mirror of
https://github.com/arnaucube/math.git
synced 2026-01-10 16:01:31 +01:00
update galois notes: Thm14.4
This commit is contained in:
Binary file not shown.
@@ -193,7 +193,7 @@
|
||||
[...] TODO: pending to add key parts up to Chapter 15.
|
||||
|
||||
\subsection{Detour: Isomorphism Theorems}
|
||||
\begin{thm}{}(\emph{First Isomorphism Theorem}) \label{1stisothm}
|
||||
\begin{thm}{i.1}(\emph{First Isomorphism Theorem}) \label{1stisothm}
|
||||
|
||||
\begin{minipage}{0.75\textwidth}
|
||||
If $\psi: G \longrightarrow H$ a group homomorphism, then $ker(\psi) \triangleleft G$.\\
|
||||
@@ -263,7 +263,7 @@
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{thm}{}(\emph{Second Isomorphism Theorem}) \label{2ndisothm}
|
||||
\begin{thm}{i.2}(\emph{Second Isomorphism Theorem}) \label{2ndisothm}
|
||||
Let $H \subseteq G$, $N \triangleleft G$. Then
|
||||
\begin{enumerate}[i.]
|
||||
\item $HN \subseteq G$
|
||||
@@ -329,7 +329,7 @@
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{thm}{}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\
|
||||
\begin{thm}{i.3}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\
|
||||
Let $H \subseteq K$ and $K \triangleleft G,~ H \triangleleft G$.\\
|
||||
Then
|
||||
$\frac{K}{H} \triangleleft \frac{G}{H}$
|
||||
@@ -388,6 +388,74 @@
|
||||
\subsection{Chapter 14}
|
||||
|
||||
|
||||
\begin{thm}{14.4}
|
||||
$H \subseteq G,~~ N \triangleleft G$, then
|
||||
\begin{enumerate}
|
||||
\item if $G$ soluble $\Longrightarrow H$ soluble
|
||||
\item if $G$ soluble $\Longrightarrow G/N$ soluble
|
||||
\item if $N$ and $G/N$ soluble $\Longrightarrow G$ soluble
|
||||
\end{enumerate}
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
\begin{enumerate}
|
||||
\item Since $G$ soluble, by definition: $\exists~~ 1=G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G$ with Abelian quotients $\frac{G_{i+1}}{G_i}$.
|
||||
|
||||
Let $H_i = G_i \cap H$, then $H$ has a series $1=H_0 \triangleleft H_1
|
||||
\triangleleft \ldots \triangleleft H_r = H$, next we show that the
|
||||
quotients $\frac{H_{i+1}}{H_i}$ are Abelian (so that H is soluble):
|
||||
|
||||
$$\frac{H_{i+1}}{H_i} = \frac{G_{i+1} \cap H}{G_i \cap H} \stackrel{(*)}{=} \frac{G_{i+1} \cap H}{G_i \cap (G_{i+1}\cap H)}
|
||||
\stackrel{(**)}{\cong} \frac{G_i(G_{i+1} \cap H)}{G_i} \subseteq \frac{G_{i+1}}{G_i}
|
||||
$$
|
||||
|
||||
(*): to see why, $H_i = G_i \cap H = G_i \cap H_i = G_i \cap H_{i+1} = G_i \cap (G_{i+1} \cap H)$.
|
||||
(**): by the 2nd Isomorphism Theorem (\ref{2ndisothm}).
|
||||
|
||||
[TODO: diagram of subgroups]
|
||||
|
||||
Notice that $\frac{G_{i+1}}{G_i}$ is Abelian, thus the left-hand-side of the congruence is also Abelian.
|
||||
Therefore, $\frac{H_{i+1}}{H_i}$ is Abelian, thus $H$ is soluble.
|
||||
|
||||
\item For $G/N$ to be soluble, (by definition) it would have the series $\frac{N}{N} = G_0 \frac{N}{N} \triangleleft G_1 \frac{N}{N} \triangleleft \ldots \triangleleft G_r \frac{N}{N} = \frac{G}{N}$,
|
||||
and any quotient being $\frac{G_{i+1}\frac{N}{N}}{G_i \frac{N}{N}}$.
|
||||
|
||||
The series clearly exists, so now we show that the quotients are Abelian, so that $G/N$ is soluble:
|
||||
|
||||
$$
|
||||
\frac{G_{i+1} N}{G_i N} = \frac{G_{i+1}(G_i N)}{G_i N} \stackrel{*}{\cong}
|
||||
\frac{G_{i+1}}{G_{i+1} \cap (G_i N)} \cong \frac{G_{i+1}/G_i}{(G_{i+1}
|
||||
\cap (G_i N))/G_i}
|
||||
$$
|
||||
|
||||
(*): by the 2nd Isomorphism Theorem (\ref{2ndisothm}).
|
||||
|
||||
The last quotient is a quotient of the Abelian group $G_{i+1}/G_i$, so it is Abelian.
|
||||
|
||||
Hence, $\frac{G_{i+1}N}{G_i N}$ is also Abelian; so $\frac{G}{N}$ is soluble.
|
||||
|
||||
\item
|
||||
By the definition of $N$ and $G/N$ being soluble,
|
||||
\begin{align*}
|
||||
N \text{soluble} \Longrightarrow~~ 1 &= N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N\\
|
||||
G/N \text{soluble} \Longrightarrow~~ 1= \frac{N}{N} &= \frac{G_0}{N} \triangleleft \frac{G_1}{N} \triangleleft \ldots \triangleleft \frac{G_r}{N} = \frac{G}{N}
|
||||
\end{align*}
|
||||
both with Abelian quotients.
|
||||
|
||||
Consider the series of $G$ given by combining the two previous series:
|
||||
|
||||
$$
|
||||
1 &= N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G
|
||||
$$
|
||||
the quotients are either
|
||||
\begin{itemize}
|
||||
\item $\frac{N_{i+1}}{N_i}$, Abelian
|
||||
\item $\frac{G_{i+1}}{G_i}$, isomorphic to $\frac{G_{i+1}/N}{G_i/N}$,
|
||||
which is Abelian.
|
||||
\end{itemize}
|
||||
\end{enumerate}
|
||||
Therefore, the quotients are always Abelian; hence $G$ is soluble.
|
||||
\end{proof}
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Tools}
|
||||
|
||||
Reference in New Issue
Block a user