mirror of
https://github.com/arnaucube/math.git
synced 2026-01-10 16:01:31 +01:00
updated FRI notes, with STIR main idea
This commit is contained in:
@@ -11,7 +11,7 @@ Notes, code and documents done while reading books and papers.
|
||||
- [Notes on Weil pairing](weil-pairing.pdf)
|
||||
- [Notes on Sigma protocol and OR proofs](sigma-or-notes.pdf)
|
||||
- [Notes on Reed-Solomon codes](notes_reed-solomon.pdf)
|
||||
- [Notes on FRI](notes_fri.pdf)
|
||||
- [Notes on FRI and STIR](notes_fri_stir.pdf)
|
||||
- [Notes on Spartan](notes_spartan.pdf)
|
||||
- [Notes on Nova](notes_nova.pdf)
|
||||
- [Notes on HyperNova](notes_hypernova.pdf)
|
||||
|
||||
BIN
notes_fri.pdf
BIN
notes_fri.pdf
Binary file not shown.
BIN
notes_fri_stir.pdf
Normal file
BIN
notes_fri_stir.pdf
Normal file
Binary file not shown.
@@ -25,7 +25,7 @@
|
||||
{\endinnerlemma}
|
||||
|
||||
|
||||
\title{Notes on FRI}
|
||||
\title{Notes on FRI and STIR}
|
||||
\author{arnaucube}
|
||||
\date{February 2023}
|
||||
|
||||
@@ -39,6 +39,8 @@
|
||||
These notes are for self-consumption, are not complete, don't include all the steps neither all the proofs.
|
||||
|
||||
An implementation of FRI can be found at\\ \href{https://github.com/arnaucube/fri-commitment}{https://github.com/arnaucube/fri-commitment} \cite{fri-impl}.
|
||||
|
||||
Update(2024-03-22): notes on STIR \cite{cryptoeprint:2024/390} from explanations by \href{https://hecmas.github.io/}{Héctor Masip Ardevol} \cite{hectormasipardevol}.
|
||||
\end{abstract}
|
||||
|
||||
\tableofcontents
|
||||
@@ -303,6 +305,30 @@ V has $f(z)$ and $g(z)$ openings, so can verify
|
||||
$$g(z) = (f(z)-f(r))\cdot (z-r)^{-1}$$
|
||||
|
||||
|
||||
\section{STIR (main idea)}
|
||||
\emph{Update from 2024-03-22, notes from Héctor Masip Ardevol (\href{https://hecmas.github.io/}{https://hecmas.github.io}) explanations.}
|
||||
|
||||
\vspace{0.3cm}
|
||||
Let $p \in \mathbb{F}[x]^{<n}$.
|
||||
|
||||
In FRI we decompose $p(x)$ as
|
||||
$$p(x) = p_e(x^2) + x \cdot p_o(x^2)$$
|
||||
with $p_e, p_o \in \mahtbb{F}[x]^{<n}$ containing the even and odd powers respectively.
|
||||
|
||||
The next FRI polynomial is
|
||||
$$p_1(x) = p_e(x) + \alpha p_o(x)$$
|
||||
for $\alpha \in^R \mathbb{F}$.
|
||||
|
||||
In STIR, this would be $q(x)=x^2$,
|
||||
$$Q(z,y) = p_e(y) + z \cdot p_o(y)$$
|
||||
and then, $p(x) = Q(x, q(x))$. And $Q$ fullfills the degree from Fact 4.6 from the STIR paper.
|
||||
|
||||
We can generalize to a $q$ with bigger degree, or with another shape, and adapting $Q$ on the choice of $q$.
|
||||
|
||||
eg. for $q(x)=x^3$, we can take
|
||||
$$Q(z,y) = p_1(y) + z \cdot p_2(y) + z^2 \cdot p_3(y)$$
|
||||
with $p_1, p_2, p_3 \in \mathbb{F}[x]^{<n/3}$ with coefficients taken every 3 powers alternating.
|
||||
|
||||
\bibliography{paper-notes.bib}
|
||||
\bibliographystyle{unsrt}
|
||||
|
||||
@@ -81,6 +81,15 @@
|
||||
note = {\url{https://eprint.iacr.org/2019/1020}},
|
||||
url = {https://eprint.iacr.org/2019/1020}
|
||||
}
|
||||
@misc{cryptoeprint:2024/390,
|
||||
author = {Gal Arnon and Alessandro Chiesa and Giacomo Fenzi and Eylon Yogev},
|
||||
title = {{STIR}: Reed–Solomon Proximity Testing with Fewer Queries},
|
||||
howpublished = {Cryptology {ePrint} Archive, Paper 2024/390},
|
||||
year = {2024},
|
||||
note = {\url{https://eprint.iacr.org/2024/390}},
|
||||
url = {https://eprint.iacr.org/2024/390}
|
||||
}
|
||||
|
||||
|
||||
@misc{cryptoeprint:2021/370,
|
||||
author = {Abhiram Kothapalli and Srinath Setty and Ioanna Tzialla},
|
||||
@@ -96,6 +105,11 @@
|
||||
note = {\url{https://sites.google.com/site/vincenzoiovinoit/}},
|
||||
url = {https://sites.google.com/site/vincenzoiovinoit/}
|
||||
}
|
||||
@misc{hectormasipardevol,
|
||||
title = {{Héctor Masip Ardevol}},
|
||||
note = {\url{https://hecmas.github.io}},
|
||||
url = {https://hecmas.github.io}
|
||||
}
|
||||
@misc{fri-impl,
|
||||
note = {\url{https://github.com/arnaucube/fri-commitment}},
|
||||
url = {https://github.com/arnaucube/fri-commitment}
|
||||
|
||||
Reference in New Issue
Block a user