Browse Source

add hash of public params for Nova & HyperNova (#118)

- implement hash of public params for Nova & HyperNova
- abstract pp_hash computation for folding schemes
- add pp_hash to solidity contract generator to verify the decider proof
main
arnaucube 5 months ago
committed by GitHub
parent
commit
c17fcf56c6
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
33 changed files with 666 additions and 407 deletions
  1. +3
    -3
      examples/circom_full_flow.rs
  2. +4
    -3
      examples/external_inputs.rs
  3. +3
    -3
      examples/full_flow.rs
  4. +4
    -3
      examples/multi_inputs.rs
  5. +4
    -3
      examples/sha256.rs
  6. +1
    -0
      folding-schemes/Cargo.toml
  7. +16
    -5
      folding-schemes/src/arith/ccs.rs
  8. +15
    -0
      folding-schemes/src/arith/mod.rs
  9. +25
    -14
      folding-schemes/src/arith/r1cs.rs
  10. +2
    -1
      folding-schemes/src/commitment/mod.rs
  11. +25
    -7
      folding-schemes/src/folding/circuits/cyclefold.rs
  12. +2
    -2
      folding-schemes/src/folding/hypernova/cccs.rs
  13. +80
    -23
      folding-schemes/src/folding/hypernova/circuits.rs
  14. +6
    -4
      folding-schemes/src/folding/hypernova/lcccs.rs
  15. +86
    -47
      folding-schemes/src/folding/hypernova/mod.rs
  16. +5
    -2
      folding-schemes/src/folding/hypernova/nimfs.rs
  17. +5
    -2
      folding-schemes/src/folding/hypernova/utils.rs
  18. +37
    -9
      folding-schemes/src/folding/nova/circuits.rs
  19. +14
    -42
      folding-schemes/src/folding/nova/decider_eth.rs
  20. +39
    -37
      folding-schemes/src/folding/nova/decider_eth_circuit.rs
  21. +65
    -20
      folding-schemes/src/folding/nova/mod.rs
  22. +4
    -2
      folding-schemes/src/folding/nova/nifs.rs
  23. +16
    -30
      folding-schemes/src/folding/nova/serialize.rs
  24. +1
    -1
      folding-schemes/src/folding/nova/traits.rs
  25. +2
    -2
      folding-schemes/src/folding/protogalaxy/folding.rs
  26. +2
    -2
      folding-schemes/src/lib.rs
  27. +1
    -1
      folding-schemes/src/utils/mle.rs
  28. +68
    -0
      folding-schemes/src/utils/mod.rs
  29. +6
    -6
      solidity-verifiers/src/verifiers/g16.rs
  30. +3
    -3
      solidity-verifiers/src/verifiers/kzg.rs
  31. +3
    -1
      solidity-verifiers/src/verifiers/mod.rs
  32. +103
    -114
      solidity-verifiers/src/verifiers/nova_cyclefold.rs
  33. +16
    -15
      solidity-verifiers/templates/nova_cyclefold_decider.askama.sol

+ 3
- 3
examples/circom_full_flow.rs

@ -82,13 +82,13 @@ fn main() {
// prepare the Nova prover & verifier params // prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone()); let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let (fs_pp, fs_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova // initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&fs_pp, f_circuit.clone(), z_0).unwrap();
let mut nova = N::init(nova_params.clone(), f_circuit.clone(), z_0).unwrap();
// prepare the Decider prover & verifier params // prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &(fs_pp, fs_vp), nova.clone()).unwrap();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
// run n steps of the folding iteration // run n steps of the folding iteration
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() { for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {

+ 4
- 3
examples/external_inputs.rs

@ -187,10 +187,11 @@ fn main() {
println!("Prepare Nova's ProverParams & VerifierParams"); println!("Prepare Nova's ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit.clone()); let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit.clone());
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme"); println!("Initialize FoldingScheme");
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
let mut folding_scheme =
N::init(nova_params.clone(), F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC // compute a step of the IVC
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() { for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
@ -210,7 +211,7 @@ fn main() {
println!("Run the Nova's IVC verifier"); println!("Run the Nova's IVC verifier");
N::verify( N::verify(
nova_vp,
nova_params.1,
initial_state.clone(), initial_state.clone(),
folding_scheme.state(), // latest state folding_scheme.state(), // latest state
Fr::from(num_steps as u32), Fr::from(num_steps as u32),

+ 3
- 3
examples/full_flow.rs

@ -99,13 +99,13 @@ fn main() {
// prepare the Nova prover & verifier params // prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config.clone(), f_circuit); let nova_preprocess_params = PreprocessorParam::new(poseidon_config.clone(), f_circuit);
let (fs_pp, fs_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
// initialize the folding scheme engine, in our case we use Nova // initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&fs_pp, f_circuit, z_0).unwrap();
let mut nova = N::init(nova_params.clone(), f_circuit, z_0).unwrap();
// prepare the Decider prover & verifier params // prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &(fs_pp, fs_vp), nova.clone()).unwrap();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
// run n steps of the folding iteration // run n steps of the folding iteration
for i in 0..n_steps { for i in 0..n_steps {

+ 4
- 3
examples/multi_inputs.rs

@ -141,10 +141,11 @@ fn main() {
println!("Prepare Nova ProverParams & VerifierParams"); println!("Prepare Nova ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit); let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme"); println!("Initialize FoldingScheme");
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
let mut folding_scheme =
N::init(nova_params.clone(), F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC // compute a step of the IVC
for i in 0..num_steps { for i in 0..num_steps {
@ -157,7 +158,7 @@ fn main() {
println!("Run the Nova's IVC verifier"); println!("Run the Nova's IVC verifier");
N::verify( N::verify(
nova_vp,
nova_params.1,
initial_state.clone(), initial_state.clone(),
folding_scheme.state(), // latest state folding_scheme.state(), // latest state
Fr::from(num_steps as u32), Fr::from(num_steps as u32),

+ 4
- 3
examples/sha256.rs

@ -126,10 +126,11 @@ fn main() {
println!("Prepare Nova ProverParams & VerifierParams"); println!("Prepare Nova ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit); let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme"); println!("Initialize FoldingScheme");
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
let mut folding_scheme =
N::init(nova_params.clone(), F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC // compute a step of the IVC
for i in 0..num_steps { for i in 0..num_steps {
let start = Instant::now(); let start = Instant::now();
@ -141,7 +142,7 @@ fn main() {
println!("Run the Nova's IVC verifier"); println!("Run the Nova's IVC verifier");
N::verify( N::verify(
nova_vp,
nova_params.1,
initial_state, initial_state,
folding_scheme.state(), // latest state folding_scheme.state(), // latest state
Fr::from(num_steps as u32), Fr::from(num_steps as u32),

+ 1
- 0
folding-schemes/Cargo.toml

@ -23,6 +23,7 @@ num-integer = "0.1"
color-eyre = "=0.6.2" color-eyre = "=0.6.2"
ark-bn254 = {version="0.4.0"} ark-bn254 = {version="0.4.0"}
ark-groth16 = { version = "^0.4.0" } ark-groth16 = { version = "^0.4.0" }
sha3 = "0.10"
# tmp imports for espresso's sumcheck # tmp imports for espresso's sumcheck
espresso_subroutines = {git="https://github.com/EspressoSystems/hyperplonk", package="subroutines"} espresso_subroutines = {git="https://github.com/EspressoSystems/hyperplonk", package="subroutines"}

folding-schemes/src/ccs/mod.rs → folding-schemes/src/arith/ccs.rs

@ -4,8 +4,7 @@ use ark_std::log2;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix}; use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
use crate::Error; use crate::Error;
pub mod r1cs;
use r1cs::R1CS;
use super::{r1cs::R1CS, Arith};
/// CCS represents the Customizable Constraint Systems structure defined in /// CCS represents the Customizable Constraint Systems structure defined in
/// the [CCS paper](https://eprint.iacr.org/2023/552) /// the [CCS paper](https://eprint.iacr.org/2023/552)
@ -36,9 +35,9 @@ pub struct CCS {
pub c: Vec<F>, pub c: Vec<F>,
} }
impl<F: PrimeField> CCS<F> {
impl<F: PrimeField> Arith<F> for CCS<F> {
/// check that a CCS structure is satisfied by a z vector. Only for testing. /// check that a CCS structure is satisfied by a z vector. Only for testing.
pub fn check_relation(&self, z: &[F]) -> Result<(), Error> {
fn check_relation(&self, z: &[F]) -> Result<(), Error> {
let mut result = vec![F::zero(); self.m]; let mut result = vec![F::zero(); self.m];
for i in 0..self.q { for i in 0..self.q {
@ -67,6 +66,18 @@ impl CCS {
Ok(()) Ok(())
} }
fn params_to_bytes(&self) -> Vec<u8> {
[
self.l.to_le_bytes(),
self.m.to_le_bytes(),
self.n.to_le_bytes(),
self.t.to_le_bytes(),
self.q.to_le_bytes(),
self.d.to_le_bytes(),
]
.concat()
}
} }
impl<F: PrimeField> CCS<F> { impl<F: PrimeField> CCS<F> {
@ -102,7 +113,7 @@ impl CCS {
#[cfg(test)] #[cfg(test)]
pub mod tests { pub mod tests {
use super::*; use super::*;
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z as r1cs_get_test_z};
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z as r1cs_get_test_z};
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_pallas::Fr; use ark_pallas::Fr;

+ 15
- 0
folding-schemes/src/arith/mod.rs

@ -0,0 +1,15 @@
use ark_ff::PrimeField;
use crate::Error;
pub mod ccs;
pub mod r1cs;
pub trait Arith<F: PrimeField> {
/// Checks that the given Arith structure is satisfied by a z vector. Used only for testing.
fn check_relation(&self, z: &[F]) -> Result<(), Error>;
/// Returns the bytes that represent the parameters, that is, the matrices sizes, the amount of
/// public inputs, etc, without the matrices/polynomials values.
fn params_to_bytes(&self) -> Vec<u8>;
}

folding-schemes/src/ccs/r1cs.rs → folding-schemes/src/arith/r1cs.rs

@ -1,10 +1,11 @@
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_relations::r1cs::ConstraintSystem; use ark_relations::r1cs::ConstraintSystem;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::rand::Rng; use ark_std::rand::Rng;
use super::Arith;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix}; use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
use crate::Error; use crate::Error;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)] #[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct R1CS<F: PrimeField> { pub struct R1CS<F: PrimeField> {
@ -14,6 +15,29 @@ pub struct R1CS {
pub C: SparseMatrix<F>, pub C: SparseMatrix<F>,
} }
impl<F: PrimeField> Arith<F> for R1CS<F> {
/// check that a R1CS structure is satisfied by a z vector. Only for testing.
fn check_relation(&self, z: &[F]) -> Result<(), Error> {
let Az = mat_vec_mul(&self.A, z)?;
let Bz = mat_vec_mul(&self.B, z)?;
let Cz = mat_vec_mul(&self.C, z)?;
let AzBz = hadamard(&Az, &Bz)?;
if AzBz != Cz {
return Err(Error::NotSatisfied);
}
Ok(())
}
fn params_to_bytes(&self) -> Vec<u8> {
[
self.l.to_le_bytes(),
self.A.n_rows.to_le_bytes(),
self.A.n_cols.to_le_bytes(),
]
.concat()
}
}
impl<F: PrimeField> R1CS<F> { impl<F: PrimeField> R1CS<F> {
pub fn rand<R: Rng>(rng: &mut R, n_rows: usize, n_cols: usize) -> Self { pub fn rand<R: Rng>(rng: &mut R, n_rows: usize, n_cols: usize) -> Self {
Self { Self {
@ -29,19 +53,6 @@ impl R1CS {
(z[self.l + 1..].to_vec(), z[1..self.l + 1].to_vec()) (z[self.l + 1..].to_vec(), z[1..self.l + 1].to_vec())
} }
/// check that a R1CS structure is satisfied by a z vector. Only for testing.
pub fn check_relation(&self, z: &[F]) -> Result<(), Error> {
let Az = mat_vec_mul(&self.A, z)?;
let Bz = mat_vec_mul(&self.B, z)?;
let Cz = mat_vec_mul(&self.C, z)?;
let AzBz = hadamard(&Az, &Bz)?;
if AzBz != Cz {
return Err(Error::NotSatisfied);
}
Ok(())
}
/// converts the R1CS instance into a RelaxedR1CS as described in /// converts the R1CS instance into a RelaxedR1CS as described in
/// [Nova](https://eprint.iacr.org/2021/370.pdf) section 4.1. /// [Nova](https://eprint.iacr.org/2021/370.pdf) section 4.1.
pub fn relax(self) -> RelaxedR1CS<F> { pub fn relax(self) -> RelaxedR1CS<F> {

+ 2
- 1
folding-schemes/src/commitment/mod.rs

@ -1,4 +1,5 @@
use ark_ec::CurveGroup; use ark_ec::CurveGroup;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::fmt::Debug; use ark_std::fmt::Debug;
use ark_std::rand::RngCore; use ark_std::rand::RngCore;
@ -13,7 +14,7 @@ pub mod pedersen;
/// commitment in hiding mode or not. /// commitment in hiding mode or not.
pub trait CommitmentScheme<C: CurveGroup, const H: bool = false>: Clone + Debug { pub trait CommitmentScheme<C: CurveGroup, const H: bool = false>: Clone + Debug {
type ProverParams: Clone + Debug; type ProverParams: Clone + Debug;
type VerifierParams: Clone + Debug;
type VerifierParams: Clone + Debug + CanonicalSerialize + CanonicalDeserialize;
type Proof: Clone + Debug; type Proof: Clone + Debug;
type ProverChallenge: Clone + Debug; type ProverChallenge: Clone + Debug;
type Challenge: Clone + Debug; type Challenge: Clone + Debug;

+ 25
- 7
folding-schemes/src/folding/circuits/cyclefold.rs

@ -30,7 +30,7 @@ use ark_std::{One, Zero};
use core::{borrow::Borrow, marker::PhantomData}; use core::{borrow::Borrow, marker::PhantomData};
use super::{nonnative::uint::NonNativeUintVar, CF2}; use super::{nonnative::uint::NonNativeUintVar, CF2};
use crate::ccs::r1cs::{extract_w_x, R1CS};
use crate::arith::r1cs::{extract_w_x, R1CS};
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::constants::N_BITS_RO; use crate::constants::N_BITS_RO;
use crate::folding::nova::{nifs::NIFS, CommittedInstance, Witness}; use crate::folding::nova::{nifs::NIFS, CommittedInstance, Witness};
@ -127,9 +127,13 @@ where
pub fn hash( pub fn hash(
self, self,
crh_params: &CRHParametersVar<CF2<C>>, crh_params: &CRHParametersVar<CF2<C>>,
pp_hash: FpVar<CF2<C>>, // public params hash
) -> Result<(FpVar<CF2<C>>, Vec<FpVar<CF2<C>>>), SynthesisError> { ) -> Result<(FpVar<CF2<C>>, Vec<FpVar<CF2<C>>>), SynthesisError> {
let U_vec = self.to_constraint_field()?; let U_vec = self.to_constraint_field()?;
Ok((CRHGadget::evaluate(crh_params, &U_vec)?, U_vec))
Ok((
CRHGadget::evaluate(crh_params, &[vec![pp_hash], U_vec.clone()].concat())?,
U_vec,
))
} }
} }
@ -252,6 +256,7 @@ where
{ {
pub fn get_challenge_native( pub fn get_challenge_native(
poseidon_config: &PoseidonConfig<C::BaseField>, poseidon_config: &PoseidonConfig<C::BaseField>,
pp_hash: C::BaseField, // public params hash
U_i: CommittedInstance<C>, U_i: CommittedInstance<C>,
u_i: CommittedInstance<C>, u_i: CommittedInstance<C>,
cmT: C, cmT: C,
@ -276,7 +281,7 @@ where
// to save constraints for sponge.squeeze_bits in the corresponding circuit // to save constraints for sponge.squeeze_bits in the corresponding circuit
let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double() + cmT_is_inf; let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double() + cmT_is_inf;
let input = [U_vec, u_vec, vec![cmT_x, cmT_y, is_inf]].concat();
let input = [vec![pp_hash], U_vec, u_vec, vec![cmT_x, cmT_y, is_inf]].concat();
sponge.absorb(&input); sponge.absorb(&input);
let bits = sponge.squeeze_bits(N_BITS_RO); let bits = sponge.squeeze_bits(N_BITS_RO);
Ok(bits) Ok(bits)
@ -286,6 +291,7 @@ where
pub fn get_challenge_gadget( pub fn get_challenge_gadget(
cs: ConstraintSystemRef<C::BaseField>, cs: ConstraintSystemRef<C::BaseField>,
poseidon_config: &PoseidonConfig<C::BaseField>, poseidon_config: &PoseidonConfig<C::BaseField>,
pp_hash: FpVar<C::BaseField>, // public params hash
mut U_i_vec: Vec<FpVar<C::BaseField>>, mut U_i_vec: Vec<FpVar<C::BaseField>>,
u_i: CycleFoldCommittedInstanceVar<C, GC>, u_i: CycleFoldCommittedInstanceVar<C, GC>,
cmT: GC, cmT: GC,
@ -303,7 +309,7 @@ where
// to save constraints for sponge.squeeze_bits // to save constraints for sponge.squeeze_bits
let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double()? + cmT_is_inf; let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double()? + cmT_is_inf;
let input = [U_i_vec, u_i_vec, cmT_vec, vec![is_inf]].concat();
let input = [vec![pp_hash], U_i_vec, u_i_vec, cmT_vec, vec![is_inf]].concat();
sponge.absorb(&input)?; sponge.absorb(&input)?;
let bits = sponge.squeeze_bits(N_BITS_RO)?; let bits = sponge.squeeze_bits(N_BITS_RO)?;
Ok(bits) Ok(bits)
@ -372,13 +378,15 @@ where
} }
} }
/// Folds the given cyclefold circuit and its instances. This method is isolated from any folding
/// Folds the given cyclefold circuit and its instances. This method is abstracted from any folding
/// scheme struct because it is used both by Nova & HyperNova's CycleFold. /// scheme struct because it is used both by Nova & HyperNova's CycleFold.
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
#[allow(clippy::too_many_arguments)]
pub fn fold_cyclefold_circuit<C1, GC1, C2, GC2, FC, CS1, CS2>( pub fn fold_cyclefold_circuit<C1, GC1, C2, GC2, FC, CS1, CS2>(
poseidon_config: &PoseidonConfig<C1::ScalarField>, poseidon_config: &PoseidonConfig<C1::ScalarField>,
cf_r1cs: R1CS<C2::ScalarField>, cf_r1cs: R1CS<C2::ScalarField>,
cf_cs_params: CS2::ProverParams, cf_cs_params: CS2::ProverParams,
pp_hash: C1::ScalarField, // public params hash
cf_W_i: Witness<C2>, // witness of the running instance cf_W_i: Witness<C2>, // witness of the running instance
cf_U_i: CommittedInstance<C2>, // running instance cf_U_i: CommittedInstance<C2>, // running instance
cf_u_i_x: Vec<C2::ScalarField>, cf_u_i_x: Vec<C2::ScalarField>,
@ -438,6 +446,7 @@ where
let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_native( let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_native(
poseidon_config, poseidon_config,
pp_hash,
cf_U_i.clone(), cf_U_i.clone(),
cf_u_i.clone(), cf_u_i.clone(),
cf_cmT, cf_cmT,
@ -594,8 +603,10 @@ pub mod tests {
let cmT = Projective::rand(&mut rng); let cmT = Projective::rand(&mut rng);
// compute the challenge natively // compute the challenge natively
let pp_hash = Fq::from(42u32); // only for test
let r_bits = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_native( let r_bits = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_native(
&poseidon_config, &poseidon_config,
pp_hash,
U_i.clone(), U_i.clone(),
u_i.clone(), u_i.clone(),
cmT, cmT,
@ -615,9 +626,11 @@ pub mod tests {
.unwrap(); .unwrap();
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap(); let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
let pp_hashVar = FpVar::<Fq>::new_witness(cs.clone(), || Ok(pp_hash)).unwrap();
let r_bitsVar = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_gadget( let r_bitsVar = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_gadget(
cs.clone(), cs.clone(),
&poseidon_config, &poseidon_config,
pp_hashVar,
U_iVar.to_constraint_field().unwrap(), U_iVar.to_constraint_field().unwrap(),
u_iVar, u_iVar,
cmTVar, cmTVar,
@ -645,7 +658,8 @@ pub mod tests {
.take(CF_IO_LEN) .take(CF_IO_LEN)
.collect(), .collect(),
}; };
let h = U_i.hash_cyclefold(&poseidon_config).unwrap();
let pp_hash = Fq::from(42u32); // only for test
let h = U_i.hash_cyclefold(&poseidon_config, pp_hash).unwrap();
let cs = ConstraintSystem::<Fq>::new_ref(); let cs = ConstraintSystem::<Fq>::new_ref();
let U_iVar = let U_iVar =
@ -653,8 +667,12 @@ pub mod tests {
Ok(U_i.clone()) Ok(U_i.clone())
}) })
.unwrap(); .unwrap();
let pp_hashVar = FpVar::<Fq>::new_witness(cs.clone(), || Ok(pp_hash)).unwrap();
let (hVar, _) = U_iVar let (hVar, _) = U_iVar
.hash(&CRHParametersVar::new_constant(cs.clone(), poseidon_config).unwrap())
.hash(
&CRHParametersVar::new_constant(cs.clone(), poseidon_config).unwrap(),
pp_hashVar,
)
.unwrap(); .unwrap();
hVar.enforce_equal(&FpVar::new_witness(cs.clone(), || Ok(h)).unwrap()) hVar.enforce_equal(&FpVar::new_witness(cs.clone(), || Ok(h)).unwrap())
.unwrap(); .unwrap();

+ 2
- 2
folding-schemes/src/folding/hypernova/cccs.rs

@ -7,7 +7,7 @@ use std::sync::Arc;
use ark_std::rand::Rng; use ark_std::rand::Rng;
use super::Witness; use super::Witness;
use crate::ccs::CCS;
use crate::arith::{ccs::CCS, Arith};
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::utils::mle::dense_vec_to_dense_mle; use crate::utils::mle::dense_vec_to_dense_mle;
use crate::utils::vec::mat_vec_mul; use crate::utils::vec::mat_vec_mul;
@ -125,7 +125,7 @@ pub mod tests {
use ark_std::UniformRand; use ark_std::UniformRand;
use super::*; use super::*;
use crate::ccs::tests::{get_test_ccs, get_test_z};
use crate::arith::ccs::tests::{get_test_ccs, get_test_z};
use crate::utils::hypercube::BooleanHypercube; use crate::utils::hypercube::BooleanHypercube;
/// Do some sanity checks on q(x). It's a multivariable polynomial and it should evaluate to zero inside the /// Do some sanity checks on q(x). It's a multivariable polynomial and it should evaluate to zero inside the

+ 80
- 23
folding-schemes/src/folding/hypernova/circuits.rs

@ -44,7 +44,7 @@ use crate::frontend::FCircuit;
use crate::utils::virtual_polynomial::VPAuxInfo; use crate::utils::virtual_polynomial::VPAuxInfo;
use crate::Error; use crate::Error;
use crate::{ use crate::{
ccs::{r1cs::extract_r1cs, CCS},
arith::{ccs::CCS, r1cs::extract_r1cs},
transcript::{ transcript::{
poseidon::{PoseidonTranscript, PoseidonTranscriptVar}, poseidon::{PoseidonTranscript, PoseidonTranscriptVar},
Transcript, TranscriptVar, Transcript, TranscriptVar,
@ -143,6 +143,7 @@ where
pub fn hash( pub fn hash(
self, self,
crh_params: &CRHParametersVar<CF1<C>>, crh_params: &CRHParametersVar<CF1<C>>,
pp_hash: FpVar<CF1<C>>,
i: FpVar<CF1<C>>, i: FpVar<CF1<C>>,
z_0: Vec<FpVar<CF1<C>>>, z_0: Vec<FpVar<CF1<C>>>,
z_i: Vec<FpVar<CF1<C>>>, z_i: Vec<FpVar<CF1<C>>>,
@ -155,7 +156,7 @@ where
self.v, self.v,
] ]
.concat(); .concat();
let input = [vec![i], z_0, z_i, U_vec.clone()].concat();
let input = [vec![pp_hash, i], z_0, z_i, U_vec.clone()].concat();
Ok(( Ok((
CRHGadget::<C::ScalarField>::evaluate(crh_params, &input)?, CRHGadget::<C::ScalarField>::evaluate(crh_params, &input)?,
U_vec, U_vec,
@ -455,6 +456,7 @@ pub struct AugmentedFCircuit<
pub _gc2: PhantomData<GC2>, pub _gc2: PhantomData<GC2>,
pub poseidon_config: PoseidonConfig<CF1<C1>>, pub poseidon_config: PoseidonConfig<CF1<C1>>,
pub ccs: CCS<C1::ScalarField>, // CCS of the AugmentedFCircuit pub ccs: CCS<C1::ScalarField>, // CCS of the AugmentedFCircuit
pub pp_hash: Option<CF1<C1>>,
pub i: Option<CF1<C1>>, pub i: Option<CF1<C1>>,
pub i_usize: Option<usize>, pub i_usize: Option<usize>,
pub z_0: Option<Vec<C1::ScalarField>>, pub z_0: Option<Vec<C1::ScalarField>>,
@ -497,6 +499,7 @@ where
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: poseidon_config.clone(), poseidon_config: poseidon_config.clone(),
ccs, ccs,
pp_hash: None,
i: None, i: None,
i_usize: None, i_usize: None,
z_0: None, z_0: None,
@ -559,6 +562,7 @@ where
let mut transcript_p: PoseidonTranscript<C1> = let mut transcript_p: PoseidonTranscript<C1> =
PoseidonTranscript::<C1>::new(&self.poseidon_config.clone()); PoseidonTranscript::<C1>::new(&self.poseidon_config.clone());
// since this is only for the number of constraints, no need to absorb the pp_hash here
let (nimfs_proof, U_i1, _, _) = NIMFS::<C1, PoseidonTranscript<C1>>::prove( let (nimfs_proof, U_i1, _, _) = NIMFS::<C1, PoseidonTranscript<C1>>::prove(
&mut transcript_p, &mut transcript_p,
&ccs, &ccs,
@ -573,6 +577,7 @@ where
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
ccs: ccs.clone(), ccs: ccs.clone(),
pp_hash: Some(C1::ScalarField::zero()),
i: Some(C1::ScalarField::zero()), i: Some(C1::ScalarField::zero()),
i_usize: Some(0), i_usize: Some(0),
z_0: Some(z_0.clone()), z_0: Some(z_0.clone()),
@ -624,6 +629,9 @@ where
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>, for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{ {
fn generate_constraints(self, cs: ConstraintSystemRef<CF1<C1>>) -> Result<(), SynthesisError> { fn generate_constraints(self, cs: ConstraintSystemRef<CF1<C1>>) -> Result<(), SynthesisError> {
let pp_hash = FpVar::<CF1<C1>>::new_witness(cs.clone(), || {
Ok(self.pp_hash.unwrap_or_else(CF1::<C1>::zero))
})?;
let i = FpVar::<CF1<C1>>::new_witness(cs.clone(), || { let i = FpVar::<CF1<C1>>::new_witness(cs.clone(), || {
Ok(self.i.unwrap_or_else(CF1::<C1>::zero)) Ok(self.i.unwrap_or_else(CF1::<C1>::zero))
})?; })?;
@ -680,11 +688,15 @@ where
// Primary Part // Primary Part
// P.1. Compute u_i.x // P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i) // u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, _) = U_i
.clone()
.hash(&crh_params, i.clone(), z_0.clone(), z_i.clone())?;
let (u_i_x, _) = U_i.clone().hash(
&crh_params,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
// u_i.x[1] = H(cf_U_i) // u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&crh_params)?;
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&crh_params, pp_hash.clone())?;
// P.2. Construct u_i // P.2. Construct u_i
let u_i = CCCSVar::<C1> { let u_i = CCCSVar::<C1> {
@ -700,8 +712,9 @@ where
// Notice that NIMFSGadget::fold_committed_instance does not fold C. We set `U_i1.C` to // Notice that NIMFSGadget::fold_committed_instance does not fold C. We set `U_i1.C` to
// unconstrained witnesses `U_i1_C` respectively. Its correctness will be checked on the // unconstrained witnesses `U_i1_C` respectively. Its correctness will be checked on the
// other curve. // other curve.
let transcript =
let mut transcript =
PoseidonTranscriptVar::<C1::ScalarField>::new(cs.clone(), &self.poseidon_config); PoseidonTranscriptVar::<C1::ScalarField>::new(cs.clone(), &self.poseidon_config);
transcript.absorb(pp_hash.clone())?;
let (mut U_i1, rho_bits) = NIMFSGadget::<C1>::verify( let (mut U_i1, rho_bits) = NIMFSGadget::<C1>::verify(
cs.clone(), cs.clone(),
&self.ccs.clone(), &self.ccs.clone(),
@ -716,12 +729,14 @@ where
// P.4.a compute and check the first output of F' // P.4.a compute and check the first output of F'
let (u_i1_x, _) = U_i1.clone().hash( let (u_i1_x, _) = U_i1.clone().hash(
&crh_params, &crh_params,
pp_hash.clone(),
i + FpVar::<CF1<C1>>::one(), i + FpVar::<CF1<C1>>::one(),
z_0.clone(), z_0.clone(),
z_i1.clone(), z_i1.clone(),
)?; )?;
let (u_i1_x_base, _) = LCCCSVar::new_constant(cs.clone(), U_dummy)?.hash( let (u_i1_x_base, _) = LCCCSVar::new_constant(cs.clone(), U_dummy)?.hash(
&crh_params, &crh_params,
pp_hash.clone(),
FpVar::<CF1<C1>>::one(), FpVar::<CF1<C1>>::one(),
z_0.clone(), z_0.clone(),
z_i1.clone(), z_i1.clone(),
@ -763,6 +778,7 @@ where
let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget( let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget(
cs.clone(), cs.clone(),
&self.poseidon_config, &self.poseidon_config,
pp_hash.clone(),
cf_U_i_vec, cf_U_i_vec,
cf_u_i.clone(), cf_u_i.clone(),
cf_cmT.clone(), cf_cmT.clone(),
@ -786,10 +802,10 @@ where
// P.4.b compute and check the second output of F' // P.4.b compute and check the second output of F'
// Base case: u_{i+1}.x[1] == H(cf_U_{\bot}) // Base case: u_{i+1}.x[1] == H(cf_U_{\bot})
// Non-base case: u_{i+1}.x[1] == H(cf_U_{i+1}) // Non-base case: u_{i+1}.x[1] == H(cf_U_{i+1})
let (cf_u_i1_x, _) = cf_U_i1.clone().hash(&crh_params)?;
let (cf_u_i1_x, _) = cf_U_i1.clone().hash(&crh_params, pp_hash.clone())?;
let (cf_u_i1_x_base, _) = let (cf_u_i1_x_base, _) =
CycleFoldCommittedInstanceVar::new_constant(cs.clone(), cf_u_dummy)? CycleFoldCommittedInstanceVar::new_constant(cs.clone(), cf_u_dummy)?
.hash(&crh_params)?;
.hash(&crh_params, pp_hash)?;
let cf_x = FpVar::new_input(cs.clone(), || { let cf_x = FpVar::new_input(cs.clone(), || {
Ok(self.cf_x.unwrap_or(cf_u_i1_x_base.value()?)) Ok(self.cf_x.unwrap_or(cf_u_i1_x_base.value()?))
})?; })?;
@ -810,10 +826,12 @@ mod tests {
use super::*; use super::*;
use crate::{ use crate::{
ccs::{
arith::{
ccs::{
tests::{get_test_ccs, get_test_z},
CCS,
},
r1cs::extract_w_x, r1cs::extract_w_x,
tests::{get_test_ccs, get_test_z},
CCS,
}, },
commitment::{pedersen::Pedersen, CommitmentScheme}, commitment::{pedersen::Pedersen, CommitmentScheme},
folding::{ folding::{
@ -1049,6 +1067,7 @@ mod tests {
let (pedersen_params, _) = let (pedersen_params, _) =
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap(); Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
let pp_hash = Fr::from(42u32); // only for test
let i = Fr::from(3_u32); let i = Fr::from(3_u32);
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
@ -1058,19 +1077,26 @@ mod tests {
.unwrap(); .unwrap();
let h = lcccs let h = lcccs
.clone() .clone()
.hash(&poseidon_config, i, z_0.clone(), z_i.clone())
.hash(&poseidon_config, pp_hash, i, z_0.clone(), z_i.clone())
.unwrap(); .unwrap();
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
let crh_params = CRHParametersVar::<Fr>::new_constant(cs.clone(), poseidon_config).unwrap(); let crh_params = CRHParametersVar::<Fr>::new_constant(cs.clone(), poseidon_config).unwrap();
let pp_hashVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(pp_hash)).unwrap();
let iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(i)).unwrap(); let iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(i)).unwrap();
let z_0Var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap(); let z_0Var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i.clone())).unwrap(); let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i.clone())).unwrap();
let lcccsVar = LCCCSVar::<Projective>::new_witness(cs.clone(), || Ok(lcccs)).unwrap(); let lcccsVar = LCCCSVar::<Projective>::new_witness(cs.clone(), || Ok(lcccs)).unwrap();
let (hVar, _) = lcccsVar let (hVar, _) = lcccsVar
.clone() .clone()
.hash(&crh_params, iVar.clone(), z_0Var.clone(), z_iVar.clone())
.hash(
&crh_params,
pp_hashVar,
iVar.clone(),
z_0Var.clone(),
z_iVar.clone(),
)
.unwrap(); .unwrap();
assert!(cs.is_satisfied().unwrap()); assert!(cs.is_satisfied().unwrap());
@ -1112,6 +1138,9 @@ mod tests {
let (cf_pedersen_params, _) = let (cf_pedersen_params, _) =
Pedersen::<Projective2>::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1).unwrap(); Pedersen::<Projective2>::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1).unwrap();
// public params hash
let pp_hash = Fr::from(42u32); // only for test
// first step // first step
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
let mut z_i = z_0.clone(); let mut z_i = z_0.clone();
@ -1132,9 +1161,15 @@ mod tests {
let mut cf_W_i = cf_W_dummy.clone(); let mut cf_W_i = cf_W_dummy.clone();
let mut cf_U_i = cf_U_dummy.clone(); let mut cf_U_i = cf_U_dummy.clone();
u_i.x = vec![ u_i.x = vec![
U_i.hash(&poseidon_config, Fr::zero(), z_0.clone(), z_i.clone())
.unwrap(),
cf_U_i.hash_cyclefold(&poseidon_config).unwrap(),
U_i.hash(
&poseidon_config,
pp_hash,
Fr::zero(),
z_0.clone(),
z_i.clone(),
)
.unwrap(),
cf_U_i.hash_cyclefold(&poseidon_config, pp_hash).unwrap(),
]; ];
let n_steps: usize = 4; let n_steps: usize = 4;
@ -1151,12 +1186,18 @@ mod tests {
U_i1 = LCCCS::dummy(ccs.l, ccs.t, ccs.s); U_i1 = LCCCS::dummy(ccs.l, ccs.t, ccs.s);
let u_i1_x = U_i1 let u_i1_x = U_i1
.hash(&poseidon_config, Fr::one(), z_0.clone(), z_i1.clone())
.hash(
&poseidon_config,
pp_hash,
Fr::one(),
z_0.clone(),
z_i1.clone(),
)
.unwrap(); .unwrap();
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public // hash the initial (dummy) CycleFold instance, which is used as the 2nd public
// input in the AugmentedFCircuit // input in the AugmentedFCircuit
let cf_u_i1_x = cf_U_i.hash_cyclefold(&poseidon_config).unwrap();
let cf_u_i1_x = cf_U_i.hash_cyclefold(&poseidon_config, pp_hash).unwrap();
augmented_f_circuit = augmented_f_circuit =
AugmentedFCircuit::<Projective, Projective2, GVar2, CubicFCircuit<Fr>> { AugmentedFCircuit::<Projective, Projective2, GVar2, CubicFCircuit<Fr>> {
@ -1164,6 +1205,7 @@ mod tests {
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: poseidon_config.clone(), poseidon_config: poseidon_config.clone(),
ccs: ccs.clone(), ccs: ccs.clone(),
pp_hash: Some(pp_hash),
i: Some(Fr::zero()), i: Some(Fr::zero()),
i_usize: Some(0), i_usize: Some(0),
z_0: Some(z_0.clone()), z_0: Some(z_0.clone()),
@ -1185,6 +1227,7 @@ mod tests {
} else { } else {
let mut transcript_p: PoseidonTranscript<Projective> = let mut transcript_p: PoseidonTranscript<Projective> =
PoseidonTranscript::<Projective>::new(&poseidon_config.clone()); PoseidonTranscript::<Projective>::new(&poseidon_config.clone());
transcript_p.absorb(&pp_hash);
let (rho_bits, nimfs_proof); let (rho_bits, nimfs_proof);
(nimfs_proof, U_i1, W_i1, rho_bits) = (nimfs_proof, U_i1, W_i1, rho_bits) =
NIMFS::<Projective, PoseidonTranscript<Projective>>::prove( NIMFS::<Projective, PoseidonTranscript<Projective>>::prove(
@ -1201,7 +1244,13 @@ mod tests {
U_i1.check_relation(&ccs, &W_i1).unwrap(); U_i1.check_relation(&ccs, &W_i1).unwrap();
let u_i1_x = U_i1 let u_i1_x = U_i1
.hash(&poseidon_config, iFr + Fr::one(), z_0.clone(), z_i1.clone())
.hash(
&poseidon_config,
pp_hash,
iFr + Fr::one(),
z_0.clone(),
z_i1.clone(),
)
.unwrap(); .unwrap();
let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap(); let rho_Fq = Fq::from_bigint(BigInteger::from_bits_le(&rho_bits)).unwrap();
@ -1236,6 +1285,7 @@ mod tests {
&poseidon_config, &poseidon_config,
cf_r1cs.clone(), cf_r1cs.clone(),
cf_pedersen_params.clone(), cf_pedersen_params.clone(),
pp_hash,
cf_W_i.clone(), // CycleFold running instance witness cf_W_i.clone(), // CycleFold running instance witness
cf_U_i.clone(), // CycleFold running instance cf_U_i.clone(), // CycleFold running instance
cf_u_i_x, // CycleFold incoming instance cf_u_i_x, // CycleFold incoming instance
@ -1245,7 +1295,7 @@ mod tests {
// hash the CycleFold folded instance, which is used as the 2nd public input in the // hash the CycleFold folded instance, which is used as the 2nd public input in the
// AugmentedFCircuit // AugmentedFCircuit
let cf_u_i1_x = cf_U_i1.hash_cyclefold(&poseidon_config).unwrap();
let cf_u_i1_x = cf_U_i1.hash_cyclefold(&poseidon_config, pp_hash).unwrap();
augmented_f_circuit = augmented_f_circuit =
AugmentedFCircuit::<Projective, Projective2, GVar2, CubicFCircuit<Fr>> { AugmentedFCircuit::<Projective, Projective2, GVar2, CubicFCircuit<Fr>> {
@ -1253,6 +1303,7 @@ mod tests {
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: poseidon_config.clone(), poseidon_config: poseidon_config.clone(),
ccs: ccs.clone(), ccs: ccs.clone(),
pp_hash: Some(pp_hash),
i: Some(iFr), i: Some(iFr),
i_usize: Some(i), i_usize: Some(i),
z_0: Some(z_0.clone()), z_0: Some(z_0.clone()),
@ -1296,9 +1347,15 @@ mod tests {
assert_eq!(u_i.x[0], augmented_f_circuit.x.unwrap()); assert_eq!(u_i.x[0], augmented_f_circuit.x.unwrap());
assert_eq!(u_i.x[1], augmented_f_circuit.cf_x.unwrap()); assert_eq!(u_i.x[1], augmented_f_circuit.cf_x.unwrap());
let expected_u_i1_x = U_i1 let expected_u_i1_x = U_i1
.hash(&poseidon_config, iFr + Fr::one(), z_0.clone(), z_i1.clone())
.hash(
&poseidon_config,
pp_hash,
iFr + Fr::one(),
z_0.clone(),
z_i1.clone(),
)
.unwrap(); .unwrap();
let expected_cf_U_i1_x = cf_U_i.hash_cyclefold(&poseidon_config).unwrap();
let expected_cf_U_i1_x = cf_U_i.hash_cyclefold(&poseidon_config, pp_hash).unwrap();
// u_i is already u_i1 at this point, check that has the expected value at x[0] // u_i is already u_i1 at this point, check that has the expected value at x[0]
assert_eq!(u_i.x[0], expected_u_i1_x); assert_eq!(u_i.x[0], expected_u_i1_x);
assert_eq!(u_i.x[1], expected_cf_U_i1_x); assert_eq!(u_i.x[1], expected_cf_U_i1_x);

+ 6
- 4
folding-schemes/src/folding/hypernova/lcccs.rs

@ -10,7 +10,7 @@ use ark_std::rand::Rng;
use ark_std::Zero; use ark_std::Zero;
use super::Witness; use super::Witness;
use crate::ccs::CCS;
use crate::arith::ccs::CCS;
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::folding::circuits::nonnative::affine::nonnative_affine_to_field_elements; use crate::folding::circuits::nonnative::affine::nonnative_affine_to_field_elements;
use crate::utils::mle::dense_vec_to_dense_mle; use crate::utils::mle::dense_vec_to_dense_mle;
@ -129,6 +129,7 @@ where
pub fn hash( pub fn hash(
&self, &self,
poseidon_config: &PoseidonConfig<C::ScalarField>, poseidon_config: &PoseidonConfig<C::ScalarField>,
pp_hash: C::ScalarField,
i: C::ScalarField, i: C::ScalarField,
z_0: Vec<C::ScalarField>, z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>, z_i: Vec<C::ScalarField>,
@ -138,7 +139,7 @@ where
CRH::<C::ScalarField>::evaluate( CRH::<C::ScalarField>::evaluate(
poseidon_config, poseidon_config,
vec![ vec![
vec![i],
vec![pp_hash, i],
z_0, z_0,
z_i, z_i,
C_x, C_x,
@ -164,9 +165,10 @@ pub mod tests {
use std::sync::Arc; use std::sync::Arc;
use super::*; use super::*;
use crate::ccs::{
use crate::arith::{
ccs::tests::{get_test_ccs, get_test_z},
r1cs::R1CS, r1cs::R1CS,
tests::{get_test_ccs, get_test_z},
Arith,
}; };
use crate::commitment::pedersen::Pedersen; use crate::commitment::pedersen::Pedersen;
use crate::utils::hypercube::BooleanHypercube; use crate::utils::hypercube::BooleanHypercube;

+ 86
- 47
folding-schemes/src/folding/hypernova/mod.rs

@ -24,16 +24,17 @@ use crate::folding::circuits::{
CF2, CF2,
}; };
use crate::folding::nova::{ use crate::folding::nova::{
get_r1cs_from_cs, traits::NovaR1CS, CommittedInstance, Witness as NovaWitness,
get_r1cs_from_cs, traits::NovaR1CS, CommittedInstance, PreprocessorParam,
Witness as NovaWitness,
}; };
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
use crate::utils::get_cm_coordinates;
use crate::utils::{get_cm_coordinates, pp_hash};
use crate::Error; use crate::Error;
use crate::FoldingScheme; use crate::FoldingScheme;
use crate::{ use crate::{
ccs::{
arith::{
ccs::CCS,
r1cs::{extract_w_x, R1CS}, r1cs::{extract_w_x, R1CS},
CCS,
}, },
transcript::{poseidon::PoseidonTranscript, Transcript}, transcript::{poseidon::PoseidonTranscript, Transcript},
}; };
@ -56,22 +57,6 @@ impl Witness {
} }
} }
#[derive(Debug, Clone)]
pub struct PreprocessorParam<C1, C2, FC, CS1, CS2>
where
C1: CurveGroup,
C2: CurveGroup,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub F: FC,
// cs_params & cf_cs_params: if not provided, will be generated at the preprocess method
pub cs_params: Option<CS1::ProverParams>,
pub cf_cs_params: Option<CS2::ProverParams>,
}
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct ProverParams<C1, C2, CS1, CS2> pub struct ProverParams<C1, C2, CS1, CS2>
where where
@ -97,8 +82,27 @@ pub struct VerifierParams<
pub poseidon_config: PoseidonConfig<C1::ScalarField>, pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub ccs: CCS<C1::ScalarField>, pub ccs: CCS<C1::ScalarField>,
pub cf_r1cs: R1CS<C2::ScalarField>, pub cf_r1cs: R1CS<C2::ScalarField>,
pub cs_params: CS1::ProverParams,
pub cf_cs_params: CS2::ProverParams,
pub cs_vp: CS1::VerifierParams,
pub cf_cs_vp: CS2::VerifierParams,
}
impl<C1, C2, CS1, CS2> VerifierParams<C1, C2, CS1, CS2>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
/// returns the hash of the public parameters of HyperNova
pub fn pp_hash(&self) -> Result<C1::ScalarField, Error> {
pp_hash::<C1, C2, CS1, CS2>(
&self.ccs,
&self.cf_r1cs,
&self.cs_vp,
&self.cf_cs_vp,
&self.poseidon_config,
)
}
} }
/// Implements HyperNova+CycleFold's IVC, described in /// Implements HyperNova+CycleFold's IVC, described in
@ -130,6 +134,8 @@ where
pub cf_cs_params: CS2::ProverParams, pub cf_cs_params: CS2::ProverParams,
/// F circuit, the circuit that is being folded /// F circuit, the circuit that is being folded
pub F: FC, pub F: FC,
/// public params hash
pub pp_hash: C1::ScalarField,
pub i: C1::ScalarField, pub i: C1::ScalarField,
/// initial state /// initial state
pub z_0: Vec<C1::ScalarField>, pub z_0: Vec<C1::ScalarField>,
@ -185,35 +191,49 @@ where
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty(); let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?; let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
// if cs_params & cf_cs_params exist, use them, if not, generate new ones
let cs_params: CS1::ProverParams;
let cf_cs_params: CS2::ProverParams;
if prep_param.cs_params.is_some() && prep_param.cf_cs_params.is_some() {
cs_params = prep_param.clone().cs_params.unwrap();
cf_cs_params = prep_param.clone().cf_cs_params.unwrap();
// if cs params exist, use them, if not, generate new ones
let cs_pp: CS1::ProverParams;
let cs_vp: CS1::VerifierParams;
let cf_cs_pp: CS2::ProverParams;
let cf_cs_vp: CS2::VerifierParams;
if prep_param.cs_pp.is_some()
&& prep_param.cf_cs_pp.is_some()
&& prep_param.cs_vp.is_some()
&& prep_param.cf_cs_vp.is_some()
{
cs_pp = prep_param.clone().cs_pp.unwrap();
cs_vp = prep_param.clone().cs_vp.unwrap();
cf_cs_pp = prep_param.clone().cf_cs_pp.unwrap();
cf_cs_vp = prep_param.clone().cf_cs_vp.unwrap();
} else { } else {
(cs_params, _) = CS1::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
(cf_cs_params, _) = CS2::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1).unwrap();
(cs_pp, cs_vp) = CS1::setup(&mut rng, ccs.n - ccs.l - 1)?;
(cf_cs_pp, cf_cs_vp) = CS2::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1)?;
} }
let pp = ProverParams::<C1, C2, CS1, CS2> { let pp = ProverParams::<C1, C2, CS1, CS2> {
poseidon_config: prep_param.poseidon_config.clone(), poseidon_config: prep_param.poseidon_config.clone(),
cs_params: cs_params.clone(),
cf_cs_params: cf_cs_params.clone(),
cs_params: cs_pp.clone(),
cf_cs_params: cf_cs_pp.clone(),
ccs: Some(ccs.clone()), ccs: Some(ccs.clone()),
}; };
let vp = VerifierParams::<C1, C2, CS1, CS2> { let vp = VerifierParams::<C1, C2, CS1, CS2> {
poseidon_config: prep_param.poseidon_config.clone(), poseidon_config: prep_param.poseidon_config.clone(),
ccs, ccs,
cf_r1cs, cf_r1cs,
cs_params: cs_params.clone(),
cf_cs_params: cf_cs_params.clone(),
cs_vp: cs_vp.clone(),
cf_cs_vp: cf_cs_vp.clone(),
}; };
Ok((pp, vp)) Ok((pp, vp))
} }
/// Initializes the HyperNova+CycleFold's IVC for the given parameters and initial state `z_0`. /// Initializes the HyperNova+CycleFold's IVC for the given parameters and initial state `z_0`.
fn init(pp: &Self::ProverParam, F: FC, z_0: Vec<C1::ScalarField>) -> Result<Self, Error> {
fn init(
params: (Self::ProverParam, Self::VerifierParam),
F: FC,
z_0: Vec<C1::ScalarField>,
) -> Result<Self, Error> {
let (pp, vp) = params;
// prepare the HyperNova's AugmentedFCircuit and CycleFold's circuits and obtain its CCS // prepare the HyperNova's AugmentedFCircuit and CycleFold's circuits and obtain its CCS
// and R1CS respectively // and R1CS respectively
let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty( let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(
@ -226,6 +246,9 @@ where
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty(); let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?; let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
// compute the public params hash
let pp_hash = vp.pp_hash()?;
// setup the dummy instances // setup the dummy instances
let W_dummy = Witness::<C1::ScalarField>::dummy(&ccs); let W_dummy = Witness::<C1::ScalarField>::dummy(&ccs);
let U_dummy = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s); let U_dummy = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
@ -236,11 +259,12 @@ where
u_dummy.x = vec![ u_dummy.x = vec![
U_dummy.hash( U_dummy.hash(
&pp.poseidon_config, &pp.poseidon_config,
pp_hash,
C1::ScalarField::zero(), C1::ScalarField::zero(),
z_0.clone(), z_0.clone(),
z_0.clone(), z_0.clone(),
)?, )?,
cf_U_dummy.hash_cyclefold(&pp.poseidon_config)?,
cf_U_dummy.hash_cyclefold(&pp.poseidon_config, pp_hash)?,
]; ];
// W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the // W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the
@ -255,6 +279,7 @@ where
cs_params: pp.cs_params.clone(), cs_params: pp.cs_params.clone(),
cf_cs_params: pp.cf_cs_params.clone(), cf_cs_params: pp.cf_cs_params.clone(),
F, F,
pp_hash,
i: C1::ScalarField::zero(), i: C1::ScalarField::zero(),
z_0: z_0.clone(), z_0: z_0.clone(),
z_i: z_0, z_i: z_0,
@ -315,6 +340,7 @@ where
let u_i1_x = U_i1.hash( let u_i1_x = U_i1.hash(
&self.poseidon_config, &self.poseidon_config,
self.pp_hash,
C1::ScalarField::one(), C1::ScalarField::one(),
self.z_0.clone(), self.z_0.clone(),
z_i1.clone(), z_i1.clone(),
@ -322,13 +348,16 @@ where
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public // hash the initial (dummy) CycleFold instance, which is used as the 2nd public
// input in the AugmentedFCircuit // input in the AugmentedFCircuit
cf_u_i1_x = self.cf_U_i.hash_cyclefold(&self.poseidon_config)?;
cf_u_i1_x = self
.cf_U_i
.hash_cyclefold(&self.poseidon_config, self.pp_hash)?;
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> { augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_c2: PhantomData, _c2: PhantomData,
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
ccs: self.ccs.clone(), ccs: self.ccs.clone(),
pp_hash: Some(self.pp_hash),
i: Some(C1::ScalarField::zero()), i: Some(C1::ScalarField::zero()),
i_usize: Some(0), i_usize: Some(0),
z_0: Some(self.z_0.clone()), z_0: Some(self.z_0.clone()),
@ -350,6 +379,7 @@ where
} else { } else {
let mut transcript_p: PoseidonTranscript<C1> = let mut transcript_p: PoseidonTranscript<C1> =
PoseidonTranscript::<C1>::new(&self.poseidon_config); PoseidonTranscript::<C1>::new(&self.poseidon_config);
transcript_p.absorb(&self.pp_hash);
let (rho_bits, nimfs_proof); let (rho_bits, nimfs_proof);
(nimfs_proof, U_i1, W_i1, rho_bits) = NIMFS::<C1, PoseidonTranscript<C1>>::prove( (nimfs_proof, U_i1, W_i1, rho_bits) = NIMFS::<C1, PoseidonTranscript<C1>>::prove(
&mut transcript_p, &mut transcript_p,
@ -366,6 +396,7 @@ where
let u_i1_x = U_i1.hash( let u_i1_x = U_i1.hash(
&self.poseidon_config, &self.poseidon_config,
self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(), self.z_0.clone(),
z_i1.clone(), z_i1.clone(),
@ -397,19 +428,21 @@ where
&self.poseidon_config, &self.poseidon_config,
self.cf_r1cs.clone(), self.cf_r1cs.clone(),
self.cf_cs_params.clone(), self.cf_cs_params.clone(),
self.pp_hash,
self.cf_W_i.clone(), // CycleFold running instance witness self.cf_W_i.clone(), // CycleFold running instance witness
self.cf_U_i.clone(), // CycleFold running instance self.cf_U_i.clone(), // CycleFold running instance
cf_u_i_x, cf_u_i_x,
cf_circuit, cf_circuit,
)?; )?;
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config)?;
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config, self.pp_hash)?;
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> { augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_c2: PhantomData, _c2: PhantomData,
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
ccs: self.ccs.clone(), ccs: self.ccs.clone(),
pp_hash: Some(self.pp_hash),
i: Some(self.i), i: Some(self.i),
i_usize: Some(i_usize), i_usize: Some(i_usize),
z_0: Some(self.z_0.clone()), z_0: Some(self.z_0.clone()),
@ -516,14 +549,16 @@ where
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
let pp_hash = vp.pp_hash()?;
// check that u_i's output points to the running instance // check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i) // u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&vp.poseidon_config, num_steps, z_0, z_i.clone())?;
let expected_u_i_x = U_i.hash(&vp.poseidon_config, pp_hash, num_steps, z_0, z_i.clone())?;
if expected_u_i_x != u_i.x[0] { if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
// u_i.X[1] == H(cf_U_i) // u_i.X[1] == H(cf_U_i)
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config)?;
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config, pp_hash)?;
if expected_cf_u_i_x != u_i.x[1] { if expected_cf_u_i_x != u_i.x[1] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
@ -578,16 +613,20 @@ mod tests {
type HN<CS1, CS2> = type HN<CS1, CS2> =
HyperNova<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>, CS1, CS2>; HyperNova<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>, CS1, CS2>;
let prep_param = PreprocessorParam::<Projective, Projective2, CubicFCircuit<Fr>, CS1, CS2> {
poseidon_config,
F: F_circuit,
cs_params: None,
cf_cs_params: None,
};
let prep_param =
PreprocessorParam::<Projective, Projective2, CubicFCircuit<Fr>, CS1, CS2>::new(
poseidon_config.clone(),
F_circuit,
);
let (prover_params, verifier_params) = HN::preprocess(&mut rng, &prep_param).unwrap(); let (prover_params, verifier_params) = HN::preprocess(&mut rng, &prep_param).unwrap();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
let mut hypernova = HN::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let mut hypernova = HN::init(
(prover_params, verifier_params.clone()),
F_circuit,
z_0.clone(),
)
.unwrap();
let num_steps: usize = 3; let num_steps: usize = 3;
for _ in 0..num_steps { for _ in 0..num_steps {

+ 5
- 2
folding-schemes/src/folding/hypernova/nimfs.rs

@ -11,7 +11,7 @@ use super::{
utils::{compute_c, compute_g, compute_sigmas_thetas}, utils::{compute_c, compute_g, compute_sigmas_thetas},
Witness, Witness,
}; };
use crate::ccs::CCS;
use crate::arith::ccs::CCS;
use crate::constants::N_BITS_RO; use crate::constants::N_BITS_RO;
use crate::folding::circuits::nonnative::affine::nonnative_affine_to_field_elements; use crate::folding::circuits::nonnative::affine::nonnative_affine_to_field_elements;
use crate::transcript::Transcript; use crate::transcript::Transcript;
@ -408,7 +408,10 @@ where
#[cfg(test)] #[cfg(test)]
pub mod tests { pub mod tests {
use super::*; use super::*;
use crate::ccs::tests::{get_test_ccs, get_test_z};
use crate::arith::{
ccs::tests::{get_test_ccs, get_test_z},
Arith,
};
use crate::transcript::poseidon::poseidon_canonical_config; use crate::transcript::poseidon::poseidon_canonical_config;
use crate::transcript::poseidon::PoseidonTranscript; use crate::transcript::poseidon::PoseidonTranscript;
use ark_std::test_rng; use ark_std::test_rng;

+ 5
- 2
folding-schemes/src/folding/hypernova/utils.rs

@ -7,7 +7,7 @@ use std::sync::Arc;
use super::lcccs::LCCCS; use super::lcccs::LCCCS;
use super::nimfs::SigmasThetas; use super::nimfs::SigmasThetas;
use crate::ccs::CCS;
use crate::arith::ccs::CCS;
use crate::utils::mle::dense_vec_to_dense_mle; use crate::utils::mle::dense_vec_to_dense_mle;
use crate::utils::vec::mat_vec_mul; use crate::utils::vec::mat_vec_mul;
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, eq_eval, VirtualPolynomial}; use crate::utils::virtual_polynomial::{build_eq_x_r_vec, eq_eval, VirtualPolynomial};
@ -167,7 +167,10 @@ pub mod tests {
use ark_std::Zero; use ark_std::Zero;
use super::*; use super::*;
use crate::ccs::tests::{get_test_ccs, get_test_z};
use crate::arith::{
ccs::tests::{get_test_ccs, get_test_z},
Arith,
};
use crate::commitment::{pedersen::Pedersen, CommitmentScheme}; use crate::commitment::{pedersen::Pedersen, CommitmentScheme};
use crate::folding::hypernova::lcccs::tests::compute_Ls; use crate::folding::hypernova::lcccs::tests::compute_Ls;
use crate::utils::hypercube::BooleanHypercube; use crate::utils::hypercube::BooleanHypercube;

+ 37
- 9
folding-schemes/src/folding/nova/circuits.rs

@ -94,6 +94,7 @@ where
pub fn hash( pub fn hash(
self, self,
crh_params: &CRHParametersVar<CF1<C>>, crh_params: &CRHParametersVar<CF1<C>>,
pp_hash: FpVar<CF1<C>>,
i: FpVar<CF1<C>>, i: FpVar<CF1<C>>,
z_0: Vec<FpVar<CF1<C>>>, z_0: Vec<FpVar<CF1<C>>>,
z_i: Vec<FpVar<CF1<C>>>, z_i: Vec<FpVar<CF1<C>>>,
@ -105,7 +106,7 @@ where
self.cmW.to_constraint_field()?, self.cmW.to_constraint_field()?,
] ]
.concat(); .concat();
let input = [vec![i], z_0, z_i, U_vec.clone()].concat();
let input = [vec![pp_hash, i], z_0, z_i, U_vec.clone()].concat();
Ok(( Ok((
CRHGadget::<C::ScalarField>::evaluate(crh_params, &input)?, CRHGadget::<C::ScalarField>::evaluate(crh_params, &input)?,
U_vec, U_vec,
@ -175,6 +176,7 @@ where
{ {
pub fn get_challenge_native( pub fn get_challenge_native(
poseidon_config: &PoseidonConfig<C::ScalarField>, poseidon_config: &PoseidonConfig<C::ScalarField>,
pp_hash: C::ScalarField, // public params hash
U_i: CommittedInstance<C>, U_i: CommittedInstance<C>,
u_i: CommittedInstance<C>, u_i: CommittedInstance<C>,
cmT: C, cmT: C,
@ -187,6 +189,7 @@ where
let mut sponge = PoseidonSponge::<C::ScalarField>::new(poseidon_config); let mut sponge = PoseidonSponge::<C::ScalarField>::new(poseidon_config);
let input = vec![ let input = vec![
vec![pp_hash],
vec![U_i.u], vec![U_i.u],
U_i.x.clone(), U_i.x.clone(),
U_cmE_x, U_cmE_x,
@ -212,6 +215,7 @@ where
pub fn get_challenge_gadget( pub fn get_challenge_gadget(
cs: ConstraintSystemRef<C::ScalarField>, cs: ConstraintSystemRef<C::ScalarField>,
poseidon_config: &PoseidonConfig<C::ScalarField>, poseidon_config: &PoseidonConfig<C::ScalarField>,
pp_hash: FpVar<CF1<C>>, // public params hash
U_i_vec: Vec<FpVar<CF1<C>>>, // apready processed input, so we don't have to recompute these values U_i_vec: Vec<FpVar<CF1<C>>>, // apready processed input, so we don't have to recompute these values
u_i: CommittedInstanceVar<C>, u_i: CommittedInstanceVar<C>,
cmT: NonNativeAffineVar<C>, cmT: NonNativeAffineVar<C>,
@ -219,6 +223,7 @@ where
let mut sponge = PoseidonSpongeVar::<C::ScalarField>::new(cs, poseidon_config); let mut sponge = PoseidonSpongeVar::<C::ScalarField>::new(cs, poseidon_config);
let input: Vec<FpVar<C::ScalarField>> = [ let input: Vec<FpVar<C::ScalarField>> = [
vec![pp_hash],
U_i_vec, U_i_vec,
vec![u_i.u.clone()], vec![u_i.u.clone()],
u_i.x.clone(), u_i.x.clone(),
@ -247,6 +252,7 @@ pub struct AugmentedFCircuit<
{ {
pub _gc2: PhantomData<GC2>, pub _gc2: PhantomData<GC2>,
pub poseidon_config: PoseidonConfig<CF1<C1>>, pub poseidon_config: PoseidonConfig<CF1<C1>>,
pub pp_hash: Option<CF1<C1>>,
pub i: Option<CF1<C1>>, pub i: Option<CF1<C1>>,
pub i_usize: Option<usize>, pub i_usize: Option<usize>,
pub z_0: Option<Vec<C1::ScalarField>>, pub z_0: Option<Vec<C1::ScalarField>>,
@ -280,6 +286,7 @@ where
Self { Self {
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: poseidon_config.clone(), poseidon_config: poseidon_config.clone(),
pp_hash: None,
i: None, i: None,
i_usize: None, i_usize: None,
z_0: None, z_0: None,
@ -317,6 +324,9 @@ where
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>, for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{ {
fn generate_constraints(self, cs: ConstraintSystemRef<CF1<C1>>) -> Result<(), SynthesisError> { fn generate_constraints(self, cs: ConstraintSystemRef<CF1<C1>>) -> Result<(), SynthesisError> {
let pp_hash = FpVar::<CF1<C1>>::new_witness(cs.clone(), || {
Ok(self.pp_hash.unwrap_or_else(CF1::<C1>::zero))
})?;
let i = FpVar::<CF1<C1>>::new_witness(cs.clone(), || { let i = FpVar::<CF1<C1>>::new_witness(cs.clone(), || {
Ok(self.i.unwrap_or_else(CF1::<C1>::zero)) Ok(self.i.unwrap_or_else(CF1::<C1>::zero))
})?; })?;
@ -373,11 +383,15 @@ where
// Primary Part // Primary Part
// P.1. Compute u_i.x // P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i) // u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, U_i_vec) =
U_i.clone()
.hash(&crh_params, i.clone(), z_0.clone(), z_i.clone())?;
let (u_i_x, U_i_vec) = U_i.clone().hash(
&crh_params,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
// u_i.x[1] = H(cf_U_i) // u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&crh_params)?;
let (cf_u_i_x, cf_U_i_vec) = cf_U_i.clone().hash(&crh_params, pp_hash.clone())?;
// P.2. Construct u_i // P.2. Construct u_i
let u_i = CommittedInstanceVar { let u_i = CommittedInstanceVar {
@ -399,6 +413,7 @@ where
let r_bits = ChallengeGadget::<C1>::get_challenge_gadget( let r_bits = ChallengeGadget::<C1>::get_challenge_gadget(
cs.clone(), cs.clone(),
&self.poseidon_config, &self.poseidon_config,
pp_hash.clone(),
U_i_vec, U_i_vec,
u_i.clone(), u_i.clone(),
cmT.clone(), cmT.clone(),
@ -424,12 +439,14 @@ where
// Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1}) // Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1})
let (u_i1_x, _) = U_i1.clone().hash( let (u_i1_x, _) = U_i1.clone().hash(
&crh_params, &crh_params,
pp_hash.clone(),
i + FpVar::<CF1<C1>>::one(), i + FpVar::<CF1<C1>>::one(),
z_0.clone(), z_0.clone(),
z_i1.clone(), z_i1.clone(),
)?; )?;
let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash( let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash(
&crh_params, &crh_params,
pp_hash.clone(),
FpVar::<CF1<C1>>::one(), FpVar::<CF1<C1>>::one(),
z_0.clone(), z_0.clone(),
z_i1.clone(), z_i1.clone(),
@ -484,6 +501,7 @@ where
let cf1_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget( let cf1_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget(
cs.clone(), cs.clone(),
&self.poseidon_config, &self.poseidon_config,
pp_hash.clone(),
cf_U_i_vec, cf_U_i_vec,
cf1_u_i.clone(), cf1_u_i.clone(),
cf1_cmT.clone(), cf1_cmT.clone(),
@ -507,6 +525,7 @@ where
let cf2_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget( let cf2_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_gadget(
cs.clone(), cs.clone(),
&self.poseidon_config, &self.poseidon_config,
pp_hash.clone(),
cf1_U_i1.to_constraint_field()?, cf1_U_i1.to_constraint_field()?,
cf2_u_i.clone(), cf2_u_i.clone(),
cf2_cmT.clone(), cf2_cmT.clone(),
@ -528,10 +547,10 @@ where
// P.4.b compute and check the second output of F' // P.4.b compute and check the second output of F'
// Base case: u_{i+1}.x[1] == H(cf_U_{\bot}) // Base case: u_{i+1}.x[1] == H(cf_U_{\bot})
// Non-base case: u_{i+1}.x[1] == H(cf_U_{i+1}) // Non-base case: u_{i+1}.x[1] == H(cf_U_{i+1})
let (cf_u_i1_x, _) = cf_U_i1.clone().hash(&crh_params)?;
let (cf_u_i1_x, _) = cf_U_i1.clone().hash(&crh_params, pp_hash.clone())?;
let (cf_u_i1_x_base, _) = let (cf_u_i1_x_base, _) =
CycleFoldCommittedInstanceVar::new_constant(cs.clone(), cf_u_dummy)? CycleFoldCommittedInstanceVar::new_constant(cs.clone(), cf_u_dummy)?
.hash(&crh_params)?;
.hash(&crh_params, pp_hash)?;
let cf_x = FpVar::new_input(cs.clone(), || { let cf_x = FpVar::new_input(cs.clone(), || {
Ok(self.cf_x.unwrap_or(cf_u_i1_x_base.value()?)) Ok(self.cf_x.unwrap_or(cf_u_i1_x_base.value()?))
})?; })?;
@ -609,6 +628,7 @@ pub mod tests {
fn test_committed_instance_hash() { fn test_committed_instance_hash() {
let mut rng = ark_std::test_rng(); let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>(); let poseidon_config = poseidon_canonical_config::<Fr>();
let pp_hash = Fr::from(42u32); // only for test
let i = Fr::from(3_u32); let i = Fr::from(3_u32);
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
@ -622,11 +642,12 @@ pub mod tests {
// compute the CommittedInstance hash natively // compute the CommittedInstance hash natively
let h = ci let h = ci
.hash(&poseidon_config, i, z_0.clone(), z_i.clone())
.hash(&poseidon_config, pp_hash, i, z_0.clone(), z_i.clone())
.unwrap(); .unwrap();
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
let pp_hashVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(pp_hash)).unwrap();
let iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(i)).unwrap(); let iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(i)).unwrap();
let z_0Var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap(); let z_0Var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i.clone())).unwrap(); let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i.clone())).unwrap();
@ -636,7 +657,9 @@ pub mod tests {
let crh_params = CRHParametersVar::<Fr>::new_constant(cs.clone(), poseidon_config).unwrap(); let crh_params = CRHParametersVar::<Fr>::new_constant(cs.clone(), poseidon_config).unwrap();
// compute the CommittedInstance hash in-circuit // compute the CommittedInstance hash in-circuit
let (hVar, _) = ciVar.hash(&crh_params, iVar, z_0Var, z_iVar).unwrap();
let (hVar, _) = ciVar
.hash(&crh_params, pp_hashVar, iVar, z_0Var, z_iVar)
.unwrap();
assert!(cs.is_satisfied().unwrap()); assert!(cs.is_satisfied().unwrap());
// check that the natively computed and in-circuit computed hashes match // check that the natively computed and in-circuit computed hashes match
@ -663,9 +686,12 @@ pub mod tests {
}; };
let cmT = Projective::rand(&mut rng); let cmT = Projective::rand(&mut rng);
let pp_hash = Fr::from(42u32); // only for testing
// compute the challenge natively // compute the challenge natively
let r_bits = ChallengeGadget::<Projective>::get_challenge_native( let r_bits = ChallengeGadget::<Projective>::get_challenge_native(
&poseidon_config, &poseidon_config,
pp_hash,
U_i.clone(), U_i.clone(),
u_i.clone(), u_i.clone(),
cmT, cmT,
@ -674,6 +700,7 @@ pub mod tests {
let r = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap(); let r = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
let pp_hashVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(pp_hash)).unwrap();
let u_iVar = let u_iVar =
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(u_i.clone())) CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(u_i.clone()))
.unwrap(); .unwrap();
@ -693,6 +720,7 @@ pub mod tests {
let r_bitsVar = ChallengeGadget::<Projective>::get_challenge_gadget( let r_bitsVar = ChallengeGadget::<Projective>::get_challenge_gadget(
cs.clone(), cs.clone(),
&poseidon_config, &poseidon_config,
pp_hashVar,
U_iVar_vec, U_iVar_vec,
u_iVar, u_iVar,
cmTVar, cmTVar,

+ 14
- 42
folding-schemes/src/folding/nova/decider_eth.rs

@ -90,7 +90,8 @@ where
type PreprocessorParam = (FS::ProverParam, FS::VerifierParam); type PreprocessorParam = (FS::ProverParam, FS::VerifierParam);
type ProverParam = (S::ProvingKey, CS1::ProverParams); type ProverParam = (S::ProvingKey, CS1::ProverParams);
type Proof = Proof<C1, CS1, S>; type Proof = Proof<C1, CS1, S>;
type VerifierParam = (S::VerifyingKey, CS1::VerifierParams);
/// VerifierParam = (pp_hash, snark::vk, commitment_scheme::vk)
type VerifierParam = (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams);
type PublicInput = Vec<C1::ScalarField>; type PublicInput = Vec<C1::ScalarField>;
type CommittedInstance = CommittedInstance<C1>; type CommittedInstance = CommittedInstance<C1>;
@ -115,9 +116,10 @@ where
let nova_vp: let nova_vp:
<Nova<C1, GC1, C2, GC2, FC, CS1, CS2> as FoldingScheme<C1, C2, FC>>::VerifierParam = <Nova<C1, GC1, C2, GC2, FC, CS1, CS2> as FoldingScheme<C1, C2, FC>>::VerifierParam =
prep_param.1.clone().into(); prep_param.1.clone().into();
let pp_hash = nova_vp.pp_hash()?;
let pp = (g16_pk, nova_pp.cs_pp); let pp = (g16_pk, nova_pp.cs_pp);
let vp = (g16_vk, nova_vp.cs_vp);
let vp = (pp_hash, g16_vk, nova_vp.cs_vp);
Ok((pp, vp)) Ok((pp, vp))
} }
@ -186,7 +188,8 @@ where
return Err(Error::NotEnoughSteps); return Err(Error::NotEnoughSteps);
} }
let (snark_vk, cs_vk): (S::VerifyingKey, CS1::VerifierParams) = vp;
let (pp_hash, snark_vk, cs_vk): (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams) =
vp;
// compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT) // compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT)
let U = NIFS::<C1, CS1>::verify(proof.r, running_instance, incoming_instance, &proof.cmT); let U = NIFS::<C1, CS1>::verify(proof.r, running_instance, incoming_instance, &proof.cmT);
@ -196,7 +199,7 @@ where
let (cmT_x, cmT_y) = NonNativeAffineVar::inputize(proof.cmT)?; let (cmT_x, cmT_y) = NonNativeAffineVar::inputize(proof.cmT)?;
let public_input: Vec<C1::ScalarField> = vec![ let public_input: Vec<C1::ScalarField> = vec![
vec![i],
vec![pp_hash, i],
z_0, z_0,
z_i, z_i,
vec![U.u], vec![U.u],
@ -317,13 +320,12 @@ pub mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective}; use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_groth16::Groth16; use ark_groth16::Groth16;
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2}; use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use std::time::Instant; use std::time::Instant;
use super::*; use super::*;
use crate::commitment::kzg::{ProverKey as KZGProverKey, KZG};
use crate::commitment::kzg::KZG;
use crate::commitment::pedersen::Pedersen; use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::{get_cs_params_len, ProverParams};
use crate::folding::nova::PreprocessorParam;
use crate::frontend::tests::CubicFCircuit; use crate::frontend::tests::CubicFCircuit;
use crate::transcript::poseidon::poseidon_canonical_config; use crate::transcript::poseidon::poseidon_canonical_config;
@ -357,59 +359,29 @@ pub mod tests {
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap(); let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
let (cs_len, cf_cs_len) =
get_cs_params_len::<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>>(
&poseidon_config,
F_circuit,
)
.unwrap();
let start = Instant::now();
let (kzg_pk, kzg_vk): (KZGProverKey<Projective>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<Projective2>::setup(&mut rng, cf_cs_len).unwrap();
println!("generated KZG params, {:?}", start.elapsed());
let prover_params =
ProverParams::<Projective, Projective2, KZG<Bn254>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cs_pp: kzg_pk.clone(),
cf_cs_pp: cf_pedersen_params,
};
let prep_param = PreprocessorParam::new(poseidon_config, F_circuit);
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
let start = Instant::now(); let start = Instant::now();
let mut nova = N::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let mut nova = N::init(nova_params.clone(), F_circuit, z_0.clone()).unwrap();
println!("Nova initialized, {:?}", start.elapsed()); println!("Nova initialized, {:?}", start.elapsed());
let start = Instant::now(); let start = Instant::now();
nova.prove_step(&mut rng, vec![]).unwrap(); nova.prove_step(&mut rng, vec![]).unwrap();
println!("prove_step, {:?}", start.elapsed()); println!("prove_step, {:?}", start.elapsed());
nova.prove_step(&mut rng, vec![]).unwrap(); // do a 2nd step nova.prove_step(&mut rng, vec![]).unwrap(); // do a 2nd step
// generate Groth16 setup
let circuit = DeciderEthCircuit::<
Projective,
GVar,
Projective2,
GVar2,
KZG<Bn254>,
Pedersen<Projective2>,
>::from_nova::<CubicFCircuit<Fr>>(nova.clone())
.unwrap();
let mut rng = rand::rngs::OsRng; let mut rng = rand::rngs::OsRng;
let start = Instant::now();
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(circuit.clone(), &mut rng).unwrap();
println!("Groth16 setup, {:?}", start.elapsed());
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
// decider proof generation // decider proof generation
let start = Instant::now(); let start = Instant::now();
let decider_pp = (g16_pk, kzg_pk);
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap(); let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("Decider prove, {:?}", start.elapsed()); println!("Decider prove, {:?}", start.elapsed());
// decider proof verification // decider proof verification
let start = Instant::now(); let start = Instant::now();
let decider_vp = (g16_vk, kzg_vk);
let verified = D::verify( let verified = D::verify(
decider_vp, nova.i, nova.z_0, nova.z_i, &nova.U_i, &nova.u_i, &proof, decider_vp, nova.i, nova.z_0, nova.z_i, &nova.U_i, &nova.u_i, &proof,
) )

+ 39
- 37
folding-schemes/src/folding/nova/decider_eth_circuit.rs

@ -20,7 +20,7 @@ use ark_std::{log2, Zero};
use core::{borrow::Borrow, marker::PhantomData}; use core::{borrow::Borrow, marker::PhantomData};
use super::{circuits::ChallengeGadget, nifs::NIFS}; use super::{circuits::ChallengeGadget, nifs::NIFS};
use crate::ccs::r1cs::R1CS;
use crate::arith::r1cs::R1CS;
use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme}; use crate::commitment::{pedersen::Params as PedersenParams, CommitmentScheme};
use crate::folding::circuits::{ use crate::folding::circuits::{
nonnative::{ nonnative::{
@ -223,6 +223,8 @@ where
/// CycleFold PedersenParams over C2 /// CycleFold PedersenParams over C2
pub cf_pedersen_params: PedersenParams<C2>, pub cf_pedersen_params: PedersenParams<C2>,
pub poseidon_config: PoseidonConfig<CF1<C1>>, pub poseidon_config: PoseidonConfig<CF1<C1>>,
/// public params hash
pub pp_hash: Option<C1::ScalarField>,
pub i: Option<CF1<C1>>, pub i: Option<CF1<C1>>,
/// initial state /// initial state
pub z_0: Option<Vec<C1::ScalarField>>, pub z_0: Option<Vec<C1::ScalarField>>,
@ -273,6 +275,7 @@ where
)?; )?;
let r_bits = ChallengeGadget::<C1>::get_challenge_native( let r_bits = ChallengeGadget::<C1>::get_challenge_native(
&nova.poseidon_config, &nova.poseidon_config,
nova.pp_hash,
nova.U_i.clone(), nova.U_i.clone(),
nova.u_i.clone(), nova.u_i.clone(),
cmT, cmT,
@ -317,6 +320,7 @@ where
cf_r1cs: nova.cf_r1cs, cf_r1cs: nova.cf_r1cs,
cf_pedersen_params: nova.cf_cs_pp, cf_pedersen_params: nova.cf_cs_pp,
poseidon_config: nova.poseidon_config, poseidon_config: nova.poseidon_config,
pp_hash: Some(nova.pp_hash),
i: Some(nova.i), i: Some(nova.i),
z_0: Some(nova.z_0), z_0: Some(nova.z_0),
z_i: Some(nova.z_i), z_i: Some(nova.z_i),
@ -360,6 +364,9 @@ where
Ok(self.r1cs.clone()) Ok(self.r1cs.clone())
})?; })?;
let pp_hash = FpVar::<CF1<C1>>::new_input(cs.clone(), || {
Ok(self.pp_hash.unwrap_or_else(CF1::<C1>::zero))
})?;
let i = let i =
FpVar::<CF1<C1>>::new_input(cs.clone(), || Ok(self.i.unwrap_or_else(CF1::<C1>::zero)))?; FpVar::<CF1<C1>>::new_input(cs.clone(), || Ok(self.i.unwrap_or_else(CF1::<C1>::zero)))?;
let z_0 = Vec::<FpVar<CF1<C1>>>::new_input(cs.clone(), || { let z_0 = Vec::<FpVar<CF1<C1>>>::new_input(cs.clone(), || {
@ -421,9 +428,13 @@ where
(u_i.u.is_one()?).enforce_equal(&Boolean::TRUE)?; (u_i.u.is_one()?).enforce_equal(&Boolean::TRUE)?;
// 3.a u_i.x[0] == H(i, z_0, z_i, U_i) // 3.a u_i.x[0] == H(i, z_0, z_i, U_i)
let (u_i_x, U_i_vec) =
U_i.clone()
.hash(&crh_params, i.clone(), z_0.clone(), z_i.clone())?;
let (u_i_x, U_i_vec) = U_i.clone().hash(
&crh_params,
pp_hash.clone(),
i.clone(),
z_0.clone(),
z_i.clone(),
)?;
(u_i.x[0]).enforce_equal(&u_i_x)?; (u_i.x[0]).enforce_equal(&u_i_x)?;
#[cfg(feature = "light-test")] #[cfg(feature = "light-test")]
@ -454,7 +465,7 @@ where
})?; })?;
// 3.b u_i.x[1] == H(cf_U_i) // 3.b u_i.x[1] == H(cf_U_i)
let (cf_u_i_x, _) = cf_U_i.clone().hash(&crh_params)?;
let (cf_u_i_x, _) = cf_U_i.clone().hash(&crh_params, pp_hash.clone())?;
(u_i.x[1]).enforce_equal(&cf_u_i_x)?; (u_i.x[1]).enforce_equal(&cf_u_i_x)?;
// 4. check Pedersen commitments of cf_U_i.{cmE, cmW} // 4. check Pedersen commitments of cf_U_i.{cmE, cmW}
@ -512,6 +523,7 @@ where
let r_bits = ChallengeGadget::<C1>::get_challenge_gadget( let r_bits = ChallengeGadget::<C1>::get_challenge_gadget(
cs.clone(), cs.clone(),
&self.poseidon_config, &self.poseidon_config,
pp_hash,
U_i_vec, U_i_vec,
u_i.clone(), u_i.clone(),
cmT.clone(), cmT.clone(),
@ -611,10 +623,15 @@ pub mod tests {
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2}; use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use super::*; use super::*;
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::ccs::r1cs::{extract_r1cs, extract_w_x};
use crate::arith::{
r1cs::{
tests::{get_test_r1cs, get_test_z},
{extract_r1cs, extract_w_x},
},
Arith,
};
use crate::commitment::pedersen::Pedersen; use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::{get_cs_params_len, ProverParams, VerifierParams};
use crate::folding::nova::PreprocessorParam;
use crate::frontend::tests::{CubicFCircuit, CustomFCircuit, WrapperCircuit}; use crate::frontend::tests::{CubicFCircuit, CustomFCircuit, WrapperCircuit};
use crate::transcript::poseidon::poseidon_canonical_config; use crate::transcript::poseidon::poseidon_canonical_config;
use crate::FoldingScheme; use crate::FoldingScheme;
@ -772,23 +789,6 @@ pub mod tests {
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap(); let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
// get the CS & CF_CS len
let (cs_len, cf_cs_len) =
get_cs_params_len::<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>>(
&poseidon_config,
F_circuit,
)
.unwrap();
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<Projective2>::setup(&mut rng, cf_cs_len).unwrap();
let prover_params =
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cs_pp: pedersen_params.clone(),
cf_cs_pp: cf_pedersen_params.clone(),
};
type N = Nova< type N = Nova<
Projective, Projective,
GVar, GVar,
@ -799,22 +799,24 @@ pub mod tests {
Pedersen<Projective2>, Pedersen<Projective2>,
>; >;
// generate a Nova instance and do a step of it
let mut nova = N::init(&prover_params, F_circuit, z_0.clone()).unwrap();
nova.prove_step(&mut rng, vec![]).unwrap();
let ivc_v = nova.clone();
let verifier_params = VerifierParams::<
let prep_param = PreprocessorParam::<
Projective, Projective,
Projective2, Projective2,
CubicFCircuit<Fr>,
Pedersen<Projective>, Pedersen<Projective>,
Pedersen<Projective2>, Pedersen<Projective2>,
> {
poseidon_config: poseidon_config.clone(),
r1cs: ivc_v.clone().r1cs,
cf_r1cs: ivc_v.clone().cf_r1cs,
cs_vp: pedersen_params,
cf_cs_vp: cf_pedersen_params,
};
>::new(poseidon_config, F_circuit);
let (prover_params, verifier_params) = N::preprocess(&mut rng, &prep_param).unwrap();
// generate a Nova instance and do a step of it
let mut nova = N::init(
(prover_params, verifier_params.clone()),
F_circuit,
z_0.clone(),
)
.unwrap();
nova.prove_step(&mut rng, vec![]).unwrap();
let ivc_v = nova.clone();
let (running_instance, incoming_instance, cyclefold_instance) = ivc_v.instances(); let (running_instance, incoming_instance, cyclefold_instance) = ivc_v.instances();
N::verify( N::verify(
verifier_params, verifier_params,

+ 65
- 20
folding-schemes/src/folding/nova/mod.rs

@ -13,19 +13,18 @@ use ark_std::fmt::Debug;
use ark_std::rand::RngCore; use ark_std::rand::RngCore;
use ark_std::{One, Zero}; use ark_std::{One, Zero};
use core::marker::PhantomData; use core::marker::PhantomData;
use std::usize;
use crate::ccs::r1cs::{extract_r1cs, extract_w_x, R1CS};
use crate::arith::r1cs::{extract_r1cs, extract_w_x, R1CS};
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::folding::circuits::cyclefold::{fold_cyclefold_circuit, CycleFoldCircuit};
use crate::folding::circuits::{ use crate::folding::circuits::{
cyclefold::{fold_cyclefold_circuit, CycleFoldCircuit},
nonnative::{ nonnative::{
affine::nonnative_affine_to_field_elements, uint::nonnative_field_to_field_elements, affine::nonnative_affine_to_field_elements, uint::nonnative_field_to_field_elements,
}, },
CF2, CF2,
}; };
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
use crate::utils::{get_cm_coordinates, vec::is_zero_vec};
use crate::utils::{get_cm_coordinates, pp_hash, vec::is_zero_vec};
use crate::Error; use crate::Error;
use crate::FoldingScheme; use crate::FoldingScheme;
@ -70,6 +69,7 @@ where
pub fn hash( pub fn hash(
&self, &self,
poseidon_config: &PoseidonConfig<C::ScalarField>, poseidon_config: &PoseidonConfig<C::ScalarField>,
pp_hash: C::ScalarField, // public params hash
i: C::ScalarField, i: C::ScalarField,
z_0: Vec<C::ScalarField>, z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>, z_i: Vec<C::ScalarField>,
@ -80,7 +80,7 @@ where
CRH::<C::ScalarField>::evaluate( CRH::<C::ScalarField>::evaluate(
poseidon_config, poseidon_config,
vec![ vec![
vec![i],
vec![pp_hash, i],
z_0, z_0,
z_i, z_i,
vec![self.u], vec![self.u],
@ -140,9 +140,13 @@ where
pub fn hash_cyclefold( pub fn hash_cyclefold(
&self, &self,
poseidon_config: &PoseidonConfig<C::BaseField>, poseidon_config: &PoseidonConfig<C::BaseField>,
pp_hash: C::BaseField, // public params hash
) -> Result<C::BaseField, Error> { ) -> Result<C::BaseField, Error> {
CRH::<C::BaseField>::evaluate(poseidon_config, self.to_field_elements().unwrap())
.map_err(|e| Error::Other(e.to_string()))
CRH::<C::BaseField>::evaluate(
poseidon_config,
[vec![pp_hash], self.to_field_elements().unwrap()].concat(),
)
.map_err(|e| Error::Other(e.to_string()))
} }
} }
@ -253,6 +257,25 @@ where
pub cf_cs_vp: CS2::VerifierParams, pub cf_cs_vp: CS2::VerifierParams,
} }
impl<C1, C2, CS1, CS2> VerifierParams<C1, C2, CS1, CS2>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
/// returns the hash of the public parameters of Nova
pub fn pp_hash(&self) -> Result<C1::ScalarField, Error> {
pp_hash::<C1, C2, CS1, CS2>(
&self.r1cs,
&self.cf_r1cs,
&self.cs_vp,
&self.cf_cs_vp,
&self.poseidon_config,
)
}
}
/// Implements Nova+CycleFold's IVC, described in [Nova](https://eprint.iacr.org/2021/370.pdf) and /// Implements Nova+CycleFold's IVC, described in [Nova](https://eprint.iacr.org/2021/370.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait /// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
@ -280,6 +303,8 @@ where
pub cf_cs_pp: CS2::ProverParams, pub cf_cs_pp: CS2::ProverParams,
/// F circuit, the circuit that is being folded /// F circuit, the circuit that is being folded
pub F: FC, pub F: FC,
/// public params hash
pub pp_hash: C1::ScalarField,
pub i: C1::ScalarField, pub i: C1::ScalarField,
/// initial state /// initial state
pub z_0: Vec<C1::ScalarField>, pub z_0: Vec<C1::ScalarField>,
@ -343,8 +368,8 @@ where
cf_cs_pp = prep_param.clone().cf_cs_pp.unwrap(); cf_cs_pp = prep_param.clone().cf_cs_pp.unwrap();
cf_cs_vp = prep_param.clone().cf_cs_vp.unwrap(); cf_cs_vp = prep_param.clone().cf_cs_vp.unwrap();
} else { } else {
(cs_pp, cs_vp) = CS1::setup(&mut rng, r1cs.A.n_rows).unwrap();
(cf_cs_pp, cf_cs_vp) = CS2::setup(&mut rng, cf_r1cs.A.n_rows).unwrap();
(cs_pp, cs_vp) = CS1::setup(&mut rng, r1cs.A.n_rows)?;
(cf_cs_pp, cf_cs_vp) = CS2::setup(&mut rng, cf_r1cs.A.n_rows)?;
} }
let prover_params = ProverParams::<C1, C2, CS1, CS2> { let prover_params = ProverParams::<C1, C2, CS1, CS2> {
@ -356,14 +381,21 @@ where
poseidon_config: prep_param.poseidon_config.clone(), poseidon_config: prep_param.poseidon_config.clone(),
r1cs, r1cs,
cf_r1cs, cf_r1cs,
cs_vp: cs_vp.clone(),
cf_cs_vp: cf_cs_vp.clone(),
cs_vp,
cf_cs_vp,
}; };
Ok((prover_params.clone(), verifier_params))
Ok((prover_params, verifier_params))
} }
/// Initializes the Nova+CycleFold's IVC for the given parameters and initial state `z_0`. /// Initializes the Nova+CycleFold's IVC for the given parameters and initial state `z_0`.
fn init(pp: &Self::ProverParam, F: FC, z_0: Vec<C1::ScalarField>) -> Result<Self, Error> {
fn init(
params: (Self::ProverParam, Self::VerifierParam),
F: FC,
z_0: Vec<C1::ScalarField>,
) -> Result<Self, Error> {
let (pp, vp) = params;
// prepare the circuit to obtain its R1CS // prepare the circuit to obtain its R1CS
let cs = ConstraintSystem::<C1::ScalarField>::new_ref(); let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref(); let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
@ -382,6 +414,9 @@ where
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?; let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2); let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
// compute the public params hash
let pp_hash = vp.pp_hash()?;
// setup the dummy instances // setup the dummy instances
let (w_dummy, u_dummy) = r1cs.dummy_instance(); let (w_dummy, u_dummy) = r1cs.dummy_instance();
let (cf_w_dummy, cf_u_dummy) = cf_r1cs.dummy_instance(); let (cf_w_dummy, cf_u_dummy) = cf_r1cs.dummy_instance();
@ -398,6 +433,7 @@ where
cs_pp: pp.cs_pp.clone(), cs_pp: pp.cs_pp.clone(),
cf_cs_pp: pp.cf_cs_pp.clone(), cf_cs_pp: pp.cf_cs_pp.clone(),
F, F,
pp_hash,
i: C1::ScalarField::zero(), i: C1::ScalarField::zero(),
z_0: z_0.clone(), z_0: z_0.clone(),
z_i: z_0, z_i: z_0,
@ -453,6 +489,7 @@ where
// r_bits is the r used to the RLC of the F' instances // r_bits is the r used to the RLC of the F' instances
let r_bits = ChallengeGadget::<C1>::get_challenge_native( let r_bits = ChallengeGadget::<C1>::get_challenge_native(
&self.poseidon_config, &self.poseidon_config,
self.pp_hash,
self.U_i.clone(), self.U_i.clone(),
self.u_i.clone(), self.u_i.clone(),
cmT, cmT,
@ -471,6 +508,7 @@ where
// u_{i+1}.x[0] = H(i+1, z_0, z_{i+1}, U_{i+1}) // u_{i+1}.x[0] = H(i+1, z_0, z_{i+1}, U_{i+1})
let u_i1_x = U_i1.hash( let u_i1_x = U_i1.hash(
&self.poseidon_config, &self.poseidon_config,
self.pp_hash,
self.i + C1::ScalarField::one(), self.i + C1::ScalarField::one(),
self.z_0.clone(), self.z_0.clone(),
z_i1.clone(), z_i1.clone(),
@ -479,11 +517,14 @@ where
let cf_u_i1_x: C1::ScalarField; let cf_u_i1_x: C1::ScalarField;
if self.i == C1::ScalarField::zero() { if self.i == C1::ScalarField::zero() {
cf_u_i1_x = self.cf_U_i.hash_cyclefold(&self.poseidon_config)?;
cf_u_i1_x = self
.cf_U_i
.hash_cyclefold(&self.poseidon_config, self.pp_hash)?;
// base case // base case
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> { augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
pp_hash: Some(self.pp_hash),
i: Some(C1::ScalarField::zero()), // = i=0 i: Some(C1::ScalarField::zero()), // = i=0
i_usize: Some(0), i_usize: Some(0),
z_0: Some(self.z_0.clone()), // = z_i z_0: Some(self.z_0.clone()), // = z_i
@ -552,11 +593,12 @@ where
let (_cfE_w_i, cfE_u_i, cf_W_i1, cf_U_i1, cf_cmT, _) = let (_cfE_w_i, cfE_u_i, cf_W_i1, cf_U_i1, cf_cmT, _) =
self.fold_cyclefold_circuit(cfW_W_i1, cfW_U_i1.clone(), cfE_u_i_x, cfE_circuit)?; self.fold_cyclefold_circuit(cfW_W_i1, cfW_U_i1.clone(), cfE_u_i_x, cfE_circuit)?;
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config)?;
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config, self.pp_hash)?;
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> { augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
pp_hash: Some(self.pp_hash),
i: Some(self.i), i: Some(self.i),
i_usize: Some(i_usize), i_usize: Some(i_usize),
z_0: Some(self.z_0.clone()), z_0: Some(self.z_0.clone()),
@ -670,14 +712,16 @@ where
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
let pp_hash = vp.pp_hash()?;
// check that u_i's output points to the running instance // check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i) // u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&vp.poseidon_config, num_steps, z_0, z_i.clone())?;
let expected_u_i_x = U_i.hash(&vp.poseidon_config, pp_hash, num_steps, z_0, z_i.clone())?;
if expected_u_i_x != u_i.x[0] { if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
// u_i.X[1] == H(cf_U_i) // u_i.X[1] == H(cf_U_i)
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config)?;
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config, pp_hash)?;
if expected_cf_u_i_x != u_i.x[1] { if expected_cf_u_i_x != u_i.x[1] {
return Err(Error::IVCVerificationFail); return Err(Error::IVCVerificationFail);
} }
@ -767,6 +811,7 @@ where
&self.poseidon_config, &self.poseidon_config,
self.cf_r1cs.clone(), self.cf_r1cs.clone(),
self.cf_cs_pp.clone(), self.cf_cs_pp.clone(),
self.pp_hash,
cf_W_i, cf_W_i,
cf_U_i, cf_U_i,
cf_u_i_x, cf_u_i_x,
@ -884,10 +929,10 @@ pub mod tests {
cf_cs_pp: None, cf_cs_pp: None,
cf_cs_vp: None, cf_cs_vp: None,
}; };
let (prover_params, verifier_params) = N::preprocess(&mut rng, &prep_param).unwrap();
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
let mut nova = N::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let mut nova = N::init(nova_params.clone(), F_circuit, z_0.clone()).unwrap();
let num_steps: usize = 3; let num_steps: usize = 3;
for _ in 0..num_steps { for _ in 0..num_steps {
@ -897,7 +942,7 @@ pub mod tests {
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances(); let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
N::<CS1, CS2>::verify( N::<CS1, CS2>::verify(
verifier_params,
nova_params.1, // Nova's verifier params
z_0, z_0,
nova.z_i, nova.z_i,
nova.i, nova.i,

+ 4
- 2
folding-schemes/src/folding/nova/nifs.rs

@ -4,7 +4,7 @@ use ark_std::Zero;
use std::marker::PhantomData; use std::marker::PhantomData;
use super::{CommittedInstance, Witness}; use super::{CommittedInstance, Witness};
use crate::ccs::r1cs::R1CS;
use crate::arith::r1cs::R1CS;
use crate::commitment::CommitmentScheme; use crate::commitment::CommitmentScheme;
use crate::transcript::Transcript; use crate::transcript::Transcript;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, vec_sub}; use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, vec_sub};
@ -205,7 +205,7 @@ pub mod tests {
use ark_pallas::{Fr, Projective}; use ark_pallas::{Fr, Projective};
use ark_std::{ops::Mul, UniformRand}; use ark_std::{ops::Mul, UniformRand};
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::commitment::pedersen::{Params as PedersenParams, Pedersen}; use crate::commitment::pedersen::{Params as PedersenParams, Pedersen};
use crate::folding::nova::circuits::ChallengeGadget; use crate::folding::nova::circuits::ChallengeGadget;
use crate::folding::nova::traits::NovaR1CS; use crate::folding::nova::traits::NovaR1CS;
@ -259,8 +259,10 @@ pub mod tests {
let poseidon_config = poseidon_canonical_config::<C::ScalarField>(); let poseidon_config = poseidon_canonical_config::<C::ScalarField>();
let pp_hash = C::ScalarField::from(42u32); // only for test
let r_bits = ChallengeGadget::<C>::get_challenge_native( let r_bits = ChallengeGadget::<C>::get_challenge_native(
&poseidon_config, &poseidon_config,
pp_hash,
ci1.clone(), ci1.clone(),
ci2.clone(), ci2.clone(),
cmT, cmT,

+ 16
- 30
folding-schemes/src/folding/nova/serialize.rs

@ -14,7 +14,7 @@ use super::{circuits::AugmentedFCircuit, Nova, ProverParams};
use super::{CommittedInstance, Witness}; use super::{CommittedInstance, Witness};
use crate::folding::circuits::{cyclefold::CycleFoldCircuit, CF2}; use crate::folding::circuits::{cyclefold::CycleFoldCircuit, CF2};
use crate::{ use crate::{
ccs::r1cs::extract_r1cs, commitment::CommitmentScheme, folding::circuits::CF1,
arith::r1cs::extract_r1cs, commitment::CommitmentScheme, folding::circuits::CF1,
frontend::FCircuit, frontend::FCircuit,
}; };
@ -41,6 +41,7 @@ where
mut writer: W, mut writer: W,
compress: ark_serialize::Compress, compress: ark_serialize::Compress,
) -> Result<(), ark_serialize::SerializationError> { ) -> Result<(), ark_serialize::SerializationError> {
self.pp_hash.serialize_with_mode(&mut writer, compress)?;
self.i.serialize_with_mode(&mut writer, compress)?; self.i.serialize_with_mode(&mut writer, compress)?;
self.z_0.serialize_with_mode(&mut writer, compress)?; self.z_0.serialize_with_mode(&mut writer, compress)?;
self.z_i.serialize_with_mode(&mut writer, compress)?; self.z_i.serialize_with_mode(&mut writer, compress)?;
@ -53,7 +54,8 @@ where
} }
fn serialized_size(&self, compress: ark_serialize::Compress) -> usize { fn serialized_size(&self, compress: ark_serialize::Compress) -> usize {
self.i.serialized_size(compress)
self.pp_hash.serialized_size(compress)
+ self.i.serialized_size(compress)
+ self.z_0.serialized_size(compress) + self.z_0.serialized_size(compress)
+ self.z_i.serialized_size(compress) + self.z_i.serialized_size(compress)
+ self.w_i.serialized_size(compress) + self.w_i.serialized_size(compress)
@ -115,6 +117,7 @@ where
prover_params: ProverParams<C1, C2, CS1, CS2>, prover_params: ProverParams<C1, C2, CS1, CS2>,
poseidon_config: PoseidonConfig<C1::ScalarField>, poseidon_config: PoseidonConfig<C1::ScalarField>,
) -> Result<Self, ark_serialize::SerializationError> { ) -> Result<Self, ark_serialize::SerializationError> {
let pp_hash = C1::ScalarField::deserialize_with_mode(&mut reader, compress, validate)?;
let i = C1::ScalarField::deserialize_with_mode(&mut reader, compress, validate)?; let i = C1::ScalarField::deserialize_with_mode(&mut reader, compress, validate)?;
let z_0 = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?; let z_0 = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?;
let z_i = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?; let z_i = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?;
@ -151,8 +154,13 @@ where
_gc1: PhantomData, _gc1: PhantomData,
_c2: PhantomData, _c2: PhantomData,
_gc2: PhantomData, _gc2: PhantomData,
r1cs,
cf_r1cs,
poseidon_config,
cs_pp: prover_params.cs_pp, cs_pp: prover_params.cs_pp,
cf_cs_pp: prover_params.cf_cs_pp, cf_cs_pp: prover_params.cf_cs_pp,
F: f_circuit,
pp_hash,
i, i,
z_0, z_0,
z_i, z_i,
@ -162,10 +170,6 @@ where
U_i, U_i,
cf_W_i, cf_W_i,
cf_U_i, cf_U_i,
r1cs,
cf_r1cs,
poseidon_config,
F: f_circuit,
}) })
} }
} }
@ -174,17 +178,12 @@ where
pub mod tests { pub mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective}; use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2}; use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use ark_serialize::{CanonicalSerialize, Compress, Validate}; use ark_serialize::{CanonicalSerialize, Compress, Validate};
use std::{fs, io::Write}; use std::{fs, io::Write};
use crate::{ use crate::{
commitment::{
kzg::{ProverKey as KZGProverKey, KZG},
pedersen::Pedersen,
CommitmentScheme,
},
folding::nova::{get_cs_params_len, Nova, ProverParams},
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{Nova, PreprocessorParam},
frontend::{tests::CubicFCircuit, FCircuit}, frontend::{tests::CubicFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config, transcript::poseidon::poseidon_canonical_config,
FoldingScheme, FoldingScheme,
@ -195,15 +194,6 @@ pub mod tests {
let mut rng = ark_std::test_rng(); let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>(); let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap(); let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let (cs_len, cf_cs_len) =
get_cs_params_len::<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>>(
&poseidon_config,
F_circuit,
)
.unwrap();
let (kzg_pk, _): (KZGProverKey<Projective>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<Projective2>::setup(&mut rng, cf_cs_len).unwrap();
// Initialize nova and make multiple `prove_step()` // Initialize nova and make multiple `prove_step()`
type N = Nova< type N = Nova<
@ -215,15 +205,11 @@ pub mod tests {
KZG<'static, Bn254>, KZG<'static, Bn254>,
Pedersen<Projective2>, Pedersen<Projective2>,
>; >;
let prover_params =
ProverParams::<Projective, Projective2, KZG<Bn254>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cs_pp: kzg_pk.clone(),
cf_cs_pp: cf_pedersen_params.clone(),
};
let prep_param = PreprocessorParam::new(poseidon_config.clone(), F_circuit);
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
let mut nova = N::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let mut nova = N::init(nova_params.clone(), F_circuit, z_0.clone()).unwrap();
let num_steps: usize = 3; let num_steps: usize = 3;
for _ in 0..num_steps { for _ in 0..num_steps {
@ -257,7 +243,7 @@ pub mod tests {
bytes.as_slice(), bytes.as_slice(),
Compress::No, Compress::No,
Validate::No, Validate::No,
prover_params,
nova_params.0, // Nova's prover params
poseidon_config, poseidon_config,
) )
.unwrap(); .unwrap();

+ 1
- 1
folding-schemes/src/folding/nova/traits.rs

@ -3,7 +3,7 @@ use ark_ec::{CurveGroup, Group};
use ark_std::{One, Zero}; use ark_std::{One, Zero};
use super::{CommittedInstance, Witness}; use super::{CommittedInstance, Witness};
use crate::ccs::r1cs::R1CS;
use crate::arith::{r1cs::R1CS, Arith};
use crate::Error; use crate::Error;
/// NovaR1CS extends R1CS methods with Nova specific methods /// NovaR1CS extends R1CS methods with Nova specific methods

+ 2
- 2
folding-schemes/src/folding/protogalaxy/folding.rs

@ -16,7 +16,7 @@ use super::utils::{all_powers, betas_star, exponential_powers};
use super::ProtoGalaxyError; use super::ProtoGalaxyError;
use super::{CommittedInstance, Witness}; use super::{CommittedInstance, Witness};
use crate::ccs::r1cs::R1CS;
use crate::arith::r1cs::R1CS;
use crate::transcript::Transcript; use crate::transcript::Transcript;
use crate::utils::vec::*; use crate::utils::vec::*;
use crate::utils::virtual_polynomial::bit_decompose; use crate::utils::virtual_polynomial::bit_decompose;
@ -383,7 +383,7 @@ mod tests {
use ark_pallas::{Fr, Projective}; use ark_pallas::{Fr, Projective};
use ark_std::UniformRand; use ark_std::UniformRand;
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z};
use crate::commitment::{pedersen::Pedersen, CommitmentScheme}; use crate::commitment::{pedersen::Pedersen, CommitmentScheme};
use crate::transcript::poseidon::{poseidon_canonical_config, PoseidonTranscript}; use crate::transcript::poseidon::{poseidon_canonical_config, PoseidonTranscript};

+ 2
- 2
folding-schemes/src/lib.rs

@ -10,7 +10,7 @@ use thiserror::Error;
use crate::frontend::FCircuit; use crate::frontend::FCircuit;
pub mod ccs;
pub mod arith;
pub mod commitment; pub mod commitment;
pub mod constants; pub mod constants;
pub mod folding; pub mod folding;
@ -122,7 +122,7 @@ where
) -> Result<(Self::ProverParam, Self::VerifierParam), Error>; ) -> Result<(Self::ProverParam, Self::VerifierParam), Error>;
fn init( fn init(
pp: &Self::ProverParam,
params: (Self::ProverParam, Self::VerifierParam),
step_circuit: FC, step_circuit: FC,
z_0: Vec<C1::ScalarField>, // initial state z_0: Vec<C1::ScalarField>, // initial state
) -> Result<Self, Error>; ) -> Result<Self, Error>;

+ 1
- 1
folding-schemes/src/utils/mle.rs

@ -104,7 +104,7 @@ pub fn dense_vec_to_mle(n_vars: usize, v: &[F]) -> SparseMultilin
mod tests { mod tests {
use super::*; use super::*;
use crate::{ use crate::{
ccs::tests::get_test_z,
arith::ccs::tests::get_test_z,
utils::multilinear_polynomial::fix_variables, utils::multilinear_polynomial::fix_variables,
utils::multilinear_polynomial::tests::fix_last_variables, utils::multilinear_polynomial::tests::fix_last_variables,
utils::{hypercube::BooleanHypercube, vec::tests::to_F_matrix}, utils::{hypercube::BooleanHypercube, vec::tests::to_F_matrix},

+ 68
- 0
folding-schemes/src/utils/mod.rs

@ -1,6 +1,13 @@
use ark_crypto_primitives::sponge::poseidon::PoseidonConfig;
use ark_ec::{AffineRepr, CurveGroup}; use ark_ec::{AffineRepr, CurveGroup};
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_serialize::CanonicalSerialize;
use ark_std::Zero; use ark_std::Zero;
use sha3::{Digest, Sha3_256};
use crate::arith::Arith;
use crate::commitment::CommitmentScheme;
use crate::Error;
pub mod gadgets; pub mod gadgets;
pub mod hypercube; pub mod hypercube;
@ -32,3 +39,64 @@ pub fn get_cm_coordinates(cm: &C) -> Vec {
let (cm_x, cm_y) = cm.xy().unwrap_or(zero); let (cm_x, cm_y) = cm.xy().unwrap_or(zero);
vec![*cm_x, *cm_y] vec![*cm_x, *cm_y]
} }
/// returns the hash of the given public parameters of the Folding Scheme
pub fn pp_hash<C1, C2, CS1, CS2>(
arith: &impl Arith<C1::ScalarField>,
cf_arith: &impl Arith<C2::ScalarField>,
cs_vp: &CS1::VerifierParams,
cf_cs_vp: &CS2::VerifierParams,
poseidon_config: &PoseidonConfig<C1::ScalarField>,
) -> Result<C1::ScalarField, Error>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
let mut hasher = Sha3_256::new();
// Fr & Fq modulus bit size
hasher.update(C1::ScalarField::MODULUS_BIT_SIZE.to_le_bytes());
hasher.update(C2::ScalarField::MODULUS_BIT_SIZE.to_le_bytes());
// AugmentedFCircuit Arith params
hasher.update(arith.params_to_bytes());
// CycleFold Circuit Arith params
hasher.update(cf_arith.params_to_bytes());
// cs_vp & cf_cs_vp (commitments setup)
let mut cs_vp_bytes = Vec::new();
cs_vp.serialize_uncompressed(&mut cs_vp_bytes)?;
hasher.update(cs_vp_bytes);
let mut cf_cs_vp_bytes = Vec::new();
cf_cs_vp.serialize_uncompressed(&mut cf_cs_vp_bytes)?;
hasher.update(cf_cs_vp_bytes);
// poseidon params
let mut poseidon_config_bytes = Vec::new();
poseidon_config
.full_rounds
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.partial_rounds
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.alpha
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.ark
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.mds
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.rate
.serialize_uncompressed(&mut poseidon_config_bytes)?;
poseidon_config
.capacity
.serialize_uncompressed(&mut poseidon_config_bytes)?;
hasher.update(poseidon_config_bytes);
let public_params_hash = hasher.finalize();
Ok(C1::ScalarField::from_le_bytes_mod_order(
&public_params_hash,
))
}

+ 6
- 6
solidity-verifiers/src/verifiers/g16.rs

@ -3,7 +3,7 @@ use crate::utils::encoding::{G1Repr, G2Repr};
use crate::utils::HeaderInclusion; use crate::utils::HeaderInclusion;
use crate::{ProtocolVerifierKey, GPL3_SDPX_IDENTIFIER}; use crate::{ProtocolVerifierKey, GPL3_SDPX_IDENTIFIER};
use ark_bn254::Bn254; use ark_bn254::Bn254;
use ark_groth16::VerifyingKey;
use ark_groth16::VerifyingKey as ArkVerifyingKey;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize}; use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use askama::Template; use askama::Template;
@ -48,10 +48,10 @@ impl From for Groth16Verifier {
// Ideally this would be linked to the `Decider` trait in FoldingSchemes. // Ideally this would be linked to the `Decider` trait in FoldingSchemes.
// For now, this is the easiest as NovaCycleFold isn't clear target from where we can get all it's needed arguments. // For now, this is the easiest as NovaCycleFold isn't clear target from where we can get all it's needed arguments.
#[derive(CanonicalDeserialize, CanonicalSerialize, Clone, PartialEq, Debug)] #[derive(CanonicalDeserialize, CanonicalSerialize, Clone, PartialEq, Debug)]
pub struct Groth16VerifierKey(pub(crate) VerifyingKey<Bn254>);
pub struct Groth16VerifierKey(pub(crate) ArkVerifyingKey<Bn254>);
impl From<VerifyingKey<Bn254>> for Groth16VerifierKey {
fn from(value: VerifyingKey<Bn254>) -> Self {
impl From<ArkVerifyingKey<Bn254>> for Groth16VerifierKey {
fn from(value: ArkVerifyingKey<Bn254>) -> Self {
Self(value) Self(value)
} }
} }
@ -95,7 +95,7 @@ mod tests {
#[test] #[test]
fn groth16_vk_serde_roundtrip() { fn groth16_vk_serde_roundtrip() {
let (_, _, _, vk, _) = setup(DEFAULT_SETUP_LEN);
let (_, _, _, _, vk, _) = setup(DEFAULT_SETUP_LEN);
let g16_vk = Groth16VerifierKey::from(vk); let g16_vk = Groth16VerifierKey::from(vk);
let mut bytes = vec![]; let mut bytes = vec![];
@ -109,7 +109,7 @@ mod tests {
#[test] #[test]
fn test_groth16_verifier_accepts_and_rejects_proofs() { fn test_groth16_verifier_accepts_and_rejects_proofs() {
let mut rng = ark_std::rand::rngs::StdRng::seed_from_u64(test_rng().next_u64()); let mut rng = ark_std::rand::rngs::StdRng::seed_from_u64(test_rng().next_u64());
let (_, _, g16_pk, g16_vk, circuit) = setup(DEFAULT_SETUP_LEN);
let (_, _, _, g16_pk, g16_vk, circuit) = setup(DEFAULT_SETUP_LEN);
let g16_vk = Groth16VerifierKey::from(g16_vk); let g16_vk = Groth16VerifierKey::from(g16_vk);
let proof = Groth16::<Bn254>::prove(&g16_pk, circuit, &mut rng).unwrap(); let proof = Groth16::<Bn254>::prove(&g16_pk, circuit, &mut rng).unwrap();

+ 3
- 3
solidity-verifiers/src/verifiers/kzg.rs

@ -102,7 +102,7 @@ mod tests {
#[test] #[test]
fn kzg_vk_serde_roundtrip() { fn kzg_vk_serde_roundtrip() {
let (pk, vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let (_, pk, vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let kzg_vk = KZG10VerifierKey::from((vk, pk.powers_of_g[0..3].to_vec())); let kzg_vk = KZG10VerifierKey::from((vk, pk.powers_of_g[0..3].to_vec()));
let mut bytes = vec![]; let mut bytes = vec![];
@ -115,7 +115,7 @@ mod tests {
#[test] #[test]
fn kzg_verifier_compiles() { fn kzg_verifier_compiles() {
let (kzg_pk, kzg_vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let (_, kzg_pk, kzg_vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let kzg_vk = KZG10VerifierKey::from((kzg_vk.clone(), kzg_pk.powers_of_g[0..3].to_vec())); let kzg_vk = KZG10VerifierKey::from((kzg_vk.clone(), kzg_pk.powers_of_g[0..3].to_vec()));
let res = HeaderInclusion::<KZG10Verifier>::builder() let res = HeaderInclusion::<KZG10Verifier>::builder()
@ -136,7 +136,7 @@ mod tests {
let transcript_p = &mut PoseidonTranscript::<G1>::new(&poseidon_config); let transcript_p = &mut PoseidonTranscript::<G1>::new(&poseidon_config);
let transcript_v = &mut PoseidonTranscript::<G1>::new(&poseidon_config); let transcript_v = &mut PoseidonTranscript::<G1>::new(&poseidon_config);
let (kzg_pk, kzg_vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let (_, kzg_pk, kzg_vk, _, _, _) = setup(DEFAULT_SETUP_LEN);
let kzg_vk = KZG10VerifierKey::from((kzg_vk.clone(), kzg_pk.powers_of_g[0..3].to_vec())); let kzg_vk = KZG10VerifierKey::from((kzg_vk.clone(), kzg_pk.powers_of_g[0..3].to_vec()));
let v: Vec<Fr> = std::iter::repeat_with(|| Fr::rand(&mut rng)) let v: Vec<Fr> = std::iter::repeat_with(|| Fr::rand(&mut rng))

+ 3
- 1
solidity-verifiers/src/verifiers/mod.rs

@ -97,6 +97,7 @@ pub mod tests {
pub fn setup<'a>( pub fn setup<'a>(
n: usize, n: usize,
) -> ( ) -> (
Fr, // public params hash
KZGProverKey<'a, G1>, KZGProverKey<'a, G1>,
KZGVerifierKey<Bn254>, KZGVerifierKey<Bn254>,
ark_groth16::ProvingKey<Bn254>, ark_groth16::ProvingKey<Bn254>,
@ -115,6 +116,7 @@ pub mod tests {
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) = let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, n).unwrap(); KZG::<Bn254>::setup(&mut rng, n).unwrap();
(kzg_pk, kzg_vk, g16_pk, g16_vk, circuit)
let pp_hash = Fr::from(42u32); // only for test
(pp_hash, kzg_pk, kzg_vk, g16_pk, g16_vk, circuit)
} }
} }

+ 103
- 114
solidity-verifiers/src/verifiers/nova_cyclefold.rs

@ -1,9 +1,10 @@
#![allow(non_snake_case)] #![allow(non_snake_case)]
#![allow(non_camel_case_types)] #![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_bn254::{Bn254, Fq, G1Affine};
use ark_groth16::VerifyingKey;
use ark_poly_commit::kzg10::VerifierKey;
use ark_bn254::{Bn254, Fq, Fr, G1Affine};
use ark_groth16::VerifyingKey as ArkG16VerifierKey;
use ark_poly_commit::kzg10::VerifierKey as ArkKZG10VerifierKey;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize}; use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use askama::Template; use askama::Template;
@ -27,6 +28,7 @@ pub fn get_decider_template_for_cyclefold_decider(
#[derive(Template, Default)] #[derive(Template, Default)]
#[template(path = "nova_cyclefold_decider.askama.sol", ext = "sol")] #[template(path = "nova_cyclefold_decider.askama.sol", ext = "sol")]
pub struct NovaCycleFoldDecider { pub struct NovaCycleFoldDecider {
pp_hash: Fr, // public params hash
groth16_verifier: Groth16Verifier, groth16_verifier: Groth16Verifier,
kzg10_verifier: KZG10Verifier, kzg10_verifier: KZG10Verifier,
// z_len denotes the FCircuit state (z_i) length // z_len denotes the FCircuit state (z_i) length
@ -42,6 +44,7 @@ impl From for NovaCycleFoldDecider {
let public_inputs_len = groth16_verifier.gamma_abc_len; let public_inputs_len = groth16_verifier.gamma_abc_len;
let bits_per_limb = NonNativeUintVar::<Fq>::bits_per_limb(); let bits_per_limb = NonNativeUintVar::<Fq>::bits_per_limb();
Self { Self {
pp_hash: value.pp_hash,
groth16_verifier, groth16_verifier,
kzg10_verifier: KZG10Verifier::from(value.kzg_vk), kzg10_verifier: KZG10Verifier::from(value.kzg_vk),
z_len: value.z_len, z_len: value.z_len,
@ -54,6 +57,7 @@ impl From for NovaCycleFoldDecider {
#[derive(CanonicalDeserialize, CanonicalSerialize, PartialEq, Debug, Clone)] #[derive(CanonicalDeserialize, CanonicalSerialize, PartialEq, Debug, Clone)]
pub struct NovaCycleFoldVerifierKey { pub struct NovaCycleFoldVerifierKey {
pp_hash: Fr,
g16_vk: Groth16VerifierKey, g16_vk: Groth16VerifierKey,
kzg_vk: KZG10VerifierKey, kzg_vk: KZG10VerifierKey,
z_len: usize, z_len: usize,
@ -73,25 +77,37 @@ impl ProtocolVerifierKey for NovaCycleFoldVerifierKey {
} }
} }
impl From<(Groth16VerifierKey, KZG10VerifierKey, usize)> for NovaCycleFoldVerifierKey {
fn from(value: (Groth16VerifierKey, KZG10VerifierKey, usize)) -> Self {
impl From<(Fr, Groth16VerifierKey, KZG10VerifierKey, usize)> for NovaCycleFoldVerifierKey {
fn from(value: (Fr, Groth16VerifierKey, KZG10VerifierKey, usize)) -> Self {
Self { Self {
g16_vk: value.0,
kzg_vk: value.1,
z_len: value.2,
pp_hash: value.0,
g16_vk: value.1,
kzg_vk: value.2,
z_len: value.3,
} }
} }
} }
// implements From assuming that the 'batchCheck' method from the KZG10 template will not be used // implements From assuming that the 'batchCheck' method from the KZG10 template will not be used
// in the NovaCycleFoldDecider verifier contract // in the NovaCycleFoldDecider verifier contract
impl From<((VerifyingKey<Bn254>, VerifierKey<Bn254>), usize)> for NovaCycleFoldVerifierKey {
fn from(value: ((VerifyingKey<Bn254>, VerifierKey<Bn254>), usize)) -> Self {
impl
From<(
(Fr, ArkG16VerifierKey<Bn254>, ArkKZG10VerifierKey<Bn254>),
usize,
)> for NovaCycleFoldVerifierKey
{
fn from(
value: (
(Fr, ArkG16VerifierKey<Bn254>, ArkKZG10VerifierKey<Bn254>),
usize,
),
) -> Self {
let decider_vp = value.0; let decider_vp = value.0;
let g16_vk = Groth16VerifierKey::from(decider_vp.0);
let g16_vk = Groth16VerifierKey::from(decider_vp.1);
// pass `Vec::new()` since batchCheck will not be used // pass `Vec::new()` since batchCheck will not be used
let kzg_vk = KZG10VerifierKey::from((decider_vp.1, Vec::new()));
let kzg_vk = KZG10VerifierKey::from((decider_vp.2, Vec::new()));
Self { Self {
pp_hash: decider_vp.0,
g16_vk, g16_vk,
kzg_vk, kzg_vk,
z_len: value.1, z_len: value.1,
@ -101,12 +117,14 @@ impl From<((VerifyingKey, VerifierKey), usize)> for NovaCycleFoldV
impl NovaCycleFoldVerifierKey { impl NovaCycleFoldVerifierKey {
pub fn new( pub fn new(
vkey_g16: VerifyingKey<Bn254>,
vkey_kzg: VerifierKey<Bn254>,
pp_hash: Fr,
vkey_g16: ArkG16VerifierKey<Bn254>,
vkey_kzg: ArkKZG10VerifierKey<Bn254>,
crs_points: Vec<G1Affine>, crs_points: Vec<G1Affine>,
z_len: usize, z_len: usize,
) -> Self { ) -> Self {
Self { Self {
pp_hash,
g16_vk: Groth16VerifierKey::from(vkey_g16), g16_vk: Groth16VerifierKey::from(vkey_g16),
kzg_vk: KZG10VerifierKey::from((vkey_kzg, crs_points)), kzg_vk: KZG10VerifierKey::from((vkey_kzg, crs_points)),
z_len, z_len,
@ -117,12 +135,9 @@ impl NovaCycleFoldVerifierKey {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1}; use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_crypto_primitives::snark::SNARK;
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_groth16::VerifyingKey as G16VerifierKey;
use ark_groth16::{Groth16, ProvingKey};
use ark_groth16::Groth16;
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2}; use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use ark_r1cs_std::alloc::AllocVar; use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar; use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError}; use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
@ -132,15 +147,10 @@ mod tests {
use std::time::Instant; use std::time::Instant;
use folding_schemes::{ use folding_schemes::{
commitment::{
kzg::{ProverKey as KZGProverKey, KZG},
pedersen::Pedersen,
CommitmentScheme,
},
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{ folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth}, decider_eth::{prepare_calldata, Decider as DeciderEth},
decider_eth_circuit::DeciderEthCircuit,
get_cs_params_len, Nova, ProverParams,
Nova, PreprocessorParam,
}, },
frontend::FCircuit, frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config, transcript::poseidon::poseidon_canonical_config,
@ -156,6 +166,24 @@ mod tests {
NovaCycleFoldVerifierKey, ProtocolVerifierKey, NovaCycleFoldVerifierKey, ProtocolVerifierKey,
}; };
type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
type DECIDER<FC> = DeciderEth<
G1,
GVar,
G2,
GVar2,
FC,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA<FC>,
>;
type FS_PP<FC> = <NOVA<FC> as FoldingScheme<G1, G2, FC>>::ProverParam;
type FS_VP<FC> = <NOVA<FC> as FoldingScheme<G1, G2, FC>>::VerifierParam;
type DECIDER_PP<FC> = <DECIDER<FC> as Decider<G1, G2, FC, NOVA<FC>>>::ProverParam;
type DECIDER_VP<FC> = <DECIDER<FC> as Decider<G1, G2, FC, NOVA<FC>>>::VerifierParam;
/// Test circuit to be folded /// Test circuit to be folded
#[derive(Clone, Copy, Debug)] #[derive(Clone, Copy, Debug)]
pub struct CubicFCircuit<F: PrimeField> { pub struct CubicFCircuit<F: PrimeField> {
@ -256,10 +284,10 @@ mod tests {
#[test] #[test]
fn nova_cyclefold_vk_serde_roundtrip() { fn nova_cyclefold_vk_serde_roundtrip() {
let (_, kzg_vk, _, g16_vk, _) = setup(DEFAULT_SETUP_LEN);
let (pp_hash, _, kzg_vk, _, g16_vk, _) = setup(DEFAULT_SETUP_LEN);
let mut bytes = vec![]; let mut bytes = vec![];
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from(((g16_vk, kzg_vk), 1));
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from(((pp_hash, g16_vk, kzg_vk), 1));
nova_cyclefold_vk nova_cyclefold_vk
.serialize_protocol_verifier_key(&mut bytes) .serialize_protocol_verifier_key(&mut bytes)
@ -272,8 +300,8 @@ mod tests {
#[test] #[test]
fn nova_cyclefold_decider_template_renders() { fn nova_cyclefold_decider_template_renders() {
let (_, kzg_vk, _, g16_vk, _) = setup(DEFAULT_SETUP_LEN);
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from(((g16_vk, kzg_vk), 1));
let (pp_hash, _, kzg_vk, _, g16_vk, _) = setup(DEFAULT_SETUP_LEN);
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from(((pp_hash, g16_vk, kzg_vk), 1));
let decider_solidity_code = HeaderInclusion::<NovaCycleFoldDecider>::builder() let decider_solidity_code = HeaderInclusion::<NovaCycleFoldDecider>::builder()
.template(nova_cyclefold_vk) .template(nova_cyclefold_vk)
@ -282,59 +310,29 @@ mod tests {
save_solidity("NovaDecider.sol", &decider_solidity_code.render().unwrap()); save_solidity("NovaDecider.sol", &decider_solidity_code.render().unwrap());
} }
#[allow(clippy::type_complexity)]
fn init_test_prover_params<FC: FCircuit<Fr, Params = ()>>() -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
let f_circuit = FC::new(()).unwrap();
let (cs_len, cf_cs_len) =
get_cs_params_len::<G1, GVar, G2, GVar2, FC>(&poseidon_config, f_circuit).unwrap();
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
poseidon_config: poseidon_config.clone(),
cs_pp: kzg_pk.clone(),
cf_cs_pp: cf_pedersen_params,
};
(fs_prover_params, kzg_vk)
}
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes. /// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
fn init_params<FC: FCircuit<Fr, Params = ()>>() -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
ProvingKey<Bn254>,
G16VerifierKey<Bn254>,
) {
fn init_params<FC: FCircuit<Fr, Params = ()>>(
) -> ((FS_PP<FC>, FS_VP<FC>), (DECIDER_PP<FC>, DECIDER_VP<FC>)) {
let mut rng = rand::rngs::OsRng; let mut rng = rand::rngs::OsRng;
let start = Instant::now();
let (fs_prover_params, kzg_vk) = init_test_prover_params::<FC>();
println!("generated Nova folding params: {:?}", start.elapsed());
let f_circuit = FC::new(()).unwrap();
pub type NOVA_FCircuit<FC> =
Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
let nova = NOVA_FCircuit::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
let poseidon_config = poseidon_canonical_config::<Fr>();
let decider_circuit =
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
nova.clone(),
)
.unwrap();
let start = Instant::now();
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
println!(
"generated G16 (Decider circuit) params: {:?}",
start.elapsed()
let f_circuit = FC::new(()).unwrap();
let prep_param = PreprocessorParam::<G1, G2, FC, KZG<'static, Bn254>, Pedersen<G2>>::new(
poseidon_config,
f_circuit.clone(),
); );
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
let nova_params = NOVA::preprocess(&mut rng, &prep_param).unwrap();
let nova = NOVA::init(
nova_params.clone(),
f_circuit.clone(),
vec![Fr::zero(); f_circuit.state_len()].clone(),
)
.unwrap();
let decider_params =
DECIDER::preprocess(&mut rng, &nova_params.clone(), nova.clone()).unwrap();
(nova_params, decider_params)
} }
/// This function allows to define which FCircuit to use for the test, and how many prove_step /// This function allows to define which FCircuit to use for the test, and how many prove_step
@ -346,52 +344,31 @@ mod tests {
/// - modifies the z_0 and checks that it does not pass the EVM check /// - modifies the z_0 and checks that it does not pass the EVM check
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
fn nova_cyclefold_solidity_verifier_opt<FC: FCircuit<Fr, Params = ()>>( fn nova_cyclefold_solidity_verifier_opt<FC: FCircuit<Fr, Params = ()>>(
params: (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
ProvingKey<Bn254>,
G16VerifierKey<Bn254>,
),
fs_params: (FS_PP<FC>, FS_VP<FC>),
decider_params: (DECIDER_PP<FC>, DECIDER_VP<FC>),
z_0: Vec<Fr>, z_0: Vec<Fr>,
n_steps: usize, n_steps: usize,
) { ) {
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) = params.clone();
pub type NOVA_FCircuit<FC> =
Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
pub type DECIDERETH_FCircuit<FC> = DeciderEth<
G1,
GVar,
G2,
GVar2,
FC,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA_FCircuit<FC>,
>;
let (decider_pp, decider_vp) = decider_params;
let f_circuit = FC::new(()).unwrap(); let f_circuit = FC::new(()).unwrap();
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((
(g16_vk.clone(), kzg_vk.clone()),
f_circuit.state_len(),
));
let nova_cyclefold_vk =
NovaCycleFoldVerifierKey::from((decider_vp.clone(), f_circuit.state_len()));
let mut rng = rand::rngs::OsRng; let mut rng = rand::rngs::OsRng;
let mut nova = NOVA_FCircuit::init(&fs_prover_params, f_circuit, z_0).unwrap();
let mut nova = NOVA::<FC>::init(fs_params, f_circuit, z_0).unwrap();
for _ in 0..n_steps { for _ in 0..n_steps {
nova.prove_step(&mut rng, vec![]).unwrap(); nova.prove_step(&mut rng, vec![]).unwrap();
} }
let start = Instant::now(); let start = Instant::now();
let proof =
DECIDERETH_FCircuit::prove(rng, (g16_pk, fs_prover_params.cs_pp.clone()), nova.clone())
.unwrap();
let proof = DECIDER::<FC>::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed()); println!("generated Decider proof: {:?}", start.elapsed());
let verified = DECIDERETH_FCircuit::<FC>::verify(
(g16_vk, kzg_vk),
let verified = DECIDER::<FC>::verify(
decider_vp,
nova.i, nova.i,
nova.z_0.clone(), nova.z_0.clone(),
nova.z_i.clone(), nova.z_i.clone(),
@ -448,12 +425,22 @@ mod tests {
#[test] #[test]
fn nova_cyclefold_solidity_verifier() { fn nova_cyclefold_solidity_verifier() {
let params = init_params::<CubicFCircuit<Fr>>();
let (nova_params, decider_params) = init_params::<CubicFCircuit<Fr>>();
let z_0 = vec![Fr::from(3_u32)]; let z_0 = vec![Fr::from(3_u32)];
nova_cyclefold_solidity_verifier_opt::<CubicFCircuit<Fr>>(params.clone(), z_0.clone(), 2);
nova_cyclefold_solidity_verifier_opt::<CubicFCircuit<Fr>>(params.clone(), z_0.clone(), 3);
nova_cyclefold_solidity_verifier_opt::<CubicFCircuit<Fr>>(
nova_params.clone(),
decider_params.clone(),
z_0.clone(),
2,
);
nova_cyclefold_solidity_verifier_opt::<CubicFCircuit<Fr>>(
nova_params,
decider_params,
z_0,
3,
);
let params = init_params::<MultiInputsFCircuit<Fr>>();
let (nova_params, decider_params) = init_params::<MultiInputsFCircuit<Fr>>();
let z_0 = vec![ let z_0 = vec![
Fr::from(1_u32), Fr::from(1_u32),
Fr::from(1_u32), Fr::from(1_u32),
@ -462,12 +449,14 @@ mod tests {
Fr::from(1_u32), Fr::from(1_u32),
]; ];
nova_cyclefold_solidity_verifier_opt::<MultiInputsFCircuit<Fr>>( nova_cyclefold_solidity_verifier_opt::<MultiInputsFCircuit<Fr>>(
params.clone(),
nova_params.clone(),
decider_params.clone(),
z_0.clone(), z_0.clone(),
2, 2,
); );
nova_cyclefold_solidity_verifier_opt::<MultiInputsFCircuit<Fr>>( nova_cyclefold_solidity_verifier_opt::<MultiInputsFCircuit<Fr>>(
params.clone(),
nova_params,
decider_params,
z_0.clone(), z_0.clone(),
3, 3,
); );

+ 16
- 15
solidity-verifiers/templates/nova_cyclefold_decider.askama.sol

@ -78,10 +78,11 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
// from gamma_abc_len, we subtract 1. // from gamma_abc_len, we subtract 1.
uint256[{{ public_inputs_len - 1 }}] memory public_inputs; uint256[{{ public_inputs_len - 1 }}] memory public_inputs;
public_inputs[0] = i_z0_zi[0];
public_inputs[0] = {{pp_hash}};
public_inputs[1] = i_z0_zi[0];
for (uint i = 0; i < {{ z_len * 2 }}; i++) { for (uint i = 0; i < {{ z_len * 2 }}; i++) {
public_inputs[1 + i] = i_z0_zi[1 + i];
public_inputs[2 + i] = i_z0_zi[1 + i];
} }
{ {
@ -91,9 +92,9 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
uint256 x0 = rlc(U_i_x_u_i_cmW[0], U_i_u_u_i_u_r[2], u_i_x_cmT[0]); uint256 x0 = rlc(U_i_x_u_i_cmW[0], U_i_u_u_i_u_r[2], u_i_x_cmT[0]);
uint256 x1 = rlc(U_i_x_u_i_cmW[1], U_i_u_u_i_u_r[2], u_i_x_cmT[1]); uint256 x1 = rlc(U_i_x_u_i_cmW[1], U_i_u_u_i_u_r[2], u_i_x_cmT[1]);
public_inputs[{{ z_len * 2 + 1 }}] = u;
public_inputs[{{ z_len * 2 + 2 }}] = x0;
public_inputs[{{ z_len * 2 + 3 }}] = x1;
public_inputs[{{ z_len * 2 + 2 }}] = u;
public_inputs[{{ z_len * 2 + 3 }}] = x0;
public_inputs[{{ z_len * 2 + 4 }}] = x1;
} }
{ {
@ -106,8 +107,8 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
uint256[{{num_limbs}}] memory cmE_y_limbs = LimbsDecomposition.decompose(cmE[1]); uint256[{{num_limbs}}] memory cmE_y_limbs = LimbsDecomposition.decompose(cmE[1]);
for (uint8 k = 0; k < {{num_limbs}}; k++) { for (uint8 k = 0; k < {{num_limbs}}; k++) {
public_inputs[{{ z_len * 2 + 4 }} + k] = cmE_x_limbs[k];
public_inputs[{{ z_len * 2 + 4 + num_limbs }} + k] = cmE_y_limbs[k];
public_inputs[{{ z_len * 2 + 5 }} + k] = cmE_x_limbs[k];
public_inputs[{{ z_len * 2 + 5 + num_limbs }} + k] = cmE_y_limbs[k];
} }
} }
@ -124,8 +125,8 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
uint256[{{num_limbs}}] memory cmW_y_limbs = LimbsDecomposition.decompose(cmW[1]); uint256[{{num_limbs}}] memory cmW_y_limbs = LimbsDecomposition.decompose(cmW[1]);
for (uint8 k = 0; k < {{num_limbs}}; k++) { for (uint8 k = 0; k < {{num_limbs}}; k++) {
public_inputs[{{ z_len * 2 + 4 + num_limbs * 2 }} + k] = cmW_x_limbs[k];
public_inputs[{{ z_len * 2 + 4 + num_limbs * 3 }} + k] = cmW_y_limbs[k];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 2 }} + k] = cmW_x_limbs[k];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 3 }} + k] = cmW_y_limbs[k];
} }
} }
@ -134,10 +135,10 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
{ {
// add challenges // add challenges
public_inputs[{{ z_len * 2 + 4 + num_limbs * 4 }}] = challenge_W_challenge_E_kzg_evals[0];
public_inputs[{{ z_len * 2 + 4 + num_limbs * 4 + 1 }}] = challenge_W_challenge_E_kzg_evals[1];
public_inputs[{{ z_len * 2 + 4 + num_limbs * 4 + 2 }}] = challenge_W_challenge_E_kzg_evals[2];
public_inputs[{{ z_len * 2 + 4 + num_limbs * 4 + 3 }}] = challenge_W_challenge_E_kzg_evals[3];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 4 }}] = challenge_W_challenge_E_kzg_evals[0];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 4 + 1 }}] = challenge_W_challenge_E_kzg_evals[1];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 4 + 2 }}] = challenge_W_challenge_E_kzg_evals[2];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 4 + 3 }}] = challenge_W_challenge_E_kzg_evals[3];
uint256[{{num_limbs}}] memory cmT_x_limbs; uint256[{{num_limbs}}] memory cmT_x_limbs;
uint256[{{num_limbs}}] memory cmT_y_limbs; uint256[{{num_limbs}}] memory cmT_y_limbs;
@ -146,8 +147,8 @@ contract NovaDecider is Groth16Verifier, KZG10Verifier {
cmT_y_limbs = LimbsDecomposition.decompose(u_i_x_cmT[3]); cmT_y_limbs = LimbsDecomposition.decompose(u_i_x_cmT[3]);
for (uint8 k = 0; k < {{num_limbs}}; k++) { for (uint8 k = 0; k < {{num_limbs}}; k++) {
public_inputs[{{ z_len * 2 + 4 + num_limbs * 4 }} + 4 + k] = cmT_x_limbs[k];
public_inputs[{{ z_len * 2 + 4 + num_limbs * 5}} + 4 + k] = cmT_y_limbs[k];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 4 }} + 4 + k] = cmT_x_limbs[k];
public_inputs[{{ z_len * 2 + 5 + num_limbs * 5}} + 4 + k] = cmT_y_limbs[k];
} }
// last element of the groth16 proof's public inputs is `r` // last element of the groth16 proof's public inputs is `r`

Loading…
Cancel
Save