Full flow example (#90)

* expose params & structs for external usage

* add full_flow example, move examples into 'examples' dir
This commit is contained in:
2024-04-26 08:37:49 +02:00
committed by GitHub
parent 97df224579
commit 9bbdfc5a85
16 changed files with 270 additions and 26 deletions

213
examples/external_inputs.rs Normal file
View File

@@ -0,0 +1,213 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_crypto_primitives::{
crh::{
poseidon::constraints::{CRHGadget, CRHParametersVar},
poseidon::CRH,
CRHScheme, CRHSchemeGadget,
},
sponge::{poseidon::PoseidonConfig, Absorb},
};
use ark_ff::PrimeField;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::Zero;
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use core::marker::PhantomData;
use std::time::Instant;
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use folding_schemes::transcript::poseidon::poseidon_test_config;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
///
/// In this example we set the state to be the previous state together with an external input, and
/// the new state is an array which contains the new state and a zero which will be ignored.
///
/// This is useful for example if we want to fold multiple verifications of signatures, where the
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
/// keep things simpler, the following example does not verify signatures but does a similar
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
/// together with an external input (w_i).
///
/// w_1 w_2 w_3 w_4
/// │ │ │ │
/// ▼ ▼ ▼ ▼
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
/// ─────►│F├────►│F├────►│F├────►│F├────►
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
///
///
/// where each F is:
/// w_i
/// │ ┌────────────────────┐
/// │ │FCircuit │
/// │ │ │
/// └────►│ h =Hash(z_i[0],w_i)│
/// │ │ =Hash(v, w_i) │
/// ────────►│ │ ├───────►
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
/// │ │
/// └────────────────────┘
///
/// where each w_i value is set at the external_inputs array.
///
/// The last state z_i is used together with the external input w_i as inputs to compute the new
/// state z_{i+1}.
/// The function F will output the new state in an array of two elements, where the second element
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0].
#[derive(Clone, Debug)]
pub struct ExternalInputsCircuits<F: PrimeField>
where
F: Absorb,
{
_f: PhantomData<F>,
poseidon_config: PoseidonConfig<F>,
external_inputs: Vec<F>,
}
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
where
F: Absorb,
{
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs
fn new(params: Self::Params) -> Self {
Self {
_f: PhantomData,
poseidon_config: params.0,
external_inputs: params.1,
}
}
fn state_len(&self) -> usize {
2
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
Ok(vec![h, F::zero()])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let crh_params =
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
let external_inputVar =
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
Ok(vec![h, FpVar::<F>::zero()])
}
}
/// cargo test --example external_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let poseidon_config = poseidon_test_config::<Fr>();
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)]));
let z_i = vec![Fr::from(1_u32), Fr::zero()];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example external_inputs
fn main() {
let num_steps = 5;
let initial_state = vec![Fr::from(1_u32), Fr::zero()];
// set the external inputs to be used at each folding step
let external_inputs = vec![
Fr::from(3_u32),
Fr::from(33_u32),
Fr::from(73_u32),
Fr::from(103_u32),
Fr::from(125_u32),
];
assert_eq!(external_inputs.len(), num_steps);
let poseidon_config = poseidon_test_config::<Fr>();
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs));
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) =
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
ExternalInputsCircuits<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
println!(
"state at last step (after {} iterations): {:?}",
num_steps,
folding_scheme.state()
);
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}

222
examples/full_flow.rs Normal file
View File

@@ -0,0 +1,222 @@
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_crypto_primitives::snark::SNARK;
use ark_ff::PrimeField;
use ark_groth16::VerifyingKey as G16VerifierKey;
use ark_groth16::{Groth16, ProvingKey};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::Zero;
use std::marker::PhantomData;
use std::time::Instant;
use folding_schemes::{
commitment::{
kzg::{ProverKey as KZGProverKey, KZG},
pedersen::Pedersen,
CommitmentScheme,
},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
decider_eth_circuit::DeciderEthCircuit,
get_cs_params_len, Nova, ProverParams,
},
frontend::FCircuit,
transcript::poseidon::poseidon_test_config,
Decider, Error, FoldingScheme,
};
use solidity_verifiers::{
evm::{compile_solidity, Evm},
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
/// Test circuit to be folded
#[derive(Clone, Copy, Debug)]
pub struct CubicFCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for CubicFCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(&self) -> usize {
1
}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
let z_i = z_i[0].clone();
Ok(vec![&z_i * &z_i * &z_i + &z_i + &five])
}
}
#[allow(clippy::type_complexity)]
fn init_test_prover_params<FC: FCircuit<Fr, Params = ()>>() -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
let f_circuit = FC::new(());
let (cs_len, cf_cs_len) =
get_cs_params_len::<G1, GVar, G2, GVar2, FC>(&poseidon_config, f_circuit).unwrap();
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
poseidon_config: poseidon_config.clone(),
cs_params: kzg_pk.clone(),
cf_cs_params: cf_pedersen_params,
};
(fs_prover_params, kzg_vk)
}
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
#[allow(clippy::type_complexity)]
fn init_params<FC: FCircuit<Fr, Params = ()>>() -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
ProvingKey<Bn254>,
G16VerifierKey<Bn254>,
) {
let mut rng = rand::rngs::OsRng;
let start = Instant::now();
let (fs_prover_params, kzg_vk) = init_test_prover_params::<FC>();
println!("generated Nova folding params: {:?}", start.elapsed());
let f_circuit = FC::new(());
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
let decider_circuit =
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
nova.clone(),
)
.unwrap();
let start = Instant::now();
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
println!(
"generated G16 (Decider circuit) params: {:?}",
start.elapsed()
);
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
}
fn main() {
let n_steps = 10;
// set the initial state
let z_0 = vec![Fr::from(3_u32)];
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) = init_params::<CubicFCircuit<Fr>>();
pub type NOVA = Nova<G1, GVar, G2, GVar2, CubicFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type DECIDERETH_FCircuit = DeciderEth<
G1,
GVar,
G2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA,
>;
let f_circuit = CubicFCircuit::<Fr>::new(());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = NOVA::init(&fs_prover_params, f_circuit, z_0).unwrap();
// run n steps of the folding iteration
for i in 0..n_steps {
let start = Instant::now();
nova.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = DECIDERETH_FCircuit::prove(
(g16_pk, fs_prover_params.cs_params.clone()),
rng,
nova.clone(),
)
.unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = DECIDERETH_FCircuit::verify(
(g16_vk.clone(), kzg_vk.clone()),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// Now, let's generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
// verify the proof against the solidity code in the EVM
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::write(
"./examples/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
}

157
examples/multi_inputs.rs Normal file
View File

@@ -0,0 +1,157 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_ff::PrimeField;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
/// operations on each of them.
#[derive(Clone, Copy, Debug)]
pub struct MultiInputsFCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(&self) -> usize {
5
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let a = z_i[0] + F::from(4_u32);
let b = z_i[1] + F::from(40_u32);
let c = z_i[2] * F::from(4_u32);
let d = z_i[3] * F::from(40_u32);
let e = z_i[4] + F::from(100_u32);
Ok(vec![a, b, c, d, e])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
let a = z_i[0].clone() + four.clone();
let b = z_i[1].clone() + forty.clone();
let c = z_i[2].clone() * four;
let d = z_i[3].clone() * forty;
let e = z_i[4].clone() + onehundred;
Ok(vec![a, b, c, d, e])
}
}
/// cargo test --example multi_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = MultiInputsFCircuit::<Fr>::new(());
let z_i = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example multi_inputs
fn main() {
let num_steps = 10;
let initial_state = vec![
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
Fr::from(1_u32),
];
let F_circuit = MultiInputsFCircuit::<Fr>::new(());
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) = test_nova_setup::<MultiInputsFCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
MultiInputsFCircuit<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}

142
examples/sha256.rs Normal file
View File

@@ -0,0 +1,142 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_crypto_primitives::crh::{
sha256::{
constraints::{Sha256Gadget, UnitVar},
Sha256,
},
CRHScheme, CRHSchemeGadget,
};
use ark_ff::{BigInteger, PrimeField, ToConstraintField};
use ark_r1cs_std::{fields::fp::FpVar, ToBytesGadget, ToConstraintFieldGadget};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait.
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
/// applying the step.
/// In this example we set z_i and z_{i+1} to be a single value, but the trait is made to support
/// arrays, so our state could be an array with different values.
#[derive(Clone, Copy, Debug)]
pub struct Sha256FCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(&self) -> usize {
1
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
Ok(vec![out[0]])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let unit_var = UnitVar::default();
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
let out = out_bytes.0.to_constraint_field()?;
Ok(vec![out[0].clone()])
}
}
/// cargo test --example sha256
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = Sha256FCircuit::<Fr>::new(());
let z_i = vec![Fr::from(1_u32)];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example sha256
fn main() {
let num_steps = 10;
let initial_state = vec![Fr::from(1_u32)];
let F_circuit = Sha256FCircuit::<Fr>::new(());
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) = test_nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
Sha256FCircuit<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state,
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}

49
examples/utils.rs Normal file
View File

@@ -0,0 +1,49 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)]
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::{pedersen::Pedersen, CommitmentScheme};
use folding_schemes::folding::nova::{get_r1cs, ProverParams, VerifierParams};
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_test_config;
// This method computes the Nova's Prover & Verifier parameters for the example.
// Warning: this method is only for testing purposes. For a real world use case those parameters
// should be generated carefully (both the PoseidonConfig and the PedersenParams).
#[allow(clippy::type_complexity)]
pub(crate) fn test_nova_setup<FC: FCircuit<Fr>>(
F_circuit: FC,
) -> (
ProverParams<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>>,
VerifierParams<Projective, Projective2>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
// get the CM & CF_CM len
let (r1cs, cf_r1cs) =
get_r1cs::<Projective, GVar, Projective2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
let cf_len = r1cs.A.n_rows;
let cf_cf_len = cf_r1cs.A.n_rows;
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, cf_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<Projective2>::setup(&mut rng, cf_cf_len).unwrap();
let prover_params =
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cs_params: pedersen_params,
cf_cs_params: cf_pedersen_params,
};
let verifier_params = VerifierParams::<Projective, Projective2> {
poseidon_config: poseidon_config.clone(),
r1cs,
cf_r1cs,
};
(prover_params, verifier_params)
}
fn main() {}