a unique maximal ideal.
Notation: locall ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$:
$$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$
\end{defn}
\subsection{Lemmas, propositions and corollaries} \subsection{Lemmas, propositions and corollaries}
\begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn} \begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn}
@ -339,6 +423,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\begin{proof} \begin{proof}
By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$). By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$).
(recall \ref{1.9}: $x \in Jac(A)$ iff $(1 - xy)$ is a unit in $A$, $\forall y \in A$).\\
By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$). By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$).
Hence $M = x^{-1} \cdot \underbrace{x~ \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$. Hence $M = x^{-1} \cdot \underbrace{x~ \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$.
@ -381,7 +466,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
$$\frac{\aA M + N}{N} = \left\{ y + N ~~|~~ y \in \aA M +N \right\} = \aA M + N$$ $$\frac{\aA M + N}{N} = \left\{ y + N ~~|~~ y \in \aA M +N \right\} = \aA M + N$$
thus every $y \in \aA M +N$ can be written as thus every $y \in \aA M +N$ can be written as
$$y=x+n,~~ \text{with} x \in \aA M,~ n\in M$$
$$y=x+n,~~ \text{with} x \in \aA M,~ n\in N$$
which comes from \eqref{eq:2.7.1}. which comes from \eqref{eq:2.7.1}.
Thus, $y + N = (x+n)+N = x+N$, since $n \in N$ is zero in the quotient. Thus, $y + N = (x+n)+N = x+N$, since $n \in N$ is zero in the quotient.
@ -500,9 +585,8 @@ As in with rings, it is equivalent to say that
\end{proof} \end{proof}
\begin{lemma}{R.3.4.L} \begin{lemma}{R.3.4.L}
for submodules $M_1 \subset M_2 \subset M$,\\
$L \cap M_1 = L \cap M_2$ and $\beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$.
for submodules $M_1 \subset M_2 \subset M$,
$$L \cap M_1 = L \cap M_2 ~\text{and}~ \beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$$
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$. if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.

Loading…
Cancel
Save