$I \subset R$ ($R$ ring) such that $0\in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\
\hspace*{2em} ie. $I$ absorbs products in $R$.
\end{defn}
\begin{defn}{prime ideal}
if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$.
\end{defn}
\begin{defn}{principal ideal}
generated by a single element, $(a)$.
$(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$.
\end{defn}
\begin{defn}{maximal ideal}
$\mM\subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM\subseteq I \subseteq A$, either $\mM=I$ or $I=A$.
\end{defn}
\begin{defn}{unit}
$x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}.
\end{defn}
\begin{defn}{zerodivisor}
$x \in A$ such that $\exists0\neq y \in A$ such that $xy=0\in A$. ie. $x$\emph{divides 0}..
If a ring does not have zerodivisors is an integral domain.
\end{defn}
\begin{defn}{prime spectrum - $Spec(A)$}
set of prime ideals of $A$. ie.
$$Spec(A)=\{ P ~|~ P \subset A~ \text{is a prime ideal}\}$$
\end{defn}
\begin{defn}{integral domain}
Ring in which the product of any two nonzero elements is nonzero.
ie. no zerodivisors.
ie. $\forall~ 0\neq a,~ 0\neq b \in A,~ ab \neq0\in A$.
Every field is an integral domain, not the converse.
\end{defn}
\begin{defn}{principal ideal domain - PID}
integral domain in which every ideal is principal. ie.
ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I =(a)=\{ ra ~|~ r \in R \}$.
\end{defn}
\begin{defn}{nilpotent}
$a \in A$ such that $a^n=0$ for some $n>0$.
\end{defn}
\begin{defn}{nilrad A}
set of all nilpotent elements of $A$; is an ideal of $A$.
if $nilrad A =0 ~\Longrightarrow$$A$ has no nonzero nilpotents.
$$nilrad A =\bigcap_{P \in Spec(A)} P$$
\end{defn}
\begin{defn}{idempotent}
$e \in A$ such that $e^2=e$.
\end{defn}
\begin{defn}{radical of an ideal}
$$rad I =\{ f \in A | f^n \in I~ \text{for some} n \}$$
$rad I$ is an ideal.
$nilrad A = rad 0$
$rad I =\bigcap_{\substack{P \in\operatorname{Spec}(A)\\ P \supset I}} P$
\end{defn}
\begin{defn}{local ring}
A \emph{local ring} has a unique maximal ideal.
Notation: locall ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$:
@ -339,6 +423,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\begin{proof}
\begin{proof}
By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv1\pmod{Jac(A)}$. (notice that at \ref{2.5} is $\pmod\aA$ but here we use $\pmod{Jac(A)}$, since we have $\aA\subseteq Jac(A)$).
By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv1\pmod{Jac(A)}$. (notice that at \ref{2.5} is $\pmod\aA$ but here we use $\pmod{Jac(A)}$, since we have $\aA\subseteq Jac(A)$).
(recall \ref{1.9}: $x \in Jac(A)$ iff $(1- xy)$ is a unit in $A$, $\forall y \in A$).\\
By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$).
By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$).