Browse Source

galois notes: port notes till chapter 14

- port chapter 14's notes
- add pending notes for ch 5 to 12
- add Rolle's theorem
master
arnaucube 4 days ago
parent
commit
7531c358e1
2 changed files with 502 additions and 9 deletions
  1. BIN
      galois-theory-notes.pdf
  2. +502
    -9
      galois-theory-notes.tex

BIN
galois-theory-notes.pdf


+ 502
- 9
galois-theory-notes.tex

@ -73,7 +73,12 @@
{\renewcommand\theinnerlemma{#1}\innerlemma}
{\endinnerlemma}
\newtheorem{innercor}{Lemma}
\newtheorem{innerprop}{Proposition}
\newenvironment{prop}[1]
{\renewcommand\theinnerprop{#1}\innerprop}
{\endinnerprop}
\newtheorem{innercor}{Corollary}
\newenvironment{cor}[1]
{\renewcommand\theinnercor{#1}\innercor}
{\endinnercor}
@ -83,6 +88,11 @@
{\renewcommand\theinnereg{#1}\innereg}
{\endinnereg}
\newtheorem{innerex}{Exercise}
\newenvironment{ex}[1]
{\renewcommand\theinnerex{#1}\innerex}
{\endinnerex}
\title{Galois Theory notes}
\author{arnaucube}
@ -103,7 +113,7 @@
\tableofcontents
\section{Galois Theory notes}
\subsection{Chapters 4-6}
\subsection{Chapters 4-12}
(Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book \cite{ianstewart}).
\begin{defn}{4.10}
@ -134,6 +144,24 @@
Therefore, $r-s=0$, so $r=s$, proving uniqueness.
\end{proof}
\begin{thm}{5.10}
$\forall 0 \neq f \in \frac{K[t]}{<m>},~~ \exists f^{-1}$ iff $m$ is irreducible in $K[t]$.\\
Then $\frac{K[t]}{<m>}$ is a field.
\end{thm}
\begin{thm}{5.12} \label{5.12}
Let $K(\alpha):K$ simple algebraic extension, let $m$ minimal polynomial of $\alpha$ over $K$.\\
$K(\alpha):K$ is isomorphic to $\frac{K[t]}{<m>}$.\\
The isomorphism $\frac{K[t]}{<m>} \longrightarrow K(\alpha)$ can be chosen to map $t$ to $\alpha$.
\end{thm}
\begin{cor}{5.13} \label{5.13}
Let $K(\alpha):K$ and $K(\beta):K$ be simple algebraic extensions.\\
If $\alpha,~ \beta$ have same minimal polynomial $m$ over $K$, then the two extensions are isomorphic, and the isomorphism of the larger fields map $\alpha$ to $\beta$.
\end{cor}
\begin{proof}
By \ref{5.12}, both extensions are isomorphic to $\frac{K[t]}{<m>}$.
\end{proof}
\begin{lemma}{5.14}
Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$.
@ -176,9 +204,15 @@
So the elements $x_i y_j$ are linearly independent over $K$.
\item prove that $x_i y_j$ span $M$ over $K$:\\
Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$.
Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\
Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required.
Any $x \in M$ can be written
$$x=\sum_j \lambda_j y_j$$
for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$.
Similarly,
$$\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$$
for $\lambda_{ij} \in K$.\\
Putting the pieces together,
$$x=\sum_{ij} \lambda_{ij} x_i y_j$$
as required.
\end{enumerate}
\end{proof}
@ -190,10 +224,210 @@
From \ref{shorttowerlaw}.
\end{proof}
[...] TODO: pending to add key parts up to Chapter 15.
\begin{thm}{6.7}
if $K(\alpha):K$
\begin{itemize}
\item transcendental $\Longrightarrow~~[K(\alpha):K] = \inf$
\item algebraic $\Longrightarrow~~[K(\alpha):K] = \delta m$
\end{itemize}
(where $m$ is the minimal polynomial of $\alpha$ over $K$).
\end{thm}
\begin{defn}{8.1}
$L:K$, a \emph{$K$-automorphism} of $L$ is an automorphism $\alpha$ of $L$ such that $\alpha(k)=k ~~ \forall k \in K$.\\
ie. $\alpha$ \emph{fixes} $k$.
\end{defn}
\begin{thm}{8.2, 8.3}
The set of all $K$-automorphisms of $L$ forms a group, $\Gamma(L:K)$, the Galois group of $L:K$.
\end{thm}
\begin{defn}{8.12}(Radical Extension) \label{8.12}
$L:K$ is radical if $L=K(\alpha_1, \ldots, \alpha_m)$ where for each $j=1, \ldots, m$, $\exists~ n_j$ such that $\alpha_j^{n_j} \in K(\alpha_1, \ldots, \alpha_{j-1})~~(j\geq 1)$
\end{defn}
\begin{lemma}{8.18}
Let $q \in L$. The minimal polynomial of $q$ over $K$ \emph{splits} into linear factors over L.
\end{lemma}
\begin{ex}{E.8.7}
TODO
\end{ex}
\begin{defn}{9.1}
For $K \subseteq \mathbb{C}$, and $f \in K[t]$, $f$ \emph{splits} over $K$ if it can be expressed as a product of linear factors
$$f(t) = k \cdot (t- \alpha_1) \cdot \ldots \cdot (t - \alpha_n)$$
where $k, \alpha_i \in K$.
$\Longrightarrow$ (Thm 9.3) if $f$ splits over $\Sigma$, $\Sigma$ is the \emph{splitting field}.\\
If $K \subseteq \Sigma' \subseteq \Sigma$ and $f$ splits over $\Sigma'$, then $\Sigma' = \Sigma$.
\end{defn}
\begin{thm}{9.6} \label{9.6}
TODO
\end{thm}
\begin{defn}{9.8}
$L:K$ is \emph{normal} if every irreducible polynomial $f \in K[t]$ that has at least one zero in $L$, splits in $L$.
\end{defn}
\begin{thm}{9.9} \label{9.9}
TODO
\end{thm}
\begin{thm}{9.10}
An irreducible polynomial $f \in K[t]$ ($K \subseteq \mathbb{C}$) is \emph{separable over} $K$ if it has simple zeros in $\mathbb{C}$, or equivelently, simple zeros in its splitting field.
\end{thm}
\begin{lemma}{9.13}
$f \in K[t]$ with splitting field $\Sigma$. $f$ has multiple zeros (in $\Sigma$ or $\mathbb{C}$) iff $f$ and $Df$ have a common factor of degree $\geq 1$ in $\Sigma[t]$.\\
More details at Rolle's theorem (\ref{rolle}) section.
\end{lemma}
\begin{thm}{10.5} \label{10.5}
$|\Gamma(K:K_0)| = [K:K_0]$, where $K_0$ is the fixed field of $\Gamma(K:K_0)$.
\end{thm}
\begin{defn}{11.1}
$K \subseteq L$, $K \subseteq L$. A $K$-monomorphism of $M$ into $L$ is a field monomorphism
$$\phi: M \longrightarrow L$$
such that $\phi(k)=k ~~ \forall k \in K$.
\end{defn}
\begin{thm}{11.3} \label{11.3}
$L:K$ normal, $K \subseteq M \subseteq L$. Let $\tau$ any $K$-monomorphism $\tau: M \longrightarrow L$.\\
Then, $\exists$ a $K$-automorphism $\sigma$ of $L$ such that $\sigma\biggr\vert_M=\tau$.
\end{thm}
\begin{proof}
$L:K$ normal $\Longrightarrow$ by Thm \ref{9.9}, $L$ splitting field for some poly $f \in K[t]$.
Hence, $L$ is splitting field over $M$ for $f$ and over $\tau(M)$ for $\tau(f)$.
Since $\tau \biggr\vert_K$ is the identity, $\tau(f)=f$.
\vspace{0.5cm}
We have
\begin{tikzpicture}[node distance=1.5cm, auto]
\node (M) {$M$};
\node (L) [right of=M] {$L$};
\node (t) [below of=M] {$\tau(M)$};
\node (L2) [below of=L] {$L$};
\draw[->] (M) to node {$ $} (L);
\draw[->] (M) to node {$\tau$} (t);
\draw[->] (t) to node {$ $} (L2);
\draw[->] (L) to node {$ $} (L2);
\end{tikzpicture}
with $\sigma$ yet to be formed.
By Theorem \ref{9.6}, $\exists$ isomorphism $\sigma: L \longrightarrow L$ such that $\sigma \biggr\vert_M = \tau$.\\
Therefore, $\sigma$ is an automorphism of $L$, and since $\sigma\biggr\vert_K = \tau\biggr\vert_K=id$, $\sigma$ is a $K$-automorphism of $L$.
\end{proof}
\begin{prop}{11.4} \label{11.4}
$L:K$ finite normal, $\alpha,~\beta$ are zeros in $L$ of the irreducible polynomial $p \in K[t]$.
Then, $\exists$ a $K$-automorphism $\sigma$ of $L$ such that $\sigma(\alpha)=\beta$.
\end{prop}
\begin{proof}
By Corollary \ref{5.13}, $\exists$ isomorphism $\tau: K(\alpha) \longrightarrow K(\beta)$ such that $\tau \biggr\vert_K$ is the identity, and $\tau(\alpha)=\beta$.
By Theorem \ref{11.3}, $\tau$ extends to a $K$-automorphism $\sigma$ of $L$.
\end{proof}
\begin{lemma}{11.8} \label{11.8}
$K \subseteq L \subseteq N \subseteq M$, $L:K$ finite, $N$ normal closure of $L:K$.\\
Let $\tau$ any $K$-monomorphism $\tau: L \longrightarrow M$.\\
Then $\tau(L) \subseteq N$.
\end{lemma}
\begin{proof}
$\alpha \in L$, $m$ minimal polynomial of $\alpha$ over $K$.\\
$\Longrightarrow ~~ m(\alpha)=0$, so $\tau(m(\alpha))=0$
(since $\tau$ is a $K$-automorphism, ie. maps the zeros of $m(t)$).\\
Since $\tau$ is a $K$-monomorphism, $\tau(m(\alpha))=m(\tau(\alpha))=0$
$\Longrightarrow~~ \tau(\alpha)$ is a zero of $m$.\\
Therefore, $\tau(\alpha)$ lies in $N$, since $N:K$ is normal.\\
Henceforth, $\tau(L) \subseteq N$.
\end{proof}
\begin{thm}{11.9}
The following are equivalent:
\begin{enumerate}
\item $L:K$ normal
\item $\exists$ finite normal extension $N$ of $K$ containing $L$,\\
such that every $K$-monomorphism $\tau: L \longrightarrow N$ is a $K$-automorphism of $L$.
\item for every finite extension $M$ of $K$ containing $L$,\\
every $K$-monomorphism $\tau: L \longrightarrow M$ is a $K$-automorphism of $L$.
\end{enumerate}
\end{thm}
\begin{thm}{11.10}
$[L:N]=1,~ N$ normal closure of $L:K$. Then,
$\exists~ n~ K$-monomorphisms $L \longrightarrow N$.\\
(the ones proven by Lemma \ref{11.8}).
\end{thm}
\begin{cor}{11.11} \label{11.11}
$|\Gamma(L:K)| = [L:K]$ (if $L:K$ is normal).
ie. there are precisely $[L:K]$ distinct $K$-automorphisms of $L$.
\end{cor}
\begin{thm}{11.12}
$\Gamma(L:K) = G$. If $L:K$ normal, then $K$ is the fixed field of $G$.
\end{thm}
\begin{proof}
let $K_0$ be the fixed field of $G$. Let $[L:K]=n$.\\
By \ref{11.11}, $|G| = [L:K] = n$.\\
By \ref{10.5}, $[L:K_0]=n$ ($K_0$ fixed field).\\
Since $K \subseteq K_0$, we must have $K=K_0$.
$\Longrightarrow$ thus $K$ is the fixed field of $G$.
\end{proof}
\begin{thm}{11.14}
if $L$ any field, $G$ any finite group of automorphisms of $L$, and $K$ its fixed field,
then $L:K$ is \emph{finite} and \emph{normal}, with Galois group $G$.
\end{thm}
\begin{thm}{12.2}(Fundamental Theorem of Galois Theory)
if $L:K$ finite and normal inside $\mathbb{C}$, with $\Gamma(L:K)=G$, then:
\begin{enumerate}
\item $|\Gamma(L:K)| = [L:K]$
(by Corollary \ref{11.11})
\item the maps * and $\dagger$ are mutual inverses, and setup an order-reversing one-to-one correspondence between $\mathcal{F}$ and $\mathcal{G}$.
\item if $M$ an intermediate field, then
$$[L:M] = |M^*|~~~~~~~ [M:K]=\frac{|G|}{|M^*|}$$
\item for $M$ an intermediate field, $M:K$ normal iff
$$\underbrace{\Gamma(M:K)}_{=M^*} \lhd \underbrace{\Gamma(L:K)}_{=G}$$
\item for $M$ intermediate, if $M:K$ normal, then
$$\Gamma(M:K) \cong \frac{G}{M^*}$$
ie.
$$\Gamma(M:K) \cong \frac{\Gamma(L:K)}{\Gamma(L:M)}$$
\end{enumerate}
\end{thm}
\begin{proof}
TODO
\end{proof}
\subsection{Chapter 13 - Full example}
(Chapter 13 is basically a full example. More examples can be found at section \ref{ex:galoisgroups})
\subsection{Detour: Isomorphism Theorems}
\begin{thm}{}(\emph{First Isomorphism Theorem}) \label{1stisothm}
\begin{thm}{i.1}(\emph{First Isomorphism Theorem}) \label{1stisothm}
\begin{minipage}{0.75\textwidth}
If $\psi: G \longrightarrow H$ a group homomorphism, then $ker(\psi) \triangleleft G$.\\
@ -263,7 +497,7 @@
\end{proof}
\begin{thm}{}(\emph{Second Isomorphism Theorem}) \label{2ndisothm}
\begin{thm}{i.2}(\emph{Second Isomorphism Theorem}) \label{2ndisothm}
Let $H \subseteq G$, $N \triangleleft G$. Then
\begin{enumerate}[i.]
\item $HN \subseteq G$
@ -329,7 +563,7 @@
\end{proof}
\begin{thm}{}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\
\begin{thm}{i.3}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\
Let $H \subseteq K$ and $K \triangleleft G,~ H \triangleleft G$.\\
Then
$\frac{K}{H} \triangleleft \frac{G}{H}$
@ -387,6 +621,218 @@
\subsection{Chapter 14}
\begin{defn}{14.1} \label{14.1}
a group $G$ is soluble if it has a finite series of subgroups
$$1=G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G$$
such that
\begin{enumerate}[i.]
\item $G_i \lhd G_{i+1}$ for $i=0,\ldots,n-1$
\item $\frac{G_{i+1}}{G_{i+1}}$ is Abelian for for $i=0,\ldots,n-1$
\end{enumerate}
(Note: $G_i \lhd G_{i+1} \lhd G_{i+2}$ does not imply $G_i \lhd G_{i+2}$)
\end{defn}
\begin{thm}{14.4}
$H \subseteq G,~~ N \triangleleft G$, then
\begin{enumerate}
\item if $G$ soluble $\Longrightarrow H$ soluble
\item if $G$ soluble $\Longrightarrow G/N$ soluble
\item if $N$ and $G/N$ soluble $\Longrightarrow G$ soluble
\end{enumerate}
\end{thm}
\begin{proof}
\begin{enumerate}
\item Since $G$ soluble, by definition: $\exists~~ 1=G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G$ with Abelian quotients $\frac{G_{i+1}}{G_i}$.
Let $H_i = G_i \cap H$, then $H$ has a series $1=H_0 \triangleleft H_1
\triangleleft \ldots \triangleleft H_r = H$, next we show that the
quotients $\frac{H_{i+1}}{H_i}$ are Abelian (so that H is soluble):
$$\frac{H_{i+1}}{H_i} = \frac{G_{i+1} \cap H}{G_i \cap H} \stackrel{(*)}{=} \frac{G_{i+1} \cap H}{G_i \cap (G_{i+1}\cap H)}
\stackrel{(**)}{\cong} \frac{G_i(G_{i+1} \cap H)}{G_i} \subseteq \frac{G_{i+1}}{G_i}
$$
(*): to see why, $H_i = G_i \cap H = G_i \cap H_i = G_i \cap H_{i+1} = G_i \cap (G_{i+1} \cap H)$.
(**): by the 2nd Isomorphism Theorem (\ref{2ndisothm}).
[TODO: diagram of subgroups] % TODO %
Notice that $\frac{G_{i+1}}{G_i}$ is Abelian, thus the left-hand-side of the congruence is also Abelian.
Therefore, $\frac{H_{i+1}}{H_i}$ is Abelian, thus $H$ is soluble.
\item For $G/N$ to be soluble, (by definition) it would have the series $\frac{N}{N} = G_0 \frac{N}{N} \triangleleft G_1 \frac{N}{N} \triangleleft \ldots \triangleleft G_r \frac{N}{N} = \frac{G}{N}$,
and any quotient being $\frac{G_{i+1}\frac{N}{N}}{G_i \frac{N}{N}}$.
The series clearly exists, so now we show that the quotients are Abelian, so that $G/N$ is soluble:
$$
\frac{G_{i+1} N}{G_i N} = \frac{G_{i+1}(G_i N)}{G_i N} \stackrel{(*)}{\cong}
\frac{G_{i+1}}{G_{i+1} \cap (G_i N)} \cong \frac{G_{i+1}/G_i}{(G_{i+1}
\cap (G_i N))/G_i}
$$
(*): by the 2nd Isomorphism Theorem (\ref{2ndisothm}).
The last quotient is a quotient of the Abelian group $G_{i+1}/G_i$, so it is Abelian.
Hence, $\frac{G_{i+1}N}{G_i N}$ is also Abelian; so $\frac{G}{N}$ is soluble.
\item
By the definition of $N$ and $G/N$ being soluble,
\begin{align*}
N \text{soluble} \Longrightarrow~~ 1 &= N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N\\
G/N \text{soluble} \Longrightarrow~~ 1= \frac{N}{N} &= \frac{G_0}{N} \triangleleft \frac{G_1}{N} \triangleleft \ldots \triangleleft \frac{G_r}{N} = \frac{G}{N}
\end{align*}
both with Abelian quotients.
Consider the series of $G$ given by combining the two previous series:
$$
1 = N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G
$$
the quotients are either
\begin{itemize}
\item $\frac{N_{i+1}}{N_i}$, Abelian
\item $\frac{G_{i+1}}{G_i}$, isomorphic to $\frac{G_{i+1}/N}{G_i/N}$,
which is Abelian.
\end{itemize}
\end{enumerate}
Therefore, the quotients are always Abelian; hence $G$ is soluble.
\end{proof}
\begin{defn}{14.5}
$G$ is \emph{simple} if it's nontrivial and it's only normal subgroups are $1$ and $G$.
\end{defn}
\begin{thm}{14.6} \label{14.6}
A \emph{soluble} group is \emph{simple} iff it is cyclic of prime order.
\end{thm}
\begin{thm}{14.7} \label{14.7}
if $n \geq 5$, then $\mathbb{A}_n$ is simple.
\end{thm}
\begin{cor}{14.8}
$\mathbb{S}_n$ is not soluble if $n \geq 5$.
\end{cor}
\begin{proof}
if $\mathbb{S}_n$ were soluble, then $\mathbb{A}_n$ would be soluble by Theorem \ref{14.1}(i), and simple by Theorem \ref{14.7}, hence of prime order by Theorem \ref{14.6}.
But observe: $|\mathbb{A}_n|=\frac{1}{2}(n!)$ is not prime if $n \geq 5$.\\
Thus $\mathbb{S}_n$ is not soluble if $n \geq 5$.
\end{proof}
\begin{lemma}{14.14} \label{14.14}
if $A$ finite and abelian group with $p \biggr\vert |A|$ ($p$ prime), then $A$ has an element of order $p$.
\end{lemma}
\begin{proof}
\begin{enumerate}[i.]
\item if $|A|$ prime and Abelian $\Longrightarrow$ then $A$ is cyclic.
Since $p \vert |A| ~~ \Longrightarrow ~~ \exists! ~ B \subseteq A$ such that $|B|=p$, where $B = <b>$ with $ord(b)=p$. So the lemma is proven.
\item if $|A|$ non-prime:
take $M \subseteq A$ with $|M|=m$, $m$ maximal. Then
\begin{enumerate}[a.]
\item if $p|m ~~ \Longrightarrow ~~ \exists! ~ B'=<b'>,~ b' \in A$ with $|B'|=p$ and $ord(b')=p$.
\item if $p \nmid m$:
Let $b \in A \not M$ and $B=<b>$.\\
Then $MB \supseteq M$, and by maximility must be $MB=A$.
By the 1st Isomorphism Theorem (\ref{1stisothm}),
$$|A| = |MB| = \frac{|M| \cdot |B|}{|M \cap B|}$$
both $|A|$ and $|B|$ are divisible by $p$ (but recall that $p \nmid m=|M|$), since $B$ is cyclic and $p \vert |B|$
$\Longrightarrow$ thus, $B$ has an element of order $p$.
So, if $|B|=r$, and $p|r ~~ \Longrightarrow~~ ord(b^{r/p}) = p$.\\
Hence, in all cases i, ii.a, ii.b, $A$ contains an element of order $p$.
\end{enumerate}
\end{enumerate}
\end{proof}
\begin{thm}{14.15}(Cauchy's Theorem)
if $p \biggr\vert |G|$ ($p$ prime), then $\exists ~ x \in G$ such that $ord(x)=p$.
\end{thm}
\begin{proof}
(induction on $|G|$)
For $|G|=1,2,3$, trivial.
Induction step: class equation
$$|G|=1+|C_2|+ \ldots + |C_r|$$
since $p \biggr\vert |G|$, must have $p \nmid |C_j|$ for some $j \geq 2$.
If $x \in C_j ~~\Longrightarrow p \biggr\vert |C_G(x)|$ (since $|C_j|=|G|/|C_G(x)|$, recall $p\biggr\vert |G|$).
\begin{enumerate}[i.]
\item if $C_G(x) \neq G$:\\
(by induction) since $p \biggr\vert |C_G(x)|$,
$\exists a \in C_G(x)$ with $ord(a)=p$, and $a \in G$ (since $C_G(x) \subset G$).
\item otherwise, $C_G(x)=G$:\\
implies $x \in Z(G)$, by choice $x\neq 1$, so $Z(G)\neq 1$.
Then either
\begin{enumerate}[I.]
\item $p \biggr\vert |Z(G)| ~~ \longrightarrow$ Abelian case, Lemma \ref{14.14}.
\item $p \not\biggr\vert |Z(G)|$:
by induction, $\exists x \in G$ such that $\hat{x} \in G/Z(G)$, with $ord(\hat{x})=p$. (where $\hat{x}$ is the image of $x$).
$\Longrightarrow~~ x^p \in Z(G)$, but $x \not\in Z(G)$.
Let $X=<x>$, cyclic.\\
$XZ(G)$ is Abelian, and $p \biggr\vert |XZ(G))|$\\
$\Longrightarrow$ by Lemma \ref{14.14}, it has an element of order $p$, and this element belongs to $G$.
\end{enumerate}
\end{enumerate}
\end{proof}
\begin{defn}{15.1}(Soluble by radicals)
let $f \in K[t],~ K \subseteq \mathbb{C}$, and $\Sigma$ a splitting field of $f$ over $K$.
$f$ is \emph{soluble by radicals} if\\
$\exists$ a field $M$ with $\Sigma \subseteq M$ such that $M:K$ is a radical extension (\ref{8.12}).
Note: not required $\Sigma:K$ to be radical.
\end{defn}
\begin{lemma}{15.3}
$L:K$ radical extension $\mathbb{C}$, and $M$ normal enclosure of $L:K$, then $M:K$ is radical.
\end{lemma}
\begin{proof}
let $L=K(\alpha_1, \ldots, \alpha_r)$ with $\alpha_i^{n_i} \in K(\alpha_1, \ldots, \alpha_{j-1})$ (by definition of $L:K$ being a radical extension).
Let $f_i$ be the minimal polynimal of $\alpha_i$ over $K$.
Then, $M \supseteq L$ is spliting field of $\Prod_{i=1}^r f_i$, since $M$ is normal enclosure of $L:K$.
For every zero $\beta_{ij}$ of $f_i$ in $M$,\\
$\exists$ an isomorphism $\sigma: K(\alpha_i) \longrightarrow K(\beta_{ij})$ by Corollary \ref{5.13}.
By Proposition \ref{11.4}, since $K(\alpha_i),~K(\beta_{ij}) \subset M$,
$\sigma$ extends to a $K$-automorphism
$$\tau: M \longrightarrow M$$
since $M$ is splitting field (ie. contains the zeros of $\Prod f_i$).
Since $\alpha$ is a member of radical sequence for a subfield of $M$, so it is $\beta_{ij}$.
By combining the sequences for $M$, $M:K$ is a radical extension.
\end{proof}
\vspace{0.5cm}
The next two lemmas show that certain Galois groups are Abelian.
\begin{lemma}{15.4}
\end{lemma}
\begin{proof}
\end{proof}
\newpage
@ -607,7 +1053,54 @@ $s(6) = 1+2+3+6 = 12$; henceforth, the total amount of subgroups is $d(n)+s(n) =
\vspace{0.3cm}
For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry group).
\subsection{Rolle's theorem} \label{rolle}
\begin{thm}{}(Rolle's Theorem)
if a real-valued function $f$ is
\begin{itemize}
\item \emph{continuous} on a proper closed interval $[a,b]$
\item \emph{differentiable} on the open interval $(a,b)$
\item $f(a)=f(b)$
\end{itemize}
then, $\exists$ at least one $c$ in $(a,b)$ such that $Df(c)=0$.
\end{thm}
\begin{proof} (proof source: cue math website)
Notice that when $Df(x_i)=0$ occours, is a maximum or minimum (extrema) value of $f$.
$\Longrightarrow$ if a function is continuous, it is guaranteed to have both a maximum and a minimum point in the interval.\\
Two possibilities:
\begin{enumerate}[i.]
\item $f$ is constant\\
$\Longrightarrow$ ie. a horizontal line ($f(a)=f(b)$), ie. no slope $\Longrightarrow$ $Df=0$ everywhere in $[a,b]$.
\item $f$ is not constant:\\
since $f$ not constant, must change directions in ordder to start and end at the same $y$-value ($f(a)=f(b)$).\\
Thus at some point between $a$ and $b$ it will either have a minimum, maximum or both.
\begin{enumerate}[a.]
\item does the maximum occour at a point where $Df > 0$?\\
No, because if $Df > 0$, then $f$ is increasing, but it can not increase since we're at its maximum point.
\item does the maximum occour at a point where $Df < 0$?\\
No, because if $Df < 0$, then $f$ is deccreasing, which means that at our left it was larger, but we're at a maximum point, so a contradiction.
\end{enumerate}
Same with minimus.\\
$\Longrightarrow$ Hence, since $Df \nless 0$ and $Df \ngtr 0$, and $Df$ exists, then $Df=0$.
\end{enumerate}
\\
Thus, $f$ must have extrema (either max or min or both), and at that extrema $Df$ must be zero.
\end{proof}
Consequence of Rolle's Theorem:
\begin{cor}{}(Zero separation property)
Between any two distinct consecutive zeros of $f$, there lies at least one zero of $Df$.
\end{cor}
\begin{eg}{}
If $f(t)$ has zeros $t_1, t_2$, with $t_1 < t_2$, and $f$ is derivable, then by Rolle'z theorem:
$\exists c \in (t_1, t_2)$ such that $Df(c)=0$.
Hence, the zeros of $Df$ \emph{separate} the zeros of $f$.
\end{eg}
\newpage

Loading…
Cancel
Save