port notes on A-algebras & integral elems

This commit is contained in:
2026-01-01 20:10:12 +01:00
parent 8967b2dcc6
commit c32d8b831b
2 changed files with 103 additions and 25 deletions

Binary file not shown.

View File

@@ -73,7 +73,7 @@
\title{Commutative Algebra notes}
\author{arnaucube}
\date{}
\date{2026}
\begin{document}
@@ -93,44 +93,44 @@
\subsection{Definitions}
\begin{defn}{ideal}
\begin{defn}{}{ideal}
$I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\
\hspace*{2em} ie. $I$ absorbs products in $R$.
\end{defn}
\begin{defn}{prime ideal}
\begin{defn}{}{prime ideal}
if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$.
\end{defn}
\begin{defn}{principal ideal}
\begin{defn}{}{principal ideal}
generated by a single element, $(a)$.
$(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$.
\end{defn}
\begin{defn}{maximal ideal}
\begin{defn}{}{maximal ideal}
$\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$.
\end{defn}
\begin{defn}{unit}
\begin{defn}{}{unit}
$x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}.
\end{defn}
\begin{defn}{zerodivisor}
\begin{defn}{}{zerodivisor}
$x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}..
If a ring does not have zerodivisors is an integral domain.
\end{defn}
\begin{defn}{prime spectrum - $Spec(A)$}
\begin{defn}{}{prime spectrum - $Spec(A)$}
set of prime ideals of $A$. ie.
$$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$
\end{defn}
\begin{defn}{integral domain}
\begin{defn}{}{integral domain}
Ring in which the product of any two nonzero elements is nonzero.
ie. no zerodivisors.
@@ -140,15 +140,15 @@
Every field is an integral domain, not the converse.
\end{defn}
\begin{defn}{principal ideal domain - PID}
\begin{defn}{}{principal ideal domain - PID}
integral domain in which every ideal is principal. ie.
ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$.
\end{defn}
\begin{defn}{nilpotent}
\begin{defn}{}{nilpotent}
$a \in A$ such that $a^n=0$ for some $n>0$.
\end{defn}
\begin{defn}{nilrad A}
\begin{defn}{}{nilrad A}
set of all nilpotent elements of $A$; is an ideal of $A$.
if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents.
@@ -157,11 +157,11 @@
$$nilrad A = \bigcap_{P \in Spec(A)} P$$
\end{defn}
\begin{defn}{idempotent}
\begin{defn}{}{idempotent}
$e \in A$ such that $e^2=e$.
\end{defn}
\begin{defn}{radical of an ideal}
\begin{defn}{}{radical of an ideal}
$$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$
$rad I$ is an ideal.
@@ -171,7 +171,7 @@
$rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$
\end{defn}
\begin{defn}{local ring}
\begin{defn}{}{local ring}
A \emph{local ring} has a unique maximal ideal.
Notation: local ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$:
@@ -233,7 +233,7 @@
\subsection{Lemmas, propositions and corollaries}
\subsection{Zorn's lemma and Jacobson radicals}
Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s<u \forall s \in S$.
@@ -241,8 +241,8 @@ A \emph{maximal element} of $\Sigma$, is $m \in \Sigma$ such that $m<s$ does not
A subset $S \subset \Sigma$ is \emph{totally ordered} if for every pair $s_1,s_2 \in S$, either $s_1 \leq s_2$ or $s_2 \leq s_1$.
\begin{lemma}{R.1.7}{Zorn's lemma} \label{zorn}
suppose $\Sigma$ a nonempty partially ordered set (ie. we are given a relation $x \leq y$ on $\Sigma$), and that any totally ordered subset $S \subset \Sigma$ has an upper bound in $\Sigma$.
\begin{lemma}{R.1.7}{Zorn's lemma.} \label{zorn}
Suppose $\Sigma$ a nonempty partially ordered set (ie. we are given a relation $x \leq y$ on $\Sigma$), and that any totally ordered subset $S \subset \Sigma$ has an upper bound in $\Sigma$.
Then $\Sigma$ has a maximal element.
\end{lemma}
@@ -262,7 +262,7 @@ A subset $S \subset \Sigma$ is \emph{totally ordered} if for every pair $s_1,s_2
Every non-unit of $A$ is contained in a maximal ideal.
\end{cor}
\begin{defn}{Jacobson radical}
\begin{defn}{}{Jacobson radical}
The \emph{Jacobson radical} of a ring $A$ is the intersection of all the maximal ideals of $A$.
Denoted $Jac(A)$.
@@ -591,7 +591,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\begin{prop}{AM.2.6}{Nakayama's lemma} \label{2.6}
\begin{prop}{AM.2.6}{Nakayama's lemma.} \label{2.6}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA \subseteq Jac(A)$.
Then $\aA M = M$ implies $M=0$.
@@ -687,7 +687,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\begin{prop}{AM.2.8} \label{2.8}
Let $x_i \forall i \in [n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vector space. Then the $x_i$ generate $M$.
Let $x_i ~\forall i \in [n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vector space. Then the $x_i$ generate $M$.
\end{prop}
\begin{proof}
Let $N$ submodule $M$, generated by the $x_i$.
@@ -787,7 +787,7 @@ Properties:
\end{itemize}
\vspace{0.3cm}
TL;DR:\\
Overview:\\
$$
0 \longrightarrow L
@@ -938,8 +938,7 @@ As in with rings, it is equivalent to say that
$J_n \subset J_{n+1}$, since for $f \in I$ also $x f \in I$.
Therefore $J_1 \subset J_2 \subset \ldots \subset J_k \subset \ldots$ is an increasing chain of ideals.
Therefore $J_1 \subset J_2 \subset \ldots \subset J_k \subset \ldots$ is an increasing chain of ideals.\\
Using the assumption that $A$ is Noetherian, deduce that $J_n = J_{n+1}$ for some $n$.
For each $m \leq n, ~~ J_m \subset A$ is fingen, ie.
@@ -991,8 +990,87 @@ As in with rings, it is equivalent to say that
$A[x_1, \ldots, x_n]$ being Noetherian implies that $A[x_1, \ldots, x_n]/I$ is Noetherian.
\end{proof}
\vspace{1cm}
\section{Finite ring extensions and Noether normalisation}
\begin{defn}{}{A-algebra.}
An $A$-algebra is a ring $B$ with a ring homomorphism $\psi: A \longrightarrow B$.
$B$ is an $A$-module with multiplication defined by $\psi(a) \cdot b~~~ (a \in A, b \in B)$.
When $A \subset B$, $B$ is an extenaion ring of $A$; denoted $\psi(A) = A' \subset B$.
\end{defn}
\begin{defn}{R.4.1}\label{R.4.1}
Let $B$ be an $A$-algebra.
\begin{enumerate}[i.]
\item $B$ is a \emph{finite} $A$-algebra (\emph{finite over $A$}) if it is finite as an $A$-module.
\item $y \in B$ is \emph{integral over} $A$ if $\exists$ a monic polynomial
$$f(Y) = Y^n + a_{n-1} Y^{n-1} + \ldots + a_0 ~\in A'[Y]$$
such that $f(y)=0:$
$$f(y) = y^n + a_{n-1} y^{n-1} + \ldots + a_0 = 0$$
The algebra $B$ is \emph{integral over} $A$ if $\forall~ b \in B$ is integral.
\end{enumerate}
\end{defn}
\begin{prop}{R.4.2}\label{R.4.2}
Let $\psi: A \longrightarrow B$ be an $A$-algebra, and $y \in B$. Three equivalent conditions:
\begin{enumerate}[i.]
\item $y$ is integral over $A$
\item subring $A'[y] \subset B$ generated by $A' = \psi(A)$ and $y$ is finite over $A$
\item $\exists$ an $A$-subalgebra $C \subset B$ such that $A'[y] \subset C$ and $C$ is finite over $A$
\end{ennumerate}
Notes: $A'$ is the image of $A$ in $B$, ie. $A' = \psi(A)$.\\
$A'[y]$ is the smallest subring of $B$ containing both coefficients from $A$ and the element $y$.
\end{prop}
\begin{proof} .\\
\begin{itemize}
\item[(i to ii):]
since $y$ integral over $A$ $~~\Longrightarrow~$ by \ref{R.4.1} (ii), $y$ satisfies
$$f(y) = y^n + a_{n-1} y^{n-1} + \ldots + a_0 = 0$$
So any power $y^k~~ (k\geq n)$ can be expressed in terms of $\{1, y, y^2, \ldots, y^{n-1} \}$.
Thus the set $\{1, y, y^2, \ldots, y^{n-1} \}$ spans $A'[y]$ as an $A$-module.
\item[(iii to i):]
since $A'[y] \subset C ~~\Longrightarrow~ y \in C$\\
since $C$ finite over $A$, $C$ has finite generators $\{ c_1, \ldots, c_n \}$ such that $C = A \cdot c_1 + A \cdot c_2 + \ldots + A \cdot c_n$
Thus $y \cdot c_i \in C$,
$$y \cdot c_i = \sum_{j=1}^n a_{ij} c_j$$
with $a_{ij} \in A$.
By the Cayley-Hamilton theorem (\ref{2.4}),
$$y^n + a_{n-1} y^{n-1} + \ldots + a_1 y + a_0 = 0$$
Therefore, $y$ is integral (by \ref{R.4.1} (ii)).
\end{itemize}
\end{proof}
\begin{prop}{R.4.3}{Tower Laws}\label{R.4.3}
Let $B$ be an $A$-algebra.
\begin{enumerate}[a.]
\item Transitivity of finiteness: if $A \subset B \subset C$ are extension rings such that $C$ is a finite $B$-algebra and $B$ a finite $A$-algebra,\\
then $C$ is finite over $A$.
\item Finiteness of generated algebras: if $y_1, \ldots, y_m \in B$ are integral over $A$, then $A[y_1, \ldots, y_m]$ is finite over $A$.\\
In particular, every $f \in A[y_1, \ldots, y_m]$ is integral over $A$.
\item Transitivity of integrality: if $A \subset B \subset C$ with $C$ integral over $B$, and $B$ integral over $A$,\\
then $C$ is integral over $A$.
\item Integral closure as a subring: the subset
$$\tilde{A} = \{ y \in B ~|~ y ~\text{is integral over}~ A \} \subset B$$
is a subring of $B$.
Moreover, if $y \in B$ is integral over $\tilde{A}$ then $y \in \tilde{A}$, so that $\tilde{\tilde{A}} = \tilde{A}$.
\end{enumerate}
\end{prop}
\begin{proof}
\end{proof}
\newpage
@@ -1353,7 +1431,7 @@ Prove that $\bigoplus A/I_i$ is a Noetherian $A$-module, and deduce that if $\bi
\begin{enumerate}[i.]
\item by Corollary \ref{R.3.5} (i), if $M_i$ Noetherian modules, then $\bigoplus M_i$ is Noetherian.
$\Longrightarrow$ thus $\bigoplus A/I_i$ is Noetherian.
\item Take the canoncial homomorphism
\item Take the canonical homomorphism
$$\phi: A \longrightarrow \bigoplus_{i=1}^n A/ I_i$$
by $\phi(a) = (a+I_1, a+I_2, \ldots, a+I_n)$.