mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-09 23:41:30 +01:00
Fix Nova multi-elements state (#73)
* Fix Nova multi-elements state In the AugmentedFCircuit the default value for the state when no input is provided was `vec![F::zero()]`, which defaults to length `1`. So when having more than 1 element in the state, before even starting to fold, the circuit was already already failing. Additionally this commit adds an example for a circuit with a state of 5 elements. * abstract 'nova_setup' helper to avoid code duplication in examples * update example naming to 'MultiInputs' * rename nova_setup -> test_nova_setup to make it more explicit
This commit is contained in:
156
folding-schemes/examples/multi_inputs.rs
Normal file
156
folding-schemes/examples/multi_inputs.rs
Normal file
@@ -0,0 +1,156 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
|
||||
use ark_ff::PrimeField;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_r1cs_std::fields::fp::FpVar;
|
||||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
use core::marker::PhantomData;
|
||||
use std::time::Instant;
|
||||
|
||||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
||||
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
use folding_schemes::folding::nova::Nova;
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::{Error, FoldingScheme};
|
||||
mod utils;
|
||||
use utils::test_nova_setup;
|
||||
|
||||
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
||||
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
|
||||
/// we get by applying the step.
|
||||
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
|
||||
/// operations on each of them.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct MultiInputsFCircuit<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
type Params = ();
|
||||
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
5
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let a = z_i[0] + F::from(4_u32);
|
||||
let b = z_i[1] + F::from(40_u32);
|
||||
let c = z_i[2] * F::from(4_u32);
|
||||
let d = z_i[3] * F::from(40_u32);
|
||||
let e = z_i[4] + F::from(100_u32);
|
||||
|
||||
Ok(vec![a, b, c, d, e])
|
||||
}
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
||||
let fourty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
||||
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
||||
let a = z_i[0].clone() + four.clone();
|
||||
let b = z_i[1].clone() + fourty.clone();
|
||||
let c = z_i[2].clone() * four;
|
||||
let d = z_i[3].clone() * fourty;
|
||||
let e = z_i[4].clone() + onehundred;
|
||||
|
||||
Ok(vec![a, b, c, d, e])
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo test --example multi_inputs
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
||||
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
|
||||
#[test]
|
||||
fn test_add_f_circuit() {
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let circuit = MultiInputsFCircuit::<Fr>::new(());
|
||||
let z_i = vec![
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
];
|
||||
|
||||
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
||||
|
||||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let computed_z_i1Var = circuit
|
||||
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
||||
.unwrap();
|
||||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo run --release --example multi_inputs
|
||||
fn main() {
|
||||
let num_steps = 10;
|
||||
let initial_state = vec![
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
Fr::from(1_u32),
|
||||
];
|
||||
|
||||
let F_circuit = MultiInputsFCircuit::<Fr>::new(());
|
||||
|
||||
println!("Prepare Nova ProverParams & VerifierParams");
|
||||
let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
|
||||
|
||||
/// The idea here is that eventually we could replace the next line chunk that defines the
|
||||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
||||
/// trait, and the rest of our code would be working without needing to be updated.
|
||||
type NOVA = Nova<
|
||||
Projective,
|
||||
GVar,
|
||||
Projective2,
|
||||
GVar2,
|
||||
MultiInputsFCircuit<Fr>,
|
||||
Pedersen<Projective>,
|
||||
Pedersen<Projective2>,
|
||||
>;
|
||||
|
||||
println!("Initialize FoldingScheme");
|
||||
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
||||
|
||||
// compute a step of the IVC
|
||||
for i in 0..num_steps {
|
||||
let start = Instant::now();
|
||||
folding_scheme.prove_step().unwrap();
|
||||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
||||
}
|
||||
|
||||
let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances();
|
||||
|
||||
println!("Run the Nova's IVC verifier");
|
||||
NOVA::verify(
|
||||
verifier_params,
|
||||
initial_state.clone(),
|
||||
folding_scheme.state(), // latest state
|
||||
Fr::from(num_steps as u32),
|
||||
running_instance,
|
||||
incomming_instance,
|
||||
cyclefold_instance,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
@@ -20,10 +20,11 @@ use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
||||
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
use folding_schemes::folding::nova::{get_r1cs, Nova, ProverParams, VerifierParams};
|
||||
use folding_schemes::folding::nova::Nova;
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
use folding_schemes::{Error, FoldingScheme};
|
||||
mod utils;
|
||||
use utils::test_nova_setup;
|
||||
|
||||
/// This is the circuit that we want to fold, it implements the FCircuit trait.
|
||||
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
|
||||
@@ -40,6 +41,9 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
@@ -63,7 +67,7 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo test --example simple
|
||||
/// cargo test --example sha256
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
@@ -88,42 +92,7 @@ pub mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
// This method computes the Prover & Verifier parameters for the example. For a real world use case
|
||||
// those parameters should be generated carefuly (both the PoseidonConfig and the PedersenParams)
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn nova_setup<FC: FCircuit<Fr>>(
|
||||
F_circuit: FC,
|
||||
) -> (
|
||||
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
|
||||
VerifierParams<Projective, Projective2>,
|
||||
) {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
||||
// get the CM & CF_CM len
|
||||
let (r1cs, cf_r1cs) =
|
||||
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
||||
let cm_len = r1cs.A.n_rows;
|
||||
let cf_cm_len = cf_r1cs.A.n_rows;
|
||||
|
||||
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
|
||||
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
|
||||
|
||||
let prover_params =
|
||||
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
cm_params: pedersen_params,
|
||||
cf_cm_params: cf_pedersen_params,
|
||||
};
|
||||
let verifier_params = VerifierParams::<Projective, Projective2> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
r1cs,
|
||||
cf_r1cs,
|
||||
};
|
||||
(prover_params, verifier_params)
|
||||
}
|
||||
|
||||
/// cargo run --release --example fold_sha256
|
||||
/// cargo run --release --example sha256
|
||||
fn main() {
|
||||
let num_steps = 10;
|
||||
let initial_state = vec![Fr::from(1_u32)];
|
||||
@@ -131,7 +100,7 @@ fn main() {
|
||||
let F_circuit = Sha256FCircuit::<Fr>::new(());
|
||||
|
||||
println!("Prepare Nova ProverParams & VerifierParams");
|
||||
let (prover_params, verifier_params) = nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
|
||||
let (prover_params, verifier_params) = test_nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
|
||||
|
||||
/// The idea here is that eventually we could replace the next line chunk that defines the
|
||||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
||||
49
folding-schemes/examples/utils.rs
Normal file
49
folding-schemes/examples/utils.rs
Normal file
@@ -0,0 +1,49 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
#![allow(dead_code)]
|
||||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
|
||||
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
|
||||
// This method computes the Prover & Verifier parameters for the example.
|
||||
// Warning: this method is only for testing purposes. For a real world use case those parameters
|
||||
// should be generated carefuly (both the PoseidonConfig and the PedersenParams).
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub(crate) fn test_nova_setup<FC: FCircuit<Fr>>(
|
||||
F_circuit: FC,
|
||||
) -> (
|
||||
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
|
||||
VerifierParams<Projective, Projective2>,
|
||||
) {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
||||
// get the CM & CF_CM len
|
||||
let (r1cs, cf_r1cs) =
|
||||
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
||||
let cm_len = r1cs.A.n_rows;
|
||||
let cf_cm_len = cf_r1cs.A.n_rows;
|
||||
|
||||
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
|
||||
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
|
||||
|
||||
let prover_params =
|
||||
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
cm_params: pedersen_params,
|
||||
cf_cm_params: cf_pedersen_params,
|
||||
};
|
||||
let verifier_params = VerifierParams::<Projective, Projective2> {
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
r1cs,
|
||||
cf_r1cs,
|
||||
};
|
||||
(prover_params, verifier_params)
|
||||
}
|
||||
fn main() {}
|
||||
@@ -310,10 +310,14 @@ where
|
||||
Ok(self.i.unwrap_or_else(CF1::<C1>::zero))
|
||||
})?;
|
||||
let z_0 = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || {
|
||||
Ok(self.z_0.unwrap_or(vec![CF1::<C1>::zero()]))
|
||||
Ok(self
|
||||
.z_0
|
||||
.unwrap_or(vec![CF1::<C1>::zero(); self.F.state_len()]))
|
||||
})?;
|
||||
let z_i = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || {
|
||||
Ok(self.z_i.unwrap_or(vec![CF1::<C1>::zero()]))
|
||||
Ok(self
|
||||
.z_i
|
||||
.unwrap_or(vec![CF1::<C1>::zero(); self.F.state_len()]))
|
||||
})?;
|
||||
|
||||
let u_dummy_native = CommittedInstance::<C1>::dummy(1);
|
||||
|
||||
@@ -16,6 +16,10 @@ pub trait FCircuit<F: PrimeField>: Clone + Copy + Debug {
|
||||
/// returns a new FCircuit instance
|
||||
fn new(params: Self::Params) -> Self;
|
||||
|
||||
/// returns the number of elements in the state of the FCircuit, which corresponds to the
|
||||
/// FCircuit inputs.
|
||||
fn state_len(self) -> usize;
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(
|
||||
@@ -59,6 +63,9 @@ pub mod tests {
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
|
||||
}
|
||||
@@ -90,6 +97,9 @@ pub mod tests {
|
||||
n_constraints: params,
|
||||
}
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let mut z_i1 = F::one();
|
||||
for _ in 0..self.n_constraints - 1 {
|
||||
|
||||
Reference in New Issue
Block a user