initial commit

This commit is contained in:
Srinath Setty
2019-12-16 14:41:07 -08:00
parent be426e7bb6
commit 95b9ad35a6
33 changed files with 8986 additions and 14 deletions

247
src/bullet.rs Normal file
View File

@@ -0,0 +1,247 @@
#![allow(non_snake_case)]
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::math::Math;
use super::scalar::Scalar;
use super::transcript::ProofTranscript;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
use std::iter;
#[derive(Debug, Serialize, Deserialize)]
pub struct BulletReductionProof {
L_vec: Vec<CompressedGroup>,
R_vec: Vec<CompressedGroup>,
}
impl BulletReductionProof {
/// Create an inner-product proof.
///
/// The proof is created with respect to the bases \\(G\\).
///
/// The `transcript` is passed in as a parameter so that the
/// challenges depend on the *entire* transcript (including parent
/// protocols).
///
/// The lengths of the vectors must all be the same, and must all be
/// either 0 or a power of 2.
pub fn prove(
transcript: &mut Transcript,
Q: &GroupElement,
G_vec: &Vec<GroupElement>,
H: &GroupElement,
a_vec: &Vec<Scalar>,
b_vec: &Vec<Scalar>,
blind: &Scalar,
blinds_vec: &Vec<(Scalar, Scalar)>,
) -> (
BulletReductionProof,
GroupElement,
Scalar,
Scalar,
GroupElement,
Scalar,
) {
// Create slices G, H, a, b backed by their respective
// vectors. This lets us reslice as we compress the lengths
// of the vectors in the main loop below.
let mut G = &mut G_vec.clone()[..];
let mut a = &mut a_vec.clone()[..];
let mut b = &mut b_vec.clone()[..];
// All of the input vectors must have a length that is a power of two.
let mut n = G.len();
assert!(n.is_power_of_two());
let lg_n = n.log2();
let G_factors: Vec<Scalar> = iter::repeat(Scalar::one()).take(n).collect();
// All of the input vectors must have the same length.
assert_eq!(G.len(), n);
assert_eq!(a.len(), n);
assert_eq!(b.len(), n);
assert_eq!(G_factors.len(), n);
assert_eq!(blinds_vec.len(), 2 * lg_n);
//transcript.innerproduct_domain_sep(n as u64);
let mut L_vec = Vec::with_capacity(lg_n);
let mut R_vec = Vec::with_capacity(lg_n);
let mut blinds_iter = blinds_vec.iter();
let mut blind_fin = *blind;
while n != 1 {
n = n / 2;
let (a_L, a_R) = a.split_at_mut(n);
let (b_L, b_R) = b.split_at_mut(n);
let (G_L, G_R) = G.split_at_mut(n);
let c_L = inner_product(&a_L, &b_R);
let c_R = inner_product(&a_R, &b_L);
let (blind_L, blind_R) = blinds_iter.next().unwrap();
let L = GroupElement::vartime_multiscalar_mul(
a_L
.iter()
.chain(iter::once(&c_L))
.chain(iter::once(blind_L)),
G_R.iter().chain(iter::once(Q)).chain(iter::once(H)),
);
let R = GroupElement::vartime_multiscalar_mul(
a_R
.iter()
.chain(iter::once(&c_R))
.chain(iter::once(blind_R)),
G_L.iter().chain(iter::once(Q)).chain(iter::once(H)),
);
transcript.append_point(b"L", &L.compress());
transcript.append_point(b"R", &R.compress());
let u = transcript.challenge_scalar(b"u");
let u_inv = u.invert().unwrap();
for i in 0..n {
a_L[i] = a_L[i] * u + u_inv * a_R[i];
b_L[i] = b_L[i] * u_inv + u * b_R[i];
G_L[i] = GroupElement::vartime_multiscalar_mul(&[u_inv, u], &[G_L[i], G_R[i]]);
}
blind_fin = blind_fin + blind_L * &u * &u + blind_R * &u_inv * &u_inv;
L_vec.push(L.compress());
R_vec.push(R.compress());
a = a_L;
b = b_L;
G = G_L;
}
let Gamma_hat =
GroupElement::vartime_multiscalar_mul(&[a[0], a[0] * b[0], blind_fin], &[G[0], *Q, *H]);
(
BulletReductionProof {
L_vec: L_vec,
R_vec: R_vec,
},
Gamma_hat,
a[0],
b[0],
G[0],
blind_fin,
)
}
/// Computes three vectors of verification scalars \\([u\_{i}^{2}]\\), \\([u\_{i}^{-2}]\\) and \\([s\_{i}]\\) for combined multiscalar multiplication
/// in a parent protocol. See [inner product protocol notes](index.html#verification-equation) for details.
/// The verifier must provide the input length \\(n\\) explicitly to avoid unbounded allocation within the inner product proof.
fn verification_scalars(
&self,
n: usize,
transcript: &mut Transcript,
) -> Result<(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
let lg_n = self.L_vec.len();
if lg_n >= 32 {
// 4 billion multiplications should be enough for anyone
// and this check prevents overflow in 1<<lg_n below.
return Err(ProofVerifyError);
}
if n != (1 << lg_n) {
return Err(ProofVerifyError);
}
// 1. Recompute x_k,...,x_1 based on the proof transcript
let mut challenges = Vec::with_capacity(lg_n);
for (L, R) in self.L_vec.iter().zip(self.R_vec.iter()) {
transcript.append_point(b"L", L);
transcript.append_point(b"R", R);
challenges.push(transcript.challenge_scalar(b"u"));
}
// 2. Compute 1/(u_k...u_1) and 1/u_k, ..., 1/u_1
let mut challenges_inv = challenges.clone();
let allinv = Scalar::batch_invert(&mut challenges_inv);
// 3. Compute u_i^2 and (1/u_i)^2
for i in 0..lg_n {
challenges[i] = challenges[i] * challenges[i];
challenges_inv[i] = challenges_inv[i] * challenges_inv[i];
}
let challenges_sq = challenges;
let challenges_inv_sq = challenges_inv;
// 4. Compute s values inductively.
let mut s = Vec::with_capacity(n);
s.push(allinv);
for i in 1..n {
let lg_i = (32 - 1 - (i as u32).leading_zeros()) as usize;
let k = 1 << lg_i;
// The challenges are stored in "creation order" as [u_k,...,u_1],
// so u_{lg(i)+1} = is indexed by (lg_n-1) - lg_i
let u_lg_i_sq = challenges_sq[(lg_n - 1) - lg_i];
s.push(s[i - k] * u_lg_i_sq);
}
Ok((challenges_sq, challenges_inv_sq, s))
}
/// This method is for testing that proof generation work,
/// but for efficiency the actual protocols would use `verification_scalars`
/// method to combine inner product verification with other checks
/// in a single multiscalar multiplication.
pub fn verify(
&self,
n: usize,
a: &Vec<Scalar>,
transcript: &mut Transcript,
Gamma: &GroupElement,
G: &[GroupElement],
) -> Result<(GroupElement, GroupElement, Scalar), ProofVerifyError> {
let (u_sq, u_inv_sq, s) = self.verification_scalars(n, transcript)?;
let Ls = self
.L_vec
.iter()
.map(|p| p.decompress().ok_or(ProofVerifyError))
.collect::<Result<Vec<_>, _>>()?;
let Rs = self
.R_vec
.iter()
.map(|p| p.decompress().ok_or(ProofVerifyError))
.collect::<Result<Vec<_>, _>>()?;
let G_hat = GroupElement::vartime_multiscalar_mul(s.iter(), G.iter());
let a_hat = inner_product(a, &s);
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
u_sq
.iter()
.chain(u_inv_sq.iter())
.chain(iter::once(&Scalar::one())),
Ls.iter().chain(Rs.iter()).chain(iter::once(Gamma)),
);
Ok((G_hat, Gamma_hat, a_hat))
}
}
/// Computes an inner product of two vectors
/// \\[
/// {\langle {\mathbf{a}}, {\mathbf{b}} \rangle} = \sum\_{i=0}^{n-1} a\_i \cdot b\_i.
/// \\]
/// Panics if the lengths of \\(\mathbf{a}\\) and \\(\mathbf{b}\\) are not equal.
pub fn inner_product(a: &[Scalar], b: &[Scalar]) -> Scalar {
let mut out = Scalar::zero();
if a.len() != b.len() {
panic!("inner_product(a,b): lengths of vectors do not match");
}
for i in 0..a.len() {
out += a[i] * b[i];
}
out
}

109
src/commitments.rs Normal file
View File

@@ -0,0 +1,109 @@
use super::group::{GroupElement, VartimeMultiscalarMul, GROUP_BASEPOINT_COMPRESSED};
use super::scalar::Scalar;
use digest::{ExtendableOutput, Input, XofReader};
use sha3::Shake256;
#[derive(Debug)]
pub struct MultiCommitGens {
pub n: usize,
pub G: Vec<GroupElement>,
pub h: GroupElement,
}
impl MultiCommitGens {
pub fn new(n: usize, label: &[u8]) -> Self {
let mut shake = Shake256::default();
shake.input(label);
shake.input(GROUP_BASEPOINT_COMPRESSED.as_bytes());
let mut reader = shake.xof_result();
let mut gens: Vec<GroupElement> = Vec::new();
let mut uniform_bytes = [0u8; 64];
for _ in 0..n + 1 {
reader.read(&mut uniform_bytes);
gens.push(GroupElement::from_uniform_bytes(&uniform_bytes));
}
MultiCommitGens {
n,
G: gens[0..n].to_vec(),
h: gens[n],
}
}
pub fn clone(&self) -> MultiCommitGens {
MultiCommitGens {
n: self.n,
h: self.h,
G: self.G.clone(),
}
}
pub fn split_at_mut(&mut self, mid: usize) -> (MultiCommitGens, MultiCommitGens) {
let (G1, G2) = self.G.split_at_mut(mid);
(
MultiCommitGens {
n: G1.len(),
G: G1.to_vec(),
h: self.h,
},
MultiCommitGens {
n: G2.len(),
G: G2.to_vec(),
h: self.h,
},
)
}
}
pub trait Commitments {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement;
}
impl Commitments for Scalar {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert!(gens_n.n == 1);
GroupElement::vartime_multiscalar_mul(&[*self, *blind], &[gens_n.G[0], gens_n.h])
}
}
impl Commitments for Vec<Scalar> {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert!(gens_n.n == self.len());
GroupElement::vartime_multiscalar_mul(self, &gens_n.G) + blind * &gens_n.h
}
}
impl Commitments for [Scalar] {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert_eq!(gens_n.n, self.len());
GroupElement::vartime_multiscalar_mul(self, &gens_n.G) + blind * &gens_n.h
}
}
impl Commitments for Vec<bool> {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert!(gens_n.n == self.len());
let mut comm = blind * &gens_n.h;
for i in 0..self.len() {
if self[i] {
comm = comm + gens_n.G[i];
}
}
comm
}
}
impl Commitments for [bool] {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert!(gens_n.n == self.len());
let mut comm = blind * &gens_n.h;
for i in 0..self.len() {
if self[i] {
comm = comm + gens_n.G[i];
}
}
comm
}
}

740
src/dense_mlpoly.rs Normal file
View File

@@ -0,0 +1,740 @@
use super::commitments::{Commitments, MultiCommitGens};
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::math::Math;
use super::nizk::{DotProductProofGens, DotProductProofLog};
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use core::ops::Index;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[cfg(feature = "rayon_par")]
use rayon::prelude::*;
#[derive(Debug)]
pub struct DensePolynomial {
num_vars: usize, //the number of variables in the multilinear polynomial
len: usize,
Z: Vec<Scalar>, // a vector that holds the evaluations of the polynomial in all the 2^num_vars Boolean inputs
}
pub struct PolyCommitmentGens {
pub gens: DotProductProofGens,
}
impl PolyCommitmentGens {
// the number of variables in the multilinear polynomial
pub fn new(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens {
let (_left, right) = EqPolynomial::compute_factored_lens(num_vars);
let gens = DotProductProofGens::new(right.pow2(), label);
PolyCommitmentGens { gens }
}
}
pub struct PolyCommitmentBlinds {
blinds: Vec<Scalar>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct PolyCommitment {
C: Vec<CompressedGroup>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ConstPolyCommitment {
C: CompressedGroup,
}
impl PolyCommitment {
pub fn combine(&self, comm: &PolyCommitment, s: &Scalar) -> PolyCommitment {
assert_eq!(comm.C.len(), self.C.len());
let C = (0..self.C.len())
.map(|i| (self.C[i].decompress().unwrap() + s * comm.C[i].decompress().unwrap()).compress())
.collect::<Vec<CompressedGroup>>();
PolyCommitment { C }
}
pub fn combine_const(&self, comm: &ConstPolyCommitment) -> PolyCommitment {
let C = (0..self.C.len())
.map(|i| (self.C[i].decompress().unwrap() + comm.C.decompress().unwrap()).compress())
.collect::<Vec<CompressedGroup>>();
PolyCommitment { C }
}
}
pub struct EqPolynomial {
r: Vec<Scalar>,
}
impl EqPolynomial {
pub fn new(r: Vec<Scalar>) -> Self {
EqPolynomial { r }
}
pub fn evaluate(&self, rx: &Vec<Scalar>) -> Scalar {
assert_eq!(self.r.len(), rx.len());
(0..rx.len())
.map(|i| self.r[i] * rx[i] + (Scalar::one() - self.r[i]) * (Scalar::one() - rx[i]))
.product()
}
pub fn evals(&self) -> Vec<Scalar> {
let ell = self.r.len();
let mut evals: Vec<Scalar> = vec![Scalar::one(); ell.pow2()];
let mut size = 1;
for j in 0..ell {
// in each iteration, we double the size of chis
size = size * 2;
for i in (0..size).rev().step_by(2) {
// copy each element from the prior iteration twice
let scalar = evals[i / 2];
// evals[i - 1] = scalar * (Scalar::one() - tau[j]);
// evals[i] = scalar * tau[j];
evals[i] = scalar * self.r[j];
evals[i - 1] = scalar - evals[i];
}
}
evals
}
pub fn compute_factored_lens(ell: usize) -> (usize, usize) {
(ell / 2, ell - ell / 2)
}
pub fn compute_factored_evals(&self) -> (Vec<Scalar>, Vec<Scalar>) {
let ell = self.r.len();
let (left_num_vars, _right_num_vars) = EqPolynomial::compute_factored_lens(ell);
let L = EqPolynomial::new(self.r[0..left_num_vars].to_vec()).evals();
let R = EqPolynomial::new(self.r[left_num_vars..ell].to_vec()).evals();
(L, R)
}
}
pub struct ConstPolynomial {
num_vars: usize,
c: Scalar,
}
impl ConstPolynomial {
pub fn new(num_vars: usize, c: Scalar) -> Self {
ConstPolynomial { num_vars, c }
}
pub fn evaluate(&self, rx: &Vec<Scalar>) -> Scalar {
assert_eq!(self.num_vars, rx.len());
self.c
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
/// produces a binding commitment
pub fn commit(&self, gens: &PolyCommitmentGens) -> PolyCommitment {
let ell = self.get_num_vars();
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
assert_eq!(L_size * R_size, ell.pow2());
let vec = vec![self.c; R_size];
let c = vec.commit(&Scalar::zero(), &gens.gens.gens_n).compress();
PolyCommitment { C: vec![c; L_size] }
}
}
pub struct IdentityPolynomial {
size_point: usize,
}
impl IdentityPolynomial {
pub fn new(size_point: usize) -> Self {
IdentityPolynomial { size_point }
}
pub fn evaluate(&self, r: &Vec<Scalar>) -> Scalar {
let len = r.len();
assert_eq!(len, self.size_point);
(0..len)
.map(|i| Scalar::from((len - i - 1).pow2() as u64) * r[i])
.sum()
}
}
impl DensePolynomial {
pub fn new(Z: Vec<Scalar>) -> Self {
let len = Z.len();
let num_vars = len.log2();
DensePolynomial { num_vars, Z, len }
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn len(&self) -> usize {
self.len
}
pub fn clone(&self) -> DensePolynomial {
DensePolynomial::new(self.Z[0..self.len].to_vec())
}
pub fn split(&self, idx: usize) -> (DensePolynomial, DensePolynomial) {
assert!(idx < self.len());
(
DensePolynomial::new(self.Z[0..idx].to_vec()),
DensePolynomial::new(self.Z[idx..2 * idx].to_vec()),
)
}
#[cfg(feature = "rayon_par")]
fn commit_inner(&self, blinds: &Vec<Scalar>, gens: &MultiCommitGens) -> PolyCommitment {
let L_size = blinds.len();
let R_size = self.Z.len() / L_size;
assert_eq!(L_size * R_size, self.Z.len());
let C = (0..L_size)
.collect::<Vec<usize>>()
.par_iter()
.map(|&i| {
self.Z[R_size * i..R_size * (i + 1)]
.commit(&blinds[i], gens)
.compress()
})
.collect();
PolyCommitment { C }
}
#[cfg(not(feature = "rayon_par"))]
fn commit_inner(&self, blinds: &Vec<Scalar>, gens: &MultiCommitGens) -> PolyCommitment {
let L_size = blinds.len();
let R_size = self.Z.len() / L_size;
assert_eq!(L_size * R_size, self.Z.len());
let C = (0..L_size)
.map(|i| {
self.Z[R_size * i..R_size * (i + 1)]
.commit(&blinds[i], gens)
.compress()
})
.collect();
PolyCommitment { C }
}
pub fn commit(
&self,
hiding: bool,
gens: &PolyCommitmentGens,
random_tape: Option<&mut Transcript>,
) -> (PolyCommitment, PolyCommitmentBlinds) {
let n = self.Z.len();
let ell = self.get_num_vars();
assert_eq!(n, ell.pow2());
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
assert_eq!(L_size * R_size, n);
let blinds = match hiding {
true => PolyCommitmentBlinds {
blinds: random_tape
.unwrap()
.challenge_vector(b"poly_blinds", L_size),
},
false => PolyCommitmentBlinds {
blinds: vec![Scalar::zero(); L_size],
},
};
(self.commit_inner(&blinds.blinds, &gens.gens.gens_n), blinds)
}
pub fn bound(&self, L: &Vec<Scalar>) -> Vec<Scalar> {
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(self.get_num_vars());
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
(0..R_size)
.map(|i| (0..L_size).map(|j| &L[j] * &self.Z[j * R_size + i]).sum())
.collect::<Vec<Scalar>>()
}
pub fn bound_poly_var_top(&mut self, r: &Scalar) {
let n = self.len() / 2;
for i in 0..n {
self.Z[i] = &self.Z[i] + r * (&self.Z[i + n] - &self.Z[i]);
}
self.num_vars = self.num_vars - 1;
self.len = n;
}
pub fn bound_poly_var_bot(&mut self, r: &Scalar) {
let n = self.len() / 2;
for i in 0..n {
self.Z[i] = &self.Z[2 * i] + r * (&self.Z[2 * i + 1] - &self.Z[2 * i]);
}
self.num_vars = self.num_vars - 1;
self.len = n;
}
pub fn dotproduct(&self, other: &DensePolynomial) -> Scalar {
assert_eq!(self.len(), other.len());
let mut res = Scalar::zero();
for i in 0..self.len() {
res = &res + &self.Z[i] * &other[i];
}
res
}
// returns Z(r) in O(n) time
pub fn evaluate(&self, r: &Vec<Scalar>) -> Scalar {
// r must have a value for each variable
assert_eq!(r.len(), self.get_num_vars());
let chis = EqPolynomial::new(r.to_vec()).evals();
assert_eq!(chis.len(), self.Z.len());
DotProductProofLog::compute_dotproduct(&self.Z, &chis)
}
fn vec(&self) -> &Vec<Scalar> {
&self.Z
}
pub fn extend(&mut self, other: &DensePolynomial) {
// TODO: allow extension even when some vars are bound
assert_eq!(self.Z.len(), self.len);
let other_vec = other.vec();
assert_eq!(other_vec.len(), self.len);
self.Z.extend(other_vec);
self.num_vars = self.num_vars + 1;
self.len = 2 * self.len;
assert_eq!(self.Z.len(), self.len);
}
pub fn merge<'a, I>(polys: I) -> DensePolynomial
where
I: IntoIterator<Item = &'a DensePolynomial>,
{
//assert!(polys.len() > 0);
//let num_vars = polys[0].num_vars();
let mut Z: Vec<Scalar> = Vec::new();
for poly in polys.into_iter() {
//assert_eq!(poly.get_num_vars(), num_vars); // ensure each polynomial has the same number of variables
//assert_eq!(poly.len, poly.vec().len()); // ensure no variable is already bound
Z.extend(poly.vec());
}
// pad the polynomial with zero polynomial at the end
Z.resize(Z.len().next_power_of_two(), Scalar::zero());
DensePolynomial::new(Z)
}
pub fn from_usize(Z: &Vec<usize>) -> Self {
DensePolynomial::new(
(0..Z.len())
.map(|i| Scalar::from(Z[i] as u64))
.collect::<Vec<Scalar>>(),
)
}
}
impl Index<usize> for DensePolynomial {
type Output = Scalar;
#[inline(always)]
fn index(&self, _index: usize) -> &Scalar {
&(self.Z[_index])
}
}
impl AppendToTranscript for PolyCommitment {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"poly_commitment_begin");
for i in 0..self.C.len() {
transcript.append_point(b"poly_commitment_share", &self.C[i]);
}
transcript.append_message(label, b"poly_commitment_end");
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct PolyEvalProof {
proof: DotProductProofLog,
}
impl PolyEvalProof {
fn protocol_name() -> &'static [u8] {
b"polynomial evaluation proof"
}
pub fn prove(
poly: &DensePolynomial,
blinds_opt: Option<&PolyCommitmentBlinds>,
r: &Vec<Scalar>, // point at which the polynomial is evaluated
Zr: &Scalar, // evaluation of \widetilde{Z}(r)
blind_Zr_opt: Option<&Scalar>, // specifies a blind for Zr
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (PolyEvalProof, CompressedGroup) {
transcript.append_protocol_name(PolyEvalProof::protocol_name());
// assert vectors are of the right size
assert_eq!(poly.get_num_vars(), r.len());
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(r.len());
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
let default_blinds = PolyCommitmentBlinds {
blinds: vec![Scalar::zero(); L_size],
};
let blinds = match blinds_opt {
Some(p) => p,
None => &default_blinds,
};
assert_eq!(blinds.blinds.len(), L_size);
let zero = Scalar::zero();
let blind_Zr = match blind_Zr_opt {
Some(p) => p,
None => &zero,
};
// compute the L and R vectors
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
assert_eq!(L.len(), L_size);
assert_eq!(R.len(), R_size);
// compute the vector underneath L*Z and the L*blinds
// compute vector-matrix product between L and Z viewed as a matrix
let LZ = poly.bound(&L);
let LZ_blind: Scalar = (0..L.len()).map(|i| blinds.blinds[i] * L[i]).sum();
// a dot product proof of size R_size
let (proof, _C_LR, C_Zr_prime) = DotProductProofLog::prove(
&gens.gens,
transcript,
random_tape,
&LZ,
&LZ_blind,
&R,
&Zr,
blind_Zr,
);
(PolyEvalProof { proof }, C_Zr_prime)
}
pub fn verify(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &Vec<Scalar>, // point at which the polynomial is evaluated
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
comm: &PolyCommitment,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(PolyEvalProof::protocol_name());
// compute L and R
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
// compute a weighted sum of commitments and L
let C_decompressed = comm.C.iter().map(|pt| pt.decompress().unwrap());
let C_LZ = GroupElement::vartime_multiscalar_mul(&L, C_decompressed).compress();
self
.proof
.verify(R.len(), &gens.gens, transcript, &R, &C_LZ, C_Zr)
}
pub fn verify_batched(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &Vec<Scalar>, // point at which the polynomial is evaluated
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
comm: &[&PolyCommitment],
coeff: &[&Scalar],
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(PolyEvalProof::protocol_name());
// compute L and R
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
// compute a weighted sum of commitments and L
let C_decompressed: Vec<Vec<GroupElement>> = (0..comm.len())
.map(|i| {
comm[i]
.C
.iter()
.map(|pt| pt.decompress().unwrap())
.collect()
})
.collect();
let C_LZ: Vec<GroupElement> = (0..comm.len())
.map(|i| GroupElement::vartime_multiscalar_mul(&L, &C_decompressed[i]))
.collect();
let C_LZ_combined: GroupElement = (0..C_LZ.len()).map(|i| C_LZ[i] * coeff[i]).sum();
self.proof.verify(
R.len(),
&gens.gens,
transcript,
&R,
&C_LZ_combined.compress(),
C_Zr,
)
}
pub fn verify_plain(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &Vec<Scalar>, // point at which the polynomial is evaluated
Zr: &Scalar, // evaluation \widetilde{Z}(r)
comm: &PolyCommitment,
) -> Result<(), ProofVerifyError> {
// compute a commitment to Zr with a blind of zero
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
self.verify(gens, transcript, r, &C_Zr, comm)
}
pub fn verify_plain_batched(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &Vec<Scalar>, // point at which the polynomial is evaluated
Zr: &Scalar, // evaluation \widetilde{Z}(r)
comm: &[&PolyCommitment],
coeff: &[&Scalar],
) -> Result<(), ProofVerifyError> {
// compute a commitment to Zr with a blind of zero
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
assert_eq!(comm.len(), coeff.len());
self.verify_batched(gens, transcript, r, &C_Zr, comm, coeff)
}
}
#[cfg(test)]
mod tests {
use super::super::scalar::ScalarFromPrimitives;
use super::*;
use rand::rngs::OsRng;
fn evaluate_with_LR(Z: &Vec<Scalar>, r: &Vec<Scalar>) -> Scalar {
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
let ell = r.len();
// ensure ell is even
assert!(ell % 2 == 0);
// compute n = 2^\ell
let n = ell.pow2();
// compute m = sqrt(n) = 2^{\ell/2}
let m = n.square_root();
// compute vector-matrix product between L and Z viewed as a matrix
let LZ = (0..m)
.map(|i| (0..m).map(|j| L[j] * Z[j * m + i]).sum())
.collect::<Vec<Scalar>>();
// compute dot product between LZ and R
DotProductProofLog::compute_dotproduct(&LZ, &R)
}
#[test]
fn check_polynomial_evaluation() {
let mut Z: Vec<Scalar> = Vec::new(); // Z = [1, 2, 1, 4]
Z.push(Scalar::one());
Z.push((2 as usize).to_scalar());
Z.push((1 as usize).to_scalar());
Z.push((4 as usize).to_scalar());
// r = [4,3]
let mut r: Vec<Scalar> = Vec::new();
r.push((4 as usize).to_scalar());
r.push((3 as usize).to_scalar());
let eval_with_LR = evaluate_with_LR(&Z, &r);
let poly = DensePolynomial::new(Z);
let eval = poly.evaluate(&r);
assert_eq!(eval, (28 as usize).to_scalar());
assert_eq!(eval_with_LR, eval);
}
pub fn compute_factored_chis_at_r(r: &Vec<Scalar>) -> (Vec<Scalar>, Vec<Scalar>) {
let mut L: Vec<Scalar> = Vec::new();
let mut R: Vec<Scalar> = Vec::new();
let ell = r.len();
assert!(ell % 2 == 0); // ensure ell is even
let n = ell.pow2();
let m = n.square_root();
// compute row vector L
for i in 0..m {
let mut chi_i = Scalar::one();
for j in 0..ell / 2 {
let bit_j = ((m * i) & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
L.push(chi_i);
}
// compute column vector R
for i in 0..m {
let mut chi_i = Scalar::one();
for j in ell / 2..ell {
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
R.push(chi_i);
}
(L, R)
}
pub fn compute_chis_at_r(r: &Vec<Scalar>) -> Vec<Scalar> {
let ell = r.len();
let n = ell.pow2();
let mut chis: Vec<Scalar> = Vec::new();
for i in 0..n {
let mut chi_i = Scalar::one();
for j in 0..r.len() {
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
chis.push(chi_i);
}
chis
}
pub fn compute_outerproduct(L: Vec<Scalar>, R: Vec<Scalar>) -> Vec<Scalar> {
assert_eq!(L.len(), R.len());
let mut O: Vec<Scalar> = Vec::new();
let m = L.len();
for i in 0..m {
for j in 0..m {
O.push(L[i] * R[j]);
}
}
O
}
#[test]
fn check_memoized_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let chis = tests::compute_chis_at_r(&r);
let chis_m = EqPolynomial::new(r).evals();
assert_eq!(chis, chis_m);
}
#[test]
fn check_factored_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let chis = EqPolynomial::new(r.clone()).evals();
let (L, R) = EqPolynomial::new(r).compute_factored_evals();
let O = compute_outerproduct(L, R);
assert_eq!(chis, O);
}
#[test]
fn check_memoized_factored_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let (L, R) = tests::compute_factored_chis_at_r(&r);
let eq = EqPolynomial::new(r);
let (L2, R2) = eq.compute_factored_evals();
assert_eq!(L, L2);
assert_eq!(R, R2);
}
#[test]
fn check_polynomial_commit() {
let mut Z: Vec<Scalar> = Vec::new(); // Z = [1, 2, 1, 4]
Z.push((1 as usize).to_scalar());
Z.push((2 as usize).to_scalar());
Z.push((1 as usize).to_scalar());
Z.push((4 as usize).to_scalar());
let poly = DensePolynomial::new(Z);
// r = [4,3]
let mut r: Vec<Scalar> = Vec::new();
r.push((4 as usize).to_scalar());
r.push((3 as usize).to_scalar());
let eval = poly.evaluate(&r);
assert_eq!(eval, (28 as usize).to_scalar());
let gens = PolyCommitmentGens::new(poly.get_num_vars(), b"test-two");
let (poly_commitment, blinds) = poly.commit(false, &gens, None);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, C_Zr) = PolyEvalProof::prove(
&poly,
Some(&blinds),
&r,
&eval,
None,
&gens,
&mut prover_transcript,
&mut random_tape,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens, &mut verifier_transcript, &r, &C_Zr, &poly_commitment)
.is_ok());
}
}

15
src/errors.rs Normal file
View File

@@ -0,0 +1,15 @@
use std::fmt;
pub struct ProofVerifyError;
impl fmt::Display for ProofVerifyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Proof verification failed")
}
}
impl fmt::Debug for ProofVerifyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{{ file: {}, line: {} }}", file!(), line!())
}
}

101
src/group.rs Normal file
View File

@@ -0,0 +1,101 @@
use super::scalar::{Scalar, ScalarBytes, ScalarBytesFromScalar};
use core::borrow::Borrow;
use core::ops::{Mul, MulAssign};
pub type GroupElement = curve25519_dalek::ristretto::RistrettoPoint;
pub type CompressedGroup = curve25519_dalek::ristretto::CompressedRistretto;
pub const GROUP_BASEPOINT_COMPRESSED: CompressedGroup =
curve25519_dalek::constants::RISTRETTO_BASEPOINT_COMPRESSED;
impl<'b> MulAssign<&'b Scalar> for GroupElement {
fn mul_assign(&mut self, scalar: &'b Scalar) {
let result = (self as &GroupElement) * Scalar::decompress_scalar(scalar);
*self = result;
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a GroupElement {
type Output = GroupElement;
fn mul(self, scalar: &'b Scalar) -> GroupElement {
self * Scalar::decompress_scalar(scalar)
}
}
impl<'a, 'b> Mul<&'b GroupElement> for &'a Scalar {
type Output = GroupElement;
fn mul(self, point: &'b GroupElement) -> GroupElement {
Scalar::decompress_scalar(self) * point
}
}
macro_rules! define_mul_variants {
(LHS = $lhs:ty, RHS = $rhs:ty, Output = $out:ty) => {
impl<'b> Mul<&'b $rhs> for $lhs {
type Output = $out;
fn mul(self, rhs: &'b $rhs) -> $out {
&self * rhs
}
}
impl<'a> Mul<$rhs> for &'a $lhs {
type Output = $out;
fn mul(self, rhs: $rhs) -> $out {
self * &rhs
}
}
impl Mul<$rhs> for $lhs {
type Output = $out;
fn mul(self, rhs: $rhs) -> $out {
&self * &rhs
}
}
};
}
macro_rules! define_mul_assign_variants {
(LHS = $lhs:ty, RHS = $rhs:ty) => {
impl MulAssign<$rhs> for $lhs {
fn mul_assign(&mut self, rhs: $rhs) {
*self *= &rhs;
}
}
};
}
define_mul_assign_variants!(LHS = GroupElement, RHS = Scalar);
define_mul_variants!(LHS = GroupElement, RHS = Scalar, Output = GroupElement);
define_mul_variants!(LHS = Scalar, RHS = GroupElement, Output = GroupElement);
pub trait VartimeMultiscalarMul {
type Scalar;
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self
where
I: IntoIterator,
I::Item: Borrow<Self::Scalar>,
J: IntoIterator,
J::Item: Borrow<Self>,
Self: Clone;
}
impl VartimeMultiscalarMul for GroupElement {
type Scalar = super::scalar::Scalar;
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self
where
I: IntoIterator,
I::Item: Borrow<Self::Scalar>,
J: IntoIterator,
J::Item: Borrow<Self>,
Self: Clone,
{
use curve25519_dalek::traits::VartimeMultiscalarMul;
<Self as VartimeMultiscalarMul>::vartime_multiscalar_mul(
scalars
.into_iter()
.map(|s| Scalar::decompress_scalar(s.borrow()))
.collect::<Vec<ScalarBytes>>(),
points,
)
}
}

31
src/lib.rs Normal file
View File

@@ -0,0 +1,31 @@
#![allow(non_snake_case)]
#![feature(test)]
extern crate byteorder;
extern crate core;
extern crate curve25519_dalek;
extern crate digest;
extern crate merlin;
extern crate rand;
extern crate rayon;
extern crate sha3;
extern crate test;
mod bullet;
pub mod commitments;
pub mod dense_mlpoly;
mod errors;
mod group;
pub mod math;
pub mod nizk;
mod product_tree;
pub mod r1csinstance;
pub mod r1csproof;
pub mod scalar;
mod scalar_25519;
pub mod sparse_mlpoly;
pub mod spartan;
pub mod sumcheck;
pub mod timer;
pub mod transcript;
mod unipoly;

31
src/math.rs Normal file
View File

@@ -0,0 +1,31 @@
pub trait Math {
fn square_root(self) -> usize;
fn pow2(self) -> usize;
fn log2(self) -> usize;
fn get_bits(self, num_bits: usize) -> Vec<bool>;
}
impl Math for usize {
#[inline]
fn square_root(self) -> usize {
(self as f64).sqrt() as usize
}
#[inline]
fn pow2(self) -> usize {
let base: usize = 2;
base.pow(self as u32)
}
#[inline]
fn log2(self) -> usize {
(self as f64).log2() as usize
}
/// Returns the num_bits from n in a canonical order
fn get_bits(self, num_bits: usize) -> Vec<bool> {
(0..num_bits)
.map(|shift_amount| ((self & (1 << (num_bits - shift_amount - 1))) > 0))
.collect::<Vec<bool>>()
}
}

750
src/nizk.rs Normal file
View File

@@ -0,0 +1,750 @@
use super::bullet::BulletReductionProof;
use super::commitments::{Commitments, MultiCommitGens};
use super::errors::ProofVerifyError;
use super::group::CompressedGroup;
use super::math::Math;
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug)]
pub struct KnowledgeProof {
alpha: CompressedGroup,
z1: Scalar,
z2: Scalar,
}
impl KnowledgeProof {
fn protocol_name() -> &'static [u8] {
b"knowledge proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
x: &Scalar,
r: &Scalar,
) -> (KnowledgeProof, CompressedGroup) {
transcript.append_protocol_name(KnowledgeProof::protocol_name());
// produce two random Scalars
let t1 = random_tape.challenge_scalar(b"t1");
let t2 = random_tape.challenge_scalar(b"t2");
let C = x.commit(&r, gens_n).compress();
C.append_to_transcript(b"C", transcript);
let alpha = t1.commit(&t2, gens_n).compress();
alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = x * &c + &t1;
let z2 = r * &c + &t2;
(KnowledgeProof { alpha, z1, z2 }, C)
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
C: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(KnowledgeProof::protocol_name());
C.append_to_transcript(b"C", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let lhs = self.z1.commit(&self.z2, gens_n).compress();
let rhs = (&c * C.decompress().expect("Could not decompress C")
+ self
.alpha
.decompress()
.expect("Could not decompress self.alpha"))
.compress();
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError)
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct EqualityProof {
alpha: CompressedGroup,
z: Scalar,
}
impl EqualityProof {
fn protocol_name() -> &'static [u8] {
b"equality proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
v1: &Scalar,
s1: &Scalar,
v2: &Scalar,
s2: &Scalar,
) -> (EqualityProof, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(EqualityProof::protocol_name());
// produce a random Scalar
let r = random_tape.challenge_scalar(b"r");
let C1 = v1.commit(&s1, gens_n).compress();
C1.append_to_transcript(b"C1", transcript);
let C2 = v2.commit(&s2, gens_n).compress();
C2.append_to_transcript(b"C2", transcript);
let alpha = (&r * gens_n.h).compress();
alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let z = &c * (s1 - s2) + &r;
(EqualityProof { alpha, z }, C1, C2)
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
C1: &CompressedGroup,
C2: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(EqualityProof::protocol_name());
C1.append_to_transcript(b"C1", transcript);
C2.append_to_transcript(b"C2", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let rhs = {
let C = &C1.decompress().unwrap() - &C2.decompress().unwrap();
(&c * C + &self.alpha.decompress().unwrap()).compress()
};
let lhs = (&self.z * gens_n.h).compress();
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError)
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ProductProof {
alpha: CompressedGroup,
beta: CompressedGroup,
delta: CompressedGroup,
z: [Scalar; 5],
}
impl ProductProof {
fn protocol_name() -> &'static [u8] {
b"product proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
x: &Scalar,
rX: &Scalar,
y: &Scalar,
rY: &Scalar,
z: &Scalar,
rZ: &Scalar,
) -> (
ProductProof,
CompressedGroup,
CompressedGroup,
CompressedGroup,
) {
transcript.append_protocol_name(ProductProof::protocol_name());
// produce five random Scalar
let b1 = random_tape.challenge_scalar(b"b1");
let b2 = random_tape.challenge_scalar(b"b2");
let b3 = random_tape.challenge_scalar(b"b3");
let b4 = random_tape.challenge_scalar(b"b4");
let b5 = random_tape.challenge_scalar(b"b5");
let X = x.commit(&rX, gens_n).compress();
X.append_to_transcript(b"X", transcript);
let Y = y.commit(&rY, gens_n).compress();
Y.append_to_transcript(b"Y", transcript);
let Z = z.commit(&rZ, gens_n).compress();
Z.append_to_transcript(b"Z", transcript);
let alpha = b1.commit(&b2, gens_n).compress();
alpha.append_to_transcript(b"alpha", transcript);
let beta = b3.commit(&b4, gens_n).compress();
beta.append_to_transcript(b"beta", transcript);
let delta = {
let gens_X = &MultiCommitGens {
n: 1,
G: vec![X.decompress().unwrap()],
h: gens_n.h,
};
b3.commit(&b5, gens_X).compress()
};
delta.append_to_transcript(b"delta", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = &b1 + &c * x;
let z2 = &b2 + &c * rX;
let z3 = &b3 + &c * y;
let z4 = &b4 + &c * rY;
let z5 = &b5 + &c * (rZ - rX * y);
let z = [z1, z2, z3, z4, z5];
(
ProductProof {
alpha,
beta,
delta,
z,
},
X,
Y,
Z,
)
}
fn check_equality(
P: &CompressedGroup,
X: &CompressedGroup,
c: &Scalar,
gens_n: &MultiCommitGens,
z1: &Scalar,
z2: &Scalar,
) -> bool {
let lhs = (P.decompress().unwrap() + c * X.decompress().unwrap()).compress();
let rhs = z1.commit(&z2, gens_n).compress();
if lhs == rhs {
true
} else {
false
}
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
X: &CompressedGroup,
Y: &CompressedGroup,
Z: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(ProductProof::protocol_name());
X.append_to_transcript(b"X", transcript);
Y.append_to_transcript(b"Y", transcript);
Z.append_to_transcript(b"Z", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
self.beta.append_to_transcript(b"beta", transcript);
self.delta.append_to_transcript(b"delta", transcript);
let z1 = self.z[0];
let z2 = self.z[1];
let z3 = self.z[2];
let z4 = self.z[3];
let z5 = self.z[4];
let c = transcript.challenge_scalar(b"c");
if ProductProof::check_equality(&self.alpha, &X, &c, &gens_n, &z1, &z2)
&& ProductProof::check_equality(&self.beta, &Y, &c, &gens_n, &z3, &z4)
&& ProductProof::check_equality(
&self.delta,
&Z,
&c,
&MultiCommitGens {
n: 1,
G: vec![X.decompress().unwrap()],
h: gens_n.h,
},
&z3,
&z5,
)
{
Ok(())
} else {
Err(ProofVerifyError)
}
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DotProductProof {
delta: CompressedGroup,
beta: CompressedGroup,
z: Vec<Scalar>,
z_delta: Scalar,
z_beta: Scalar,
}
impl DotProductProof {
fn protocol_name() -> &'static [u8] {
b"dot product proof"
}
pub fn compute_dotproduct(a: &Vec<Scalar>, b: &Vec<Scalar>) -> Scalar {
assert_eq!(a.len(), b.len());
(0..a.len()).map(|i| &a[i] * &b[i]).sum()
}
pub fn prove(
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
x: &Vec<Scalar>,
r_x: &Scalar,
a: &Vec<Scalar>,
y: &Scalar,
r_y: &Scalar,
) -> (DotProductProof, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(DotProductProof::protocol_name());
let n = x.len();
assert_eq!(x.len(), a.len());
assert_eq!(gens_n.n, a.len());
assert_eq!(gens_1.n, 1);
// produce randomness for the proofs
let d = random_tape.challenge_vector(b"d", n);
let r_delta = random_tape.challenge_scalar(b"r_delta");
let r_beta = random_tape.challenge_scalar(b"r_beta");
let Cx = x.commit(&r_x, gens_n).compress();
Cx.append_to_transcript(b"Cx", transcript);
let Cy = y.commit(&r_y, gens_1).compress();
Cy.append_to_transcript(b"Cy", transcript);
let delta = d.commit(&r_delta, gens_n).compress();
delta.append_to_transcript(b"delta", transcript);
let dotproduct_a_d = DotProductProof::compute_dotproduct(&a, &d);
let beta = dotproduct_a_d.commit(&r_beta, gens_1).compress();
beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let z = (0..d.len())
.map(|i| c * x[i] + d[i])
.collect::<Vec<Scalar>>();
let z_delta = c * r_x + r_delta;
let z_beta = c * r_y + r_beta;
(
DotProductProof {
delta,
beta,
z,
z_delta,
z_beta,
},
Cx,
Cy,
)
}
pub fn verify(
&self,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
a: &Vec<Scalar>,
Cx: &CompressedGroup,
Cy: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
assert_eq!(gens_n.n, a.len());
assert_eq!(gens_1.n, 1);
transcript.append_protocol_name(DotProductProof::protocol_name());
Cx.append_to_transcript(b"Cx", transcript);
Cy.append_to_transcript(b"Cy", transcript);
self.delta.append_to_transcript(b"delta", transcript);
self.beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let mut result = &c * Cx.decompress().unwrap() + self.delta.decompress().unwrap()
== self.z.commit(&self.z_delta, gens_n);
let dotproduct_z_a = DotProductProof::compute_dotproduct(&self.z, &a);
result &= &c * Cy.decompress().unwrap() + self.beta.decompress().unwrap()
== dotproduct_z_a.commit(&self.z_beta, gens_1);
if result {
Ok(())
} else {
Err(ProofVerifyError)
}
}
}
pub struct DotProductProofGens {
n: usize,
pub gens_n: MultiCommitGens,
pub gens_1: MultiCommitGens,
}
impl DotProductProofGens {
pub fn new(n: usize, label: &[u8]) -> Self {
let (gens_n, gens_1) = MultiCommitGens::new(n + 1, label).split_at_mut(n);
DotProductProofGens { n, gens_n, gens_1 }
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DotProductProofLog {
bullet_reduction_proof: BulletReductionProof,
delta: CompressedGroup,
beta: CompressedGroup,
z1: Scalar,
z2: Scalar,
}
impl DotProductProofLog {
fn protocol_name() -> &'static [u8] {
b"dot product proof (log)"
}
pub fn compute_dotproduct(a: &Vec<Scalar>, b: &Vec<Scalar>) -> Scalar {
assert_eq!(a.len(), b.len());
(0..a.len()).map(|i| &a[i] * &b[i]).sum()
}
pub fn prove(
gens: &DotProductProofGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
x: &Vec<Scalar>,
r_x: &Scalar,
a: &Vec<Scalar>,
y: &Scalar,
r_y: &Scalar,
) -> (DotProductProofLog, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(DotProductProofLog::protocol_name());
let n = x.len();
assert_eq!(x.len(), a.len());
assert_eq!(gens.n, n);
// produce randomness for generating a proof
let d = random_tape.challenge_scalar(b"d");
let r_delta = random_tape.challenge_scalar(b"r_delta");
let r_beta = random_tape.challenge_scalar(b"r_delta");
let blinds_vec = {
let v1 = random_tape.challenge_vector(b"blinds_vec_1", 2 * n.log2());
let v2 = random_tape.challenge_vector(b"blinds_vec_2", 2 * n.log2());
(0..v1.len())
.map(|i| (v1[i], v2[i]))
.collect::<Vec<(Scalar, Scalar)>>()
};
let Cx = x.commit(&r_x, &gens.gens_n).compress();
Cx.append_to_transcript(b"Cx", transcript);
let Cy = y.commit(&r_y, &gens.gens_1).compress();
Cy.append_to_transcript(b"Cy", transcript);
let r_Gamma = r_x + r_y;
let (bullet_reduction_proof, _Gamma_hat, x_hat, a_hat, g_hat, rhat_Gamma) =
BulletReductionProof::prove(
transcript,
&gens.gens_1.G[0],
&gens.gens_n.G,
&gens.gens_n.h,
x,
a,
&r_Gamma,
&blinds_vec,
);
let y_hat = x_hat * a_hat;
let delta = {
let gens_hat = MultiCommitGens {
n: 1,
G: vec![g_hat],
h: gens.gens_1.h,
};
d.commit(&r_delta, &gens_hat).compress()
};
delta.append_to_transcript(b"delta", transcript);
let beta = d.commit(&r_beta, &gens.gens_1).compress();
beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = d + c * y_hat;
let z2 = a_hat * (c * rhat_Gamma + r_beta) + r_delta;
(
DotProductProofLog {
bullet_reduction_proof,
delta,
beta,
z1,
z2,
},
Cx,
Cy,
)
}
pub fn verify(
&self,
n: usize,
gens: &DotProductProofGens,
transcript: &mut Transcript,
a: &Vec<Scalar>,
Cx: &CompressedGroup,
Cy: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
assert_eq!(gens.n, n);
assert_eq!(a.len(), n);
transcript.append_protocol_name(DotProductProofLog::protocol_name());
Cx.append_to_transcript(b"Cx", transcript);
Cy.append_to_transcript(b"Cy", transcript);
let Gamma = Cx.decompress().unwrap() + Cy.decompress().unwrap();
let (g_hat, Gamma_hat, a_hat) = self
.bullet_reduction_proof
.verify(n, a, transcript, &Gamma, &gens.gens_n.G)
.unwrap();
self.delta.append_to_transcript(b"delta", transcript);
self.beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let c_s = &c;
let beta_s = self.beta.decompress().unwrap();
let a_hat_s = &a_hat;
let delta_s = self.delta.decompress().unwrap();
let z1_s = &self.z1;
let z2_s = &self.z2;
let lhs = ((Gamma_hat * c_s + beta_s) * a_hat_s + delta_s).compress();
let rhs = ((g_hat + &gens.gens_1.G[0] * a_hat_s) * z1_s + gens.gens_1.h * z2_s).compress();
assert_eq!(lhs, rhs);
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::rngs::OsRng;
#[test]
fn check_knowledgeproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-knowledgeproof");
let x = Scalar::random(&mut csprng);
let r = Scalar::random(&mut csprng);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, committed_value) =
KnowledgeProof::prove(&gens_1, &mut prover_transcript, &mut random_tape, &x, &r);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &committed_value)
.is_ok());
}
#[test]
fn check_equalityproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-equalityproof");
let v1 = Scalar::random(&mut csprng);
let v2 = v1;
let s1 = Scalar::random(&mut csprng);
let s2 = Scalar::random(&mut csprng);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, C1, C2) = EqualityProof::prove(
&gens_1,
&mut prover_transcript,
&mut random_tape,
&v1,
&s1,
&v2,
&s2,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &C1, &C2)
.is_ok());
}
#[test]
fn check_productproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-productproof");
let x = Scalar::random(&mut csprng);
let rX = Scalar::random(&mut csprng);
let y = Scalar::random(&mut csprng);
let rY = Scalar::random(&mut csprng);
let z = x * y;
let rZ = Scalar::random(&mut csprng);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, X, Y, Z) = ProductProof::prove(
&gens_1,
&mut prover_transcript,
&mut random_tape,
&x,
&rX,
&y,
&rY,
&z,
&rZ,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &X, &Y, &Z)
.is_ok());
}
#[test]
fn check_dotproductproof() {
let mut csprng: OsRng = OsRng;
let n = 1024;
let gens_1 = MultiCommitGens::new(1, b"test-two");
let gens_1024 = MultiCommitGens::new(n, b"test-1024");
let mut x: Vec<Scalar> = Vec::new();
let mut a: Vec<Scalar> = Vec::new();
for _ in 0..n {
x.push(Scalar::random(&mut csprng));
a.push(Scalar::random(&mut csprng));
}
let y = DotProductProofLog::compute_dotproduct(&x, &a);
let r_x = Scalar::random(&mut csprng);
let r_y = Scalar::random(&mut csprng);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, Cx, Cy) = DotProductProof::prove(
&gens_1,
&gens_1024,
&mut prover_transcript,
&mut random_tape,
&x,
&r_x,
&a,
&y,
&r_y,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &gens_1024, &mut verifier_transcript, &a, &Cx, &Cy)
.is_ok());
}
#[test]
fn check_dotproductproof_log() {
let mut csprng: OsRng = OsRng;
let n = 1024;
let gens = DotProductProofGens::new(n, b"test-1024");
let x: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
let a: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
let y = DotProductProof::compute_dotproduct(&x, &a);
let r_x = Scalar::random(&mut csprng);
let r_y = Scalar::random(&mut csprng);
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, Cx, Cy) = DotProductProofLog::prove(
&gens,
&mut prover_transcript,
&mut random_tape,
&x,
&r_x,
&a,
&y,
&r_y,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(n, &gens, &mut verifier_transcript, &a, &Cx, &Cy)
.is_ok());
}
}

489
src/product_tree.rs Normal file
View File

@@ -0,0 +1,489 @@
#[allow(dead_code)]
use super::dense_mlpoly::DensePolynomial;
use super::dense_mlpoly::EqPolynomial;
use super::math::Math;
use super::scalar::Scalar;
use super::sumcheck::SumcheckInstanceProof;
use super::transcript::ProofTranscript;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Debug)]
pub struct ProductCircuit {
left_vec: Vec<DensePolynomial>,
right_vec: Vec<DensePolynomial>,
}
impl ProductCircuit {
fn compute_layer(
inp_left: &DensePolynomial,
inp_right: &DensePolynomial,
) -> (DensePolynomial, DensePolynomial) {
let len = inp_left.len() + inp_right.len();
let outp_left = (0..len / 4)
.map(|i| &inp_left[i] * &inp_right[i])
.collect::<Vec<Scalar>>();
let outp_right = (len / 4..len / 2)
.map(|i| &inp_left[i] * &inp_right[i])
.collect::<Vec<Scalar>>();
(
DensePolynomial::new(outp_left),
DensePolynomial::new(outp_right),
)
}
pub fn new(poly: &DensePolynomial) -> Self {
let mut left_vec: Vec<DensePolynomial> = Vec::new();
let mut right_vec: Vec<DensePolynomial> = Vec::new();
let num_layers = poly.len().log2();
let (outp_left, outp_right) = poly.split(poly.len() / 2);
left_vec.push(outp_left);
right_vec.push(outp_right);
for i in 0..num_layers - 1 {
let (outp_left, outp_right) = ProductCircuit::compute_layer(&left_vec[i], &right_vec[i]);
left_vec.push(outp_left);
right_vec.push(outp_right);
}
ProductCircuit {
left_vec,
right_vec,
}
}
pub fn evaluate(&self) -> Scalar {
let len = self.left_vec.len();
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
}
}
pub struct DotProductCircuit {
left: DensePolynomial,
right: DensePolynomial,
weight: DensePolynomial,
}
impl DotProductCircuit {
pub fn new(left: DensePolynomial, right: DensePolynomial, weight: DensePolynomial) -> Self {
assert_eq!(left.len(), right.len());
assert_eq!(left.len(), weight.len());
DotProductCircuit {
left,
right,
weight,
}
}
pub fn evaluate(&self) -> Scalar {
(0..self.left.len())
.map(|i| &self.left[i] * &self.right[i] * &self.weight[i])
.sum()
}
pub fn split(&mut self) -> (DotProductCircuit, DotProductCircuit) {
let idx = self.left.len() / 2;
assert_eq!(idx * 2, self.left.len());
let (l1, l2) = self.left.split(idx);
let (r1, r2) = self.right.split(idx);
let (w1, w2) = self.weight.split(idx);
(
DotProductCircuit {
left: l1,
right: r1,
weight: w1,
},
DotProductCircuit {
left: l2,
right: r2,
weight: w2,
},
)
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProof {
pub proof: SumcheckInstanceProof,
pub claims: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProof {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProofBatched {
pub proof: SumcheckInstanceProof,
pub claims_prod_left: Vec<Scalar>,
pub claims_prod_right: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProofBatched {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProof {
proof: Vec<LayerProof>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProofBatched {
proof: Vec<LayerProofBatched>,
claims_dotp: (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
}
impl ProductCircuitEvalProof {
#![allow(dead_code)]
pub fn prove(
circuit: &mut ProductCircuit,
transcript: &mut Transcript,
) -> (Self, Scalar, Vec<Scalar>) {
let mut proof: Vec<LayerProof> = Vec::new();
let num_layers = circuit.left_vec.len();
let mut claim = circuit.evaluate();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
let len = circuit.left_vec[layer_id].len() + circuit.right_vec[layer_id].len();
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C.len(), len / 2);
let num_rounds_prod = poly_C.len().log2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let (proof_prod, rand_prod, claims_prod) = SumcheckInstanceProof::prove_cubic(
&claim,
num_rounds_prod,
&mut circuit.left_vec[layer_id],
&mut circuit.right_vec[layer_id],
&mut poly_C,
comb_func_prod,
transcript,
);
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = &claims_prod[0] + &r_layer * (&claims_prod[1] - &claims_prod[0]);
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof.push(LayerProof {
proof: proof_prod,
claims: claims_prod[0..claims_prod.len() - 1].to_vec(),
});
}
(ProductCircuitEvalProof { proof }, claim, rand)
}
pub fn verify(
&self,
eval: Scalar,
len: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
let num_layers = len.log2();
let mut claim = eval;
let mut rand: Vec<Scalar> = Vec::new();
let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
for i in 0..num_layers {
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod = &self.proof[i].claims;
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
assert_eq!(claims_prod[0] * claims_prod[1] * eq, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = (Scalar::one() - r_layer) * claims_prod[0] + r_layer * claims_prod[1];
num_rounds = num_rounds + 1;
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claim, rand)
}
}
impl ProductCircuitEvalProofBatched {
pub fn prove(
prod_circuit_vec: &mut Vec<&mut ProductCircuit>,
dotp_circuit_vec: &mut Vec<&mut DotProductCircuit>,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>) {
assert!(prod_circuit_vec.len() > 0);
let mut claims_dotp_final = (Vec::new(), Vec::new(), Vec::new());
let mut proof_layers: Vec<LayerProofBatched> = Vec::new();
let num_layers = prod_circuit_vec[0].left_vec.len();
let mut claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| prod_circuit_vec[i].evaluate())
.collect::<Vec<Scalar>>();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
// prepare paralell instance that share poly_C first
let len = prod_circuit_vec[0].left_vec[layer_id].len()
+ prod_circuit_vec[0].right_vec[layer_id].len();
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C_par.len(), len / 2);
let num_rounds_prod = poly_C_par.len().log2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let mut poly_A_batched_par: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_par: Vec<&mut DensePolynomial> = Vec::new();
for prod_circuit in prod_circuit_vec.iter_mut() {
poly_A_batched_par.push(&mut prod_circuit.left_vec[layer_id]);
poly_B_batched_par.push(&mut prod_circuit.right_vec[layer_id])
}
let poly_vec_par = (
&mut poly_A_batched_par,
&mut poly_B_batched_par,
&mut poly_C_par,
);
// prepare sequential instances that don't share poly_C
let mut poly_A_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_C_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
// add additional claims
for i in 0..dotp_circuit_vec.len() {
claims_to_verify.push(dotp_circuit_vec[i].evaluate());
assert_eq!(len / 2, dotp_circuit_vec[i].left.len());
assert_eq!(len / 2, dotp_circuit_vec[i].right.len());
assert_eq!(len / 2, dotp_circuit_vec[i].weight.len());
}
for dotp_circuit in dotp_circuit_vec.iter_mut() {
poly_A_batched_seq.push(&mut dotp_circuit.left);
poly_B_batched_seq.push(&mut dotp_circuit.right);
poly_C_batched_seq.push(&mut dotp_circuit.weight);
}
}
let poly_vec_seq = (
&mut poly_A_batched_seq,
&mut poly_B_batched_seq,
&mut poly_C_batched_seq,
);
// produce a fresh set of coeffs and a joint claim
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (proof, rand_prod, claims_prod, claims_dotp) = SumcheckInstanceProof::prove_cubic_batched(
&claim,
num_rounds_prod,
poly_vec_par,
poly_vec_seq,
&coeff_vec,
comb_func_prod,
transcript,
);
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
for i in 0..prod_circuit_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = claims_dotp;
for i in 0..dotp_circuit_vec.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
}
claims_dotp_final = (claims_dotp_left, claims_dotp_right, claims_dotp_weight);
}
// produce a random challenge to condense two claims into a single claim
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
.collect::<Vec<Scalar>>();
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof_layers.push(LayerProofBatched {
proof,
claims_prod_left,
claims_prod_right,
});
}
(
ProductCircuitEvalProofBatched {
proof: proof_layers,
claims_dotp: claims_dotp_final,
},
rand,
)
}
pub fn verify(
&self,
claims_prod_vec: &Vec<Scalar>,
claims_dotp_vec: &Vec<Scalar>,
len: usize,
transcript: &mut Transcript,
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
let num_layers = len.log2();
let mut rand: Vec<Scalar> = Vec::new();
let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
let mut claims_to_verify = claims_prod_vec.clone();
let mut claims_to_verify_dotp: Vec<Scalar> = Vec::new();
for i in 0..num_layers {
if i == num_layers - 1 {
claims_to_verify.extend(claims_dotp_vec);
}
// produce random coefficients, one for each instance
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
// produce a joint claim
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod_left = &self.proof[i].claims_prod_left;
let claims_prod_right = &self.proof[i].claims_prod_right;
assert_eq!(claims_prod_left.len(), claims_prod_vec.len());
assert_eq!(claims_prod_right.len(), claims_prod_vec.len());
for i in 0..claims_prod_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
let mut claim_expected: Scalar = (0..claims_prod_vec.len())
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
.sum();
// add claims from the dotp instances
if i == num_layers - 1 {
let num_prod_instances = claims_prod_vec.len();
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_left.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
claim_expected = &claim_expected
+ &coeff_vec[i + num_prod_instances]
* &claims_dotp_left[i]
* &claims_dotp_right[i]
* &claims_dotp_weight[i];
}
}
assert_eq!(claim_expected, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..claims_prod_left.len())
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
.collect::<Vec<Scalar>>();
// add claims to verify for dotp circuit
if i == num_layers - 1 {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_vec.len() / 2 {
// combine left claims
let claim_left = &claims_dotp_left[2 * i]
+ &r_layer * (&claims_dotp_left[2 * i + 1] - &claims_dotp_left[2 * i]);
let claim_right = &claims_dotp_right[2 * i]
+ &r_layer * (&claims_dotp_right[2 * i + 1] - &claims_dotp_right[2 * i]);
let claim_weight = &claims_dotp_weight[2 * i]
+ &r_layer * (&claims_dotp_weight[2 * i + 1] - &claims_dotp_weight[2 * i]);
claims_to_verify_dotp.push(claim_left);
claims_to_verify_dotp.push(claim_right);
claims_to_verify_dotp.push(claim_weight);
}
}
num_rounds = num_rounds + 1;
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claims_to_verify, claims_to_verify_dotp, rand)
}
}

55
src/profiler.rs Normal file
View File

@@ -0,0 +1,55 @@
#![allow(non_snake_case)]
extern crate flate2;
extern crate libspartan;
extern crate merlin;
extern crate rand;
use flate2::{write::ZlibEncoder, Compression};
use libspartan::math::Math;
use libspartan::r1csinstance::{R1CSCommitmentGens, R1CSInstance};
use libspartan::r1csproof::R1CSGens;
use libspartan::spartan::{SpartanGens, SpartanProof};
use libspartan::timer::Timer;
use merlin::Transcript;
pub fn main() {
for &s in [12, 16, 20].iter() {
let num_vars = (s as usize).pow2();
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let r1cs_size = inst.size();
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
Timer::print(&format!("number_of_constraints {}", num_cons));
// create a commitment to R1CSInstance
let timer_encode = Timer::new("SpartanProof::encode");
let (comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
timer_encode.stop();
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
// produce a proof of satisfiability
let timer_prove = Timer::new("SpartanProof::prove");
let mut prover_transcript = Transcript::new(b"example");
let proof = SpartanProof::prove(&inst, &decomm, vars, &input, &gens, &mut prover_transcript);
timer_prove.stop();
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
bincode::serialize_into(&mut encoder, &proof).unwrap();
let proof_encoded = encoder.finish().unwrap();
let msg_proof_len = format!("proof_compressed_len {:?}", proof_encoded.len());
Timer::print(&msg_proof_len);
let timer_verify = Timer::new("SpartanProof::verify");
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&comm, &input, &mut verifier_transcript, &gens)
.is_ok());
timer_verify.stop();
println!();
}
}

346
src/r1csinstance.rs Normal file
View File

@@ -0,0 +1,346 @@
use super::dense_mlpoly::DensePolynomial;
use super::errors::ProofVerifyError;
use super::math::Math;
use super::scalar::Scalar;
use super::sparse_mlpoly::{
MultiSparseMatPolynomialAsDense, SparseMatEntry, SparseMatPolyCommitment,
SparseMatPolyCommitmentGens, SparseMatPolyEvalProof, SparseMatPolynomial,
SparseMatPolynomialSize,
};
use super::timer::Timer;
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use rand::rngs::OsRng;
use serde::{Deserialize, Serialize};
#[derive(Debug)]
pub struct R1CSInstance {
num_cons: usize,
num_vars: usize,
num_inputs: usize,
A: SparseMatPolynomial,
B: SparseMatPolynomial,
C: SparseMatPolynomial,
}
pub struct R1CSInstanceSize {
size_A: SparseMatPolynomialSize,
size_B: SparseMatPolynomialSize,
size_C: SparseMatPolynomialSize,
}
pub struct R1CSCommitmentGens {
gens: SparseMatPolyCommitmentGens,
}
impl R1CSCommitmentGens {
pub fn new(size: &R1CSInstanceSize, label: &'static [u8]) -> R1CSCommitmentGens {
assert_eq!(size.size_A, size.size_B);
assert_eq!(size.size_A, size.size_C);
let gens = SparseMatPolyCommitmentGens::new(&size.size_A, 3, label);
R1CSCommitmentGens { gens }
}
}
pub struct R1CSCommitment {
num_cons: usize,
num_vars: usize,
num_inputs: usize,
comm: SparseMatPolyCommitment,
}
pub struct R1CSDecommitment {
dense: MultiSparseMatPolynomialAsDense,
}
impl R1CSCommitment {
pub fn get_num_cons(&self) -> usize {
self.num_cons
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn get_num_inputs(&self) -> usize {
self.num_inputs
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct R1CSInstanceEvals {
eval_A_r: Scalar,
eval_B_r: Scalar,
eval_C_r: Scalar,
}
impl R1CSInstanceEvals {
pub fn get_evaluations(&self) -> (Scalar, Scalar, Scalar) {
(self.eval_A_r, self.eval_B_r, self.eval_C_r)
}
}
impl AppendToTranscript for R1CSInstanceEvals {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"R1CSInstanceEvals_begin");
transcript.append_scalar(b"Ar_eval", &self.eval_A_r);
transcript.append_scalar(b"Br_eval", &self.eval_B_r);
transcript.append_scalar(b"Cr_eval", &self.eval_C_r);
transcript.append_message(label, b"R1CSInstanceEvals_end");
}
}
impl R1CSInstance {
pub fn new(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
A: SparseMatPolynomial,
B: SparseMatPolynomial,
C: SparseMatPolynomial,
) -> Self {
R1CSInstance {
num_cons,
num_vars,
num_inputs,
A,
B,
C,
}
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn get_num_cons(&self) -> usize {
self.num_cons
}
pub fn size(&self) -> R1CSInstanceSize {
R1CSInstanceSize {
size_A: self.A.size(),
size_B: self.B.size(),
size_C: self.C.size(),
}
}
pub fn produce_synthetic_r1cs(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
) -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
let mut csprng: OsRng = OsRng;
// assert num_cons and num_vars are power of 2
assert_eq!(num_cons.log2().pow2(), num_cons);
assert_eq!(num_vars.log2().pow2(), num_vars);
// num_inputs + 1 <= num_vars
assert!(num_inputs + 1 <= num_vars);
// z is organized as [vars,1,io]
let size_z = num_vars + num_inputs + 1;
// produce a random satisfying assignment
let Z = {
let mut Z: Vec<Scalar> = (0..size_z)
.map(|_i| Scalar::random(&mut csprng))
.collect::<Vec<Scalar>>();
Z[num_vars] = Scalar::one(); // set the constant term to 1
Z
};
// three sparse matrices
let mut A: Vec<SparseMatEntry> = Vec::new();
let mut B: Vec<SparseMatEntry> = Vec::new();
let mut C: Vec<SparseMatEntry> = Vec::new();
let one = Scalar::one();
for i in 0..num_cons {
let A_idx = i % size_z;
let B_idx = (i + 2) % size_z;
A.push(SparseMatEntry::new(i, A_idx, one));
B.push(SparseMatEntry::new(i, B_idx, one));
let AB_val = Z[A_idx] * Z[B_idx];
let C_idx = (i + 3) % size_z;
let C_val = Z[C_idx];
if C_val == Scalar::zero() {
C.push(SparseMatEntry::new(i, num_vars, AB_val));
} else {
C.push(SparseMatEntry::new(
i,
C_idx,
AB_val * C_val.invert().unwrap(),
));
}
}
let num_poly_vars_x = num_cons.log2();
let num_poly_vars_y = (2 * num_vars).log2();
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, A);
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, B);
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, C);
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, poly_A, poly_B, poly_C);
assert_eq!(
inst.is_sat(&Z[0..num_vars].to_vec(), &Z[num_vars + 1..].to_vec()),
true,
);
(inst, Z[0..num_vars].to_vec(), Z[num_vars + 1..].to_vec())
}
pub fn is_sat(&self, vars: &Vec<Scalar>, input: &Vec<Scalar>) -> bool {
assert_eq!(vars.len(), self.num_vars);
assert_eq!(input.len(), self.num_inputs);
let z = {
let mut z = vars.clone();
z.extend(&vec![Scalar::one()]);
z.extend(input);
z
};
// verify if Az * Bz - Cz = [0...]
let Az = self
.A
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
let Bz = self
.B
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
let Cz = self
.C
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
assert_eq!(Az.len(), self.num_cons);
assert_eq!(Bz.len(), self.num_cons);
assert_eq!(Cz.len(), self.num_cons);
let res: usize = (0..self.num_cons)
.map(|i| if Az[i] * Bz[i] == Cz[i] { 0 } else { 1 })
.sum();
if res > 0 {
false
} else {
true
}
}
pub fn multiply_vec(
&self,
num_rows: usize,
num_cols: usize,
z: &Vec<Scalar>,
) -> (DensePolynomial, DensePolynomial, DensePolynomial) {
assert_eq!(num_rows, self.num_cons);
assert_eq!(z.len(), num_cols);
assert!(num_cols > self.num_vars);
(
DensePolynomial::new(self.A.multiply_vec(num_rows, num_cols, z)),
DensePolynomial::new(self.B.multiply_vec(num_rows, num_cols, z)),
DensePolynomial::new(self.C.multiply_vec(num_rows, num_cols, z)),
)
}
pub fn compute_eval_table_sparse(
&self,
num_rows: usize,
num_cols: usize,
evals: &Vec<Scalar>,
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
assert_eq!(num_rows, self.num_cons);
assert!(num_cols > self.num_vars);
let evals_A = self.A.compute_eval_table_sparse(&evals, num_rows, num_cols);
let evals_B = self.B.compute_eval_table_sparse(&evals, num_rows, num_cols);
let evals_C = self.C.compute_eval_table_sparse(&evals, num_rows, num_cols);
(evals_A, evals_B, evals_C)
}
pub fn evaluate_with_tables(
&self,
evals_rx: &Vec<Scalar>,
evals_ry: &Vec<Scalar>,
) -> R1CSInstanceEvals {
R1CSInstanceEvals {
eval_A_r: self.A.evaluate_with_tables(evals_rx, evals_ry),
eval_B_r: self.B.evaluate_with_tables(evals_rx, evals_ry),
eval_C_r: self.C.evaluate_with_tables(evals_rx, evals_ry),
}
}
pub fn commit(&self, gens: &R1CSCommitmentGens) -> (R1CSCommitment, R1CSDecommitment) {
assert_eq!(self.A.get_num_nz_entries(), self.B.get_num_nz_entries());
assert_eq!(self.A.get_num_nz_entries(), self.C.get_num_nz_entries());
let (comm, dense) =
SparseMatPolynomial::multi_commit(&vec![&self.A, &self.B, &self.C], &gens.gens);
let r1cs_comm = R1CSCommitment {
num_cons: self.num_cons,
num_vars: self.num_vars,
num_inputs: self.num_inputs,
comm,
};
let r1cs_decomm = R1CSDecommitment { dense };
(r1cs_comm, r1cs_decomm)
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct R1CSEvalProof {
proof: SparseMatPolyEvalProof,
}
impl R1CSEvalProof {
pub fn prove(
decomm: &R1CSDecommitment,
rx: &Vec<Scalar>, // point at which the polynomial is evaluated
ry: &Vec<Scalar>,
evals: &R1CSInstanceEvals,
gens: &R1CSCommitmentGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> R1CSEvalProof {
let timer = Timer::new("R1CSEvalProof::prove");
let proof = SparseMatPolyEvalProof::prove(
&decomm.dense,
rx,
ry,
&vec![evals.eval_A_r, evals.eval_B_r, evals.eval_C_r],
&gens.gens,
transcript,
random_tape,
);
timer.stop();
R1CSEvalProof { proof }
}
pub fn verify(
&self,
comm: &R1CSCommitment,
rx: &Vec<Scalar>, // point at which the R1CS matrix polynomials are evaluated
ry: &Vec<Scalar>,
eval: &R1CSInstanceEvals,
gens: &R1CSCommitmentGens,
transcript: &mut Transcript,
) -> Result<(), ProofVerifyError> {
assert!(self
.proof
.verify(
&comm.comm,
rx,
ry,
&vec![eval.eval_A_r, eval.eval_B_r, eval.eval_C_r],
&gens.gens,
transcript
)
.is_ok());
Ok(())
}
}

632
src/r1csproof.rs Normal file
View File

@@ -0,0 +1,632 @@
use super::commitments::{Commitments, MultiCommitGens};
use super::dense_mlpoly::{
DensePolynomial, EqPolynomial, PolyCommitment, PolyCommitmentGens, PolyEvalProof,
};
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::math::Math;
use super::nizk::{EqualityProof, KnowledgeProof, ProductProof};
use super::r1csinstance::{R1CSInstance, R1CSInstanceEvals};
use super::scalar::Scalar;
use super::sparse_mlpoly::{SparsePolyEntry, SparsePolynomial};
use super::sumcheck::ZKSumcheckInstanceProof;
use super::timer::Timer;
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use serde::{Deserialize, Serialize};
use std::iter;
#[cfg(test)]
use super::sparse_mlpoly::{SparseMatEntry, SparseMatPolynomial};
#[derive(Serialize, Deserialize, Debug)]
pub struct R1CSProof {
comm_vars: PolyCommitment,
sc_proof_phase1: ZKSumcheckInstanceProof,
claims_phase2: (
CompressedGroup,
CompressedGroup,
CompressedGroup,
CompressedGroup,
),
pok_claims_phase2: (KnowledgeProof, ProductProof),
proof_eq_sc_phase1: EqualityProof,
sc_proof_phase2: ZKSumcheckInstanceProof,
comm_vars_at_ry: CompressedGroup,
proof_eval_vars_at_ry: PolyEvalProof,
proof_eq_sc_phase2: EqualityProof,
}
pub struct R1CSSumcheckGens {
gens_1: MultiCommitGens,
gens_3: MultiCommitGens,
gens_4: MultiCommitGens,
}
// TODO: fix passing gens_1_ref
impl R1CSSumcheckGens {
pub fn new(label: &'static [u8], gens_1_ref: &MultiCommitGens) -> Self {
let gens_1 = gens_1_ref.clone();
let gens_3 = MultiCommitGens::new(3, label);
let gens_4 = MultiCommitGens::new(4, label);
R1CSSumcheckGens {
gens_1,
gens_3,
gens_4,
}
}
}
pub struct R1CSGens {
gens_sc: R1CSSumcheckGens,
gens_pc: PolyCommitmentGens,
}
impl R1CSGens {
pub fn new(_num_cons: usize, num_vars: usize, label: &'static [u8]) -> Self {
let num_poly_vars = num_vars.log2();
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
R1CSGens { gens_sc, gens_pc }
}
}
impl R1CSProof {
fn prove_phase_one(
num_rounds: usize,
evals_tau: &mut DensePolynomial,
evals_Az: &mut DensePolynomial,
evals_Bz: &mut DensePolynomial,
evals_Cz: &mut DensePolynomial,
gens: &R1CSSumcheckGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
let comb_func = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar,
poly_D_comp: &Scalar|
-> Scalar { poly_A_comp * (poly_B_comp * poly_C_comp - poly_D_comp) };
let (sc_proof_phase_one, r, claims, blind_claim_postsc) =
ZKSumcheckInstanceProof::prove_cubic_with_additive_term(
&Scalar::zero(), // claim is zero
&Scalar::zero(), // blind for claim is also zero
num_rounds,
evals_tau,
evals_Az,
evals_Bz,
evals_Cz,
comb_func,
&gens.gens_1,
&gens.gens_4,
transcript,
random_tape,
);
(sc_proof_phase_one, r, claims, blind_claim_postsc)
}
fn prove_phase_two(
num_rounds: usize,
claim: &Scalar,
blind_claim: &Scalar,
evals_z: &mut DensePolynomial,
evals_ABC: &mut DensePolynomial,
gens: &R1CSSumcheckGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
let comb_func =
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
let (sc_proof_phase_two, r, claims, blind_claim_postsc) = ZKSumcheckInstanceProof::prove_quad(
claim,
blind_claim,
num_rounds,
evals_z,
evals_ABC,
comb_func,
&gens.gens_1,
&gens.gens_3,
transcript,
random_tape,
);
(sc_proof_phase_two, r, claims, blind_claim_postsc)
}
fn protocol_name() -> &'static [u8] {
b"R1CS proof"
}
pub fn prove(
inst: &R1CSInstance,
vars: Vec<Scalar>,
input: &Vec<Scalar>,
gens: &R1CSGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (R1CSProof, Vec<Scalar>, Vec<Scalar>) {
let timer_prove = Timer::new("R1CSProof::prove");
transcript.append_protocol_name(R1CSProof::protocol_name());
// we currently require the number of |inputs| + 1 to be at most number of vars
assert!(input.len() + 1 <= vars.len());
let timer_commit = Timer::new("polycommit");
let (poly_vars, comm_vars, blinds_vars) = {
// create a multilinear polynomial using the supplied assignment for variables
let poly_vars = DensePolynomial::new(vars.clone());
// produce a commitment to the satisfying assignment
let (comm_vars, blinds_vars) = poly_vars.commit(true, &gens.gens_pc, Some(random_tape));
// add the commitment to the prover's transcript
comm_vars.append_to_transcript(b"poly_commitment", transcript);
(poly_vars, comm_vars, blinds_vars)
};
timer_commit.stop();
let timer_sc_proof_phase1 = Timer::new("prove_sc_phase_one");
// append input to variables to create a single vector z
let z = {
let num_inputs = input.len();
let num_vars = vars.len();
let mut z = vars;
z.extend(&vec![Scalar::one()]); // add constant term in z
z.extend(input);
z.extend(&vec![Scalar::zero(); num_vars - num_inputs - 1]); // we will pad with zeros
z
};
// derive the verifier's challenge tau
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log2(), z.len().log2());
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
// compute the initial evaluation table for R(\tau, x)
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau.clone()).evals());
let (mut poly_Az, mut poly_Bz, mut poly_Cz) =
inst.multiply_vec(inst.get_num_cons(), z.len(), &z);
let (sc_proof_phase1, rx, _claims_phase1, blind_claim_postsc1) = R1CSProof::prove_phase_one(
num_rounds_x,
&mut poly_tau,
&mut poly_Az,
&mut poly_Bz,
&mut poly_Cz,
&gens.gens_sc,
transcript,
random_tape,
);
assert_eq!(poly_tau.len(), 1);
assert_eq!(poly_Az.len(), 1);
assert_eq!(poly_Bz.len(), 1);
assert_eq!(poly_Cz.len(), 1);
timer_sc_proof_phase1.stop();
let (tau_claim, Az_claim, Bz_claim, Cz_claim) =
(&poly_tau[0], &poly_Az[0], &poly_Bz[0], &poly_Cz[0]);
let (Az_blind, Bz_blind, Cz_blind, prod_Az_Bz_blind) = (
random_tape.challenge_scalar(b"Az_blind"),
random_tape.challenge_scalar(b"Bz_blind"),
random_tape.challenge_scalar(b"Cz_blind"),
random_tape.challenge_scalar(b"prod_Az_Bz_blind"),
);
let (pok_Cz_claim, comm_Cz_claim) = {
KnowledgeProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
&Cz_claim,
&Cz_blind,
)
};
let (proof_prod, comm_Az_claim, comm_Bz_claim, comm_prod_Az_Bz_claims) = {
let prod = Az_claim * Bz_claim;
ProductProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
&Az_claim,
&Az_blind,
&Bz_claim,
&Bz_blind,
&prod,
&prod_Az_Bz_blind,
)
};
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
// prove the final step of sum-check #1
let taus_bound_rx = tau_claim;
let blind_expected_claim_postsc1 = taus_bound_rx * (&prod_Az_Bz_blind - &Cz_blind);
let claim_post_phase1 = (Az_claim * Bz_claim - Cz_claim) * taus_bound_rx;
let (proof_eq_sc_phase1, _C1, _C2) = EqualityProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
&claim_post_phase1,
&blind_expected_claim_postsc1,
&claim_post_phase1,
&blind_claim_postsc1,
);
let timer_sc_proof_phase2 = Timer::new("prove_sc_phase_two");
// combine the three claims into a single claim
let r_A = transcript.challenge_scalar(b"challenege_Az");
let r_B = transcript.challenge_scalar(b"challenege_Bz");
let r_C = transcript.challenge_scalar(b"challenege_Cz");
let claim_phase2 = &r_A * Az_claim + &r_B * Bz_claim + &r_C * Cz_claim;
let blind_claim_phase2 = &r_A * Az_blind + &r_B * Bz_blind + &r_C * Cz_blind;
let evals_ABC = {
// compute the initial evaluation table for R(\tau, x)
let evals_rx = EqPolynomial::new(rx.clone()).evals();
let (evals_A, evals_B, evals_C) =
inst.compute_eval_table_sparse(inst.get_num_cons(), z.len(), &evals_rx);
assert_eq!(evals_A.len(), evals_B.len());
assert_eq!(evals_A.len(), evals_C.len());
(0..evals_A.len())
.map(|i| &r_A * &evals_A[i] + &r_B * &evals_B[i] + &r_C * &evals_C[i])
.collect::<Vec<Scalar>>()
};
// another instance of the sum-check protocol
let (sc_proof_phase2, ry, claims_phase2, blind_claim_postsc2) = R1CSProof::prove_phase_two(
num_rounds_y,
&claim_phase2,
&blind_claim_phase2,
&mut DensePolynomial::new(z),
&mut DensePolynomial::new(evals_ABC),
&gens.gens_sc,
transcript,
random_tape,
);
timer_sc_proof_phase2.stop();
let timer_polyeval = Timer::new("polyeval");
let eval_vars_at_ry = poly_vars.evaluate(&ry[1..].to_vec());
let blind_eval = random_tape.challenge_scalar(b"blind_eval");
let (proof_eval_vars_at_ry, comm_vars_at_ry) = PolyEvalProof::prove(
&poly_vars,
Some(&blinds_vars),
&ry[1..].to_vec(),
&eval_vars_at_ry,
Some(&blind_eval),
&gens.gens_pc,
transcript,
random_tape,
);
timer_polyeval.stop();
// prove the final step of sum-check #2
let blind_eval_Z_at_ry = (Scalar::one() - &ry[0]) * blind_eval;
let blind_expected_claim_postsc2 = &claims_phase2[1] * &blind_eval_Z_at_ry;
let claim_post_phase2 = &claims_phase2[0] * &claims_phase2[1];
let (proof_eq_sc_phase2, _C1, _C2) = EqualityProof::prove(
&gens.gens_pc.gens.gens_1,
transcript,
random_tape,
&claim_post_phase2,
&blind_expected_claim_postsc2,
&claim_post_phase2,
&blind_claim_postsc2,
);
timer_prove.stop();
(
R1CSProof {
comm_vars,
sc_proof_phase1,
claims_phase2: (
comm_Az_claim,
comm_Bz_claim,
comm_Cz_claim,
comm_prod_Az_Bz_claims,
),
pok_claims_phase2: (pok_Cz_claim, proof_prod),
proof_eq_sc_phase1,
sc_proof_phase2,
comm_vars_at_ry,
proof_eval_vars_at_ry,
proof_eq_sc_phase2,
},
rx,
ry,
)
}
pub fn verify(
&self,
num_vars: usize,
num_cons: usize,
input: &Vec<Scalar>,
evals: &R1CSInstanceEvals,
transcript: &mut Transcript,
gens: &R1CSGens,
) -> Result<(Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
transcript.append_protocol_name(R1CSProof::protocol_name());
let n = num_vars;
// add the commitment to the verifier's transcript
self
.comm_vars
.append_to_transcript(b"poly_commitment", transcript);
let (num_rounds_x, num_rounds_y) = (num_cons.log2(), (2 * num_vars).log2());
// derive the verifier's challenge tau
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
// verify the first sum-check instance
let claim_phase1 = Scalar::zero()
.commit(&Scalar::zero(), &gens.gens_sc.gens_1)
.compress();
let (comm_claim_post_phase1, rx) = self
.sc_proof_phase1
.verify(
&claim_phase1,
num_rounds_x,
3,
&gens.gens_sc.gens_1,
&gens.gens_sc.gens_4,
transcript,
)
.unwrap();
// perform the intermediate sum-check test with claimed Az, Bz, and Cz
let (comm_Az_claim, comm_Bz_claim, comm_Cz_claim, comm_prod_Az_Bz_claims) = &self.claims_phase2;
let (pok_Cz_claim, proof_prod) = &self.pok_claims_phase2;
assert!(pok_Cz_claim
.verify(&gens.gens_sc.gens_1, transcript, &comm_Cz_claim)
.is_ok());
assert!(proof_prod
.verify(
&gens.gens_sc.gens_1,
transcript,
&comm_Az_claim,
&comm_Bz_claim,
&comm_prod_Az_Bz_claims
)
.is_ok());
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
let taus_bound_rx: Scalar = (0..rx.len())
.map(|i| &rx[i] * &tau[i] + (&Scalar::one() - &rx[i]) * (&Scalar::one() - &tau[i]))
.product();
let expected_claim_post_phase1 = (&taus_bound_rx
* (comm_prod_Az_Bz_claims.decompress().unwrap() - comm_Cz_claim.decompress().unwrap()))
.compress();
// verify proof that expected_claim_post_phase1 == claim_post_phase1
assert!(self
.proof_eq_sc_phase1
.verify(
&gens.gens_sc.gens_1,
transcript,
&expected_claim_post_phase1,
&comm_claim_post_phase1,
)
.is_ok());
// derive three public challenges and then derive a joint claim
let r_A = transcript.challenge_scalar(b"challenege_Az");
let r_B = transcript.challenge_scalar(b"challenege_Bz");
let r_C = transcript.challenge_scalar(b"challenege_Cz");
// r_A * comm_Az_claim + r_B * comm_Bz_claim + r_C * comm_Cz_claim;
let comm_claim_phase2 = GroupElement::vartime_multiscalar_mul(
iter::once(&r_A)
.chain(iter::once(&r_B))
.chain(iter::once(&r_C)),
iter::once(&comm_Az_claim)
.chain(iter::once(&comm_Bz_claim))
.chain(iter::once(&comm_Cz_claim))
.map(|pt| pt.decompress().unwrap())
.collect::<Vec<GroupElement>>(),
)
.compress();
// verify the joint claim with a sum-check protocol
let (comm_claim_post_phase2, ry) = self
.sc_proof_phase2
.verify(
&comm_claim_phase2,
num_rounds_y,
2,
&gens.gens_sc.gens_1,
&gens.gens_sc.gens_3,
transcript,
)
.unwrap();
// verify Z(ry) proof against the initial commitment
assert!(self
.proof_eval_vars_at_ry
.verify(
&gens.gens_pc,
transcript,
&ry[1..].to_vec(),
&self.comm_vars_at_ry,
&self.comm_vars
)
.is_ok());
let poly_input_eval = {
// constant term
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
//remaining inputs
input_as_sparse_poly_entries.extend(
(0..input.len())
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
.collect::<Vec<SparsePolyEntry>>(),
);
SparsePolynomial::new(n.log2(), input_as_sparse_poly_entries).evaluate(&ry[1..].to_vec())
};
// compute commitment to eval_Z_at_ry = (Scalar::one() - ry[0]) * self.eval_vars_at_ry + ry[0] * poly_input_eval
let comm_eval_Z_at_ry = GroupElement::vartime_multiscalar_mul(
iter::once(Scalar::one() - &ry[0]).chain(iter::once(ry[0])),
iter::once(&self.comm_vars_at_ry.decompress().unwrap()).chain(iter::once(
&poly_input_eval.commit(&Scalar::zero(), &gens.gens_pc.gens.gens_1),
)),
);
// perform the final check in the second sum-check protocol
let (eval_A_r, eval_B_r, eval_C_r) = evals.get_evaluations();
let expected_claim_post_phase2 =
(&(&r_A * &eval_A_r + &r_B * &eval_B_r + &r_C * &eval_C_r) * comm_eval_Z_at_ry).compress();
// verify proof that expected_claim_post_phase1 == claim_post_phase1
assert!(self
.proof_eq_sc_phase2
.verify(
&gens.gens_sc.gens_1,
transcript,
&expected_claim_post_phase2,
&comm_claim_post_phase2,
)
.is_ok());
Ok((rx, ry))
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::rngs::OsRng;
fn produce_tiny_r1cs() -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
// three constraints over five variables Z1, Z2, Z3, Z4, and Z5
// rounded to the nearest power of two
let num_cons = 128;
let num_vars = 256;
let num_inputs = 2;
// encode the above constraints into three matrices
let mut A: Vec<SparseMatEntry> = Vec::new();
let mut B: Vec<SparseMatEntry> = Vec::new();
let mut C: Vec<SparseMatEntry> = Vec::new();
let one = Scalar::one();
// constraint 0 entries
// (Z1 + Z2) * I0 - Z3 = 0;
A.push(SparseMatEntry::new(0, 0, one));
A.push(SparseMatEntry::new(0, 1, one));
B.push(SparseMatEntry::new(0, num_vars + 1, one));
C.push(SparseMatEntry::new(0, 2, one));
// constraint 1 entries
// (Z1 + I1) * (Z3) - Z4 = 0
A.push(SparseMatEntry::new(1, 0, one));
A.push(SparseMatEntry::new(1, num_vars + 2, one));
B.push(SparseMatEntry::new(1, 2, one));
C.push(SparseMatEntry::new(1, 3, one));
// constraint 3 entries
// Z5 * 1 - 0 = 0
A.push(SparseMatEntry::new(2, 4, one));
B.push(SparseMatEntry::new(2, num_vars, one));
let num_vars_x = num_cons.log2();
let num_vars_y = (2 * num_vars).log2();
let poly_A = SparseMatPolynomial::new(num_vars_x, num_vars_y, A);
let poly_B = SparseMatPolynomial::new(num_vars_x, num_vars_y, B);
let poly_C = SparseMatPolynomial::new(num_vars_x, num_vars_y, C);
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, poly_A, poly_B, poly_C);
// compute a satisfying assignment
let mut csprng: OsRng = OsRng;
let i0 = Scalar::random(&mut csprng);
let i1 = Scalar::random(&mut csprng);
let z1 = Scalar::random(&mut csprng);
let z2 = Scalar::random(&mut csprng);
let z3 = (z1 + z2) * i0; // constraint 1: (Z1 + Z2) * I0 - Z3 = 0;
let z4 = (z1 + i1) * z3; // constraint 2: (Z1 + I1) * (Z3) - Z4 = 0
let z5 = Scalar::zero(); //constraint 3
let mut vars = vec![Scalar::zero(); num_vars];
vars[0] = z1;
vars[1] = z2;
vars[2] = z3;
vars[3] = z4;
vars[4] = z5;
let mut input = vec![Scalar::zero(); num_inputs];
input[0] = i0;
input[1] = i1;
(inst, vars, input)
}
#[test]
fn test_tiny_r1cs() {
let (inst, vars, input) = tests::produce_tiny_r1cs();
let is_sat = inst.is_sat(&vars, &input);
assert_eq!(is_sat, true);
}
#[test]
fn test_synthetic_r1cs() {
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(1024, 1024, 10);
let is_sat = inst.is_sat(&vars, &input);
assert_eq!(is_sat, true);
}
#[test]
pub fn check_r1cs_proof() {
let num_vars = 1024;
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let gens = R1CSGens::new(num_cons, num_vars, b"test-m");
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"proof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
let mut prover_transcript = Transcript::new(b"example");
let (proof, rx, ry) = R1CSProof::prove(
&inst,
vars,
&input,
&gens,
&mut prover_transcript,
&mut random_tape,
);
let eval_table_rx = EqPolynomial::new(rx).evals();
let eval_table_ry = EqPolynomial::new(ry).evals();
let inst_evals = inst.evaluate_with_tables(&eval_table_rx, &eval_table_ry);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(
inst.get_num_vars(),
inst.get_num_cons(),
&input,
&inst_evals,
&mut verifier_transcript,
&gens,
)
.is_ok());
}
}

48
src/scalar.rs Normal file
View File

@@ -0,0 +1,48 @@
pub type Scalar = super::scalar_25519::Scalar;
pub type ScalarBytes = curve25519_dalek::scalar::Scalar;
pub trait ScalarFromPrimitives {
fn to_scalar(self) -> Scalar;
}
impl ScalarFromPrimitives for usize {
#[inline]
fn to_scalar(self) -> Scalar {
(0..self).map(|_i| Scalar::one()).sum()
}
}
impl ScalarFromPrimitives for bool {
#[inline]
fn to_scalar(self) -> Scalar {
if self {
Scalar::one()
} else {
Scalar::zero()
}
}
}
pub trait ScalarBytesFromScalar {
fn decompress_scalar(s: &Scalar) -> ScalarBytes;
fn decompress_vec(v: &Vec<Scalar>) -> Vec<ScalarBytes>;
fn decompress_seq(s: &[Scalar]) -> Vec<ScalarBytes>;
}
impl ScalarBytesFromScalar for Scalar {
fn decompress_scalar(s: &Scalar) -> ScalarBytes {
ScalarBytes::from_bytes_mod_order(s.to_bytes())
}
fn decompress_vec(v: &Vec<Scalar>) -> Vec<ScalarBytes> {
(0..v.len())
.map(|i| Scalar::decompress_scalar(&v[i]))
.collect::<Vec<ScalarBytes>>()
}
fn decompress_seq(s: &[Scalar]) -> Vec<ScalarBytes> {
(0..s.len())
.map(|i| Scalar::decompress_scalar(&s[i]))
.collect::<Vec<ScalarBytes>>()
}
}

1213
src/scalar_25519.rs Executable file

File diff suppressed because it is too large Load Diff

1721
src/sparse_mlpoly.rs Normal file

File diff suppressed because it is too large Load Diff

190
src/spartan.rs Normal file
View File

@@ -0,0 +1,190 @@
use super::dense_mlpoly::EqPolynomial;
use super::errors::ProofVerifyError;
use super::r1csinstance::{
R1CSCommitment, R1CSCommitmentGens, R1CSDecommitment, R1CSEvalProof, R1CSInstance,
R1CSInstanceEvals,
};
use super::r1csproof::{R1CSGens, R1CSProof};
use super::scalar::Scalar;
use super::timer::Timer;
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use rand::rngs::OsRng;
use serde::{Deserialize, Serialize};
pub struct SpartanGens {
gens_r1cs_sat: R1CSGens,
gens_r1cs_eval: R1CSCommitmentGens,
}
impl SpartanGens {
pub fn new(gens_r1cs_sat: R1CSGens, gens_r1cs_eval: R1CSCommitmentGens) -> SpartanGens {
SpartanGens {
gens_r1cs_sat,
gens_r1cs_eval,
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct SpartanProof {
r1cs_sat_proof: R1CSProof,
inst_evals: R1CSInstanceEvals,
r1cs_eval_proof: R1CSEvalProof,
}
impl SpartanProof {
fn protocol_name() -> &'static [u8] {
b"Spartan proof"
}
/// A public computation to create a commitment to an R1CS instance
pub fn encode(
inst: &R1CSInstance,
gens: &R1CSCommitmentGens,
) -> (R1CSCommitment, R1CSDecommitment) {
inst.commit(gens)
}
/// A method to produce a proof of the satisfiability of an R1CS instance
pub fn prove(
inst: &R1CSInstance,
decomm: &R1CSDecommitment,
vars: Vec<Scalar>,
input: &Vec<Scalar>,
gens: &SpartanGens,
transcript: &mut Transcript,
) -> SpartanProof {
// we create a Transcript object seeded with a random Scalar
// to aid the prover produce its randomness
let mut random_tape = {
let mut csprng: OsRng = OsRng;
let mut tape = Transcript::new(b"SpartanProof");
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
tape
};
transcript.append_protocol_name(SpartanProof::protocol_name());
let (r1cs_sat_proof, rx, ry) = {
let (proof, rx, ry) = R1CSProof::prove(
inst,
vars,
input,
&gens.gens_r1cs_sat,
transcript,
&mut random_tape,
);
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
(proof, rx, ry)
};
// We send evaluations of A, B, C at r = (rx, ry) as claims
// to enable the verifier complete the first sum-check
let timer_eval = Timer::new("eval_sparse_polys");
let inst_evals = {
let eval_table_rx = EqPolynomial::new(rx.clone()).evals();
let eval_table_ry = EqPolynomial::new(ry.clone()).evals();
inst.evaluate_with_tables(&eval_table_rx, &eval_table_ry)
};
inst_evals.append_to_transcript(b"r1cs_inst_evals", transcript);
timer_eval.stop();
let r1cs_eval_proof = {
let proof = R1CSEvalProof::prove(
decomm,
&rx,
&ry,
&inst_evals,
&gens.gens_r1cs_eval,
transcript,
&mut random_tape,
);
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
Timer::print(&format!("len_r1cs_eval_proof {:?}", proof_encoded.len()));
proof
};
SpartanProof {
r1cs_sat_proof,
inst_evals,
r1cs_eval_proof,
}
}
/// A method to verify the proof of the satisfiability of an R1CS instance
pub fn verify(
&self,
comm: &R1CSCommitment,
input: &Vec<Scalar>,
transcript: &mut Transcript,
gens: &SpartanGens,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(SpartanProof::protocol_name());
let timer_sat_proof = Timer::new("verify_sat_proof");
assert_eq!(input.len(), comm.get_num_inputs());
let (rx, ry) = self
.r1cs_sat_proof
.verify(
comm.get_num_vars(),
comm.get_num_cons(),
input,
&self.inst_evals,
transcript,
&gens.gens_r1cs_sat,
)
.unwrap();
timer_sat_proof.stop();
let timer_eval_proof = Timer::new("verify_eval_proof");
self
.inst_evals
.append_to_transcript(b"r1cs_inst_evals", transcript);
assert!(self
.r1cs_eval_proof
.verify(
comm,
&rx,
&ry,
&self.inst_evals,
&gens.gens_r1cs_eval,
transcript
)
.is_ok());
timer_eval_proof.stop();
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
pub fn check_spartan_proof() {
let num_vars = 256;
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let r1cs_size = inst.size();
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
// create a commitment to R1CSInstance
let (comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
let mut prover_transcript = Transcript::new(b"example");
let proof = SpartanProof::prove(&inst, &decomm, vars, &input, &gens, &mut prover_transcript);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&comm, &input, &mut verifier_transcript, &gens)
.is_ok());
}
}

911
src/sumcheck.rs Normal file
View File

@@ -0,0 +1,911 @@
use super::commitments::{Commitments, MultiCommitGens};
use super::dense_mlpoly::DensePolynomial;
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::nizk::DotProductProof;
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use super::unipoly::{CompressedUniPoly, UniPoly};
use itertools::izip;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
use std::iter;
#[derive(Serialize, Deserialize, Debug)]
pub struct SumcheckInstanceProof {
compressed_polys: Vec<CompressedUniPoly>,
}
impl SumcheckInstanceProof {
pub fn new(compressed_polys: Vec<CompressedUniPoly>) -> SumcheckInstanceProof {
SumcheckInstanceProof { compressed_polys }
}
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> Result<(Scalar, Vec<Scalar>), ProofVerifyError> {
let mut e = claim;
let mut r: Vec<Scalar> = Vec::new();
// verify that there is a univariate polynomial for each round
assert_eq!(self.compressed_polys.len(), num_rounds);
for i in 0..self.compressed_polys.len() {
let poly = self.compressed_polys[i].decompress(&e);
// verify degree bound
assert_eq!(poly.degree(), degree_bound);
// check if G_k(0) + G_k(1) = e
assert_eq!(poly.eval_at_zero() + poly.eval_at_one(), e);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_i = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_i);
// evaluate the claimed degree-ell polynomial at r_i
e = poly.evaluate(&r_i);
}
Ok((e, r))
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ZKSumcheckInstanceProof {
comm_polys: Vec<CompressedGroup>,
comm_evals: Vec<CompressedGroup>,
proofs: Vec<DotProductProof>,
}
impl ZKSumcheckInstanceProof {
pub fn new(
comm_polys: Vec<CompressedGroup>,
comm_evals: Vec<CompressedGroup>,
proofs: Vec<DotProductProof>,
) -> Self {
ZKSumcheckInstanceProof {
comm_polys,
comm_evals,
proofs,
}
}
pub fn verify(
&self,
comm_claim: &CompressedGroup,
num_rounds: usize,
degree_bound: usize,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
) -> Result<(CompressedGroup, Vec<Scalar>), ProofVerifyError> {
// verify degree bound
assert_eq!(gens_n.n, degree_bound + 1);
// verify that there is a univariate polynomial for each round
assert_eq!(self.comm_polys.len(), num_rounds);
assert_eq!(self.comm_evals.len(), num_rounds);
let mut r: Vec<Scalar> = Vec::new();
for i in 0..self.comm_polys.len() {
let comm_poly = &self.comm_polys[i];
// append the prover's polynomial to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
//derive the verifier's challenge for the next round
let r_i = transcript.challenge_scalar(b"challenge_nextround");
// verify the proof of sum-check and evals
let res = {
let comm_claim_per_round = if i == 0 {
comm_claim
} else {
&self.comm_evals[i - 1]
};
let comm_eval = &self.comm_evals[i];
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let comm_target = GroupElement::vartime_multiscalar_mul(
w.iter(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect::<Vec<GroupElement>>(),
)
.compress();
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); degree_bound + 1];
a[0] = a[0] + Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); degree_bound + 1];
for j in 1..a.len() {
a[j] = &a[j - 1] * &r_i;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
.collect::<Vec<Scalar>>()
};
self.proofs[i]
.verify(
gens_1,
gens_n,
transcript,
&a,
&self.comm_polys[i],
&comm_target,
)
.is_ok()
};
assert!(res);
r.push(r_i);
}
Ok((self.comm_evals[self.comm_evals.len() - 1], r))
}
}
impl SumcheckInstanceProof {
pub fn prove_quad<F>(
claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
comb_func: F,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>)
where
F: Fn(&Scalar, &Scalar) -> Scalar,
{
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut quad_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
eval_point_2 = &eval_point_2 + comb_func(&poly_A_bound_point, &poly_B_bound_point);
}
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
e = poly.evaluate(&r_j);
quad_polys.push(poly.compress());
}
(
SumcheckInstanceProof::new(quad_polys),
r,
vec![poly_A[0], poly_B[0]],
)
}
pub fn prove_cubic<F>(
claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
poly_C: &mut DensePolynomial,
comb_func: F,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>)
where
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
{
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
eval_point_2 = &eval_point_2
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
eval_point_3 = &eval_point_3
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
e = poly.evaluate(&r_j);
cubic_polys.push(poly.compress());
}
(
SumcheckInstanceProof::new(cubic_polys),
r,
vec![poly_A[0], poly_B[0], poly_C[0]],
)
}
pub fn prove_cubic_with_additive_term<F>(
claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
poly_C: &mut DensePolynomial,
poly_D: &mut DensePolynomial,
comb_func: F,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>)
where
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
{
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
let poly_D_bound_point = &poly_D[len + i] + &poly_D[len + i] - &poly_D[i];
eval_point_2 = &eval_point_2
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
let poly_D_bound_point = &poly_D_bound_point + &poly_D[len + i] - &poly_D[i];
eval_point_3 = &eval_point_3
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
}
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
poly_D.bound_poly_var_top(&r_j);
e = poly.evaluate(&r_j);
cubic_polys.push(poly.compress());
}
(
SumcheckInstanceProof::new(cubic_polys),
r,
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
)
}
pub fn prove_cubic_batched<F>(
claim: &Scalar,
num_rounds: usize,
poly_vec_par: (
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
&mut DensePolynomial,
),
poly_vec_seq: (
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
),
coeffs: &[Scalar],
comb_func: F,
transcript: &mut Transcript,
) -> (
Self,
Vec<Scalar>,
(Vec<Scalar>, Vec<Scalar>, Scalar),
(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
)
where
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
{
let (poly_A_vec_par, poly_B_vec_par, poly_C_par) = poly_vec_par;
let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
//let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut evals: Vec<(Scalar, Scalar, Scalar)> = Vec::new();
for (poly_A, poly_B) in poly_A_vec_par.iter().zip(poly_B_vec_par.iter()) {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C_par[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_par[len + i] + &poly_C_par[len + i] - &poly_C_par[i];
eval_point_2 = &eval_point_2
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_bound_point + &poly_C_par[len + i] - &poly_C_par[i];
eval_point_3 = &eval_point_3
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
evals.push((eval_point_0, eval_point_2, eval_point_3));
}
for (poly_A, poly_B, poly_C) in izip!(
poly_A_vec_seq.iter(),
poly_B_vec_seq.iter(),
poly_C_vec_seq.iter()
) {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
eval_point_2 = &eval_point_2
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
eval_point_3 = &eval_point_3
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
evals.push((eval_point_0, eval_point_2, eval_point_3));
}
let evals_combined_0 = (0..evals.len()).map(|i| evals[i].0 * coeffs[i]).sum();
let evals_combined_2 = (0..evals.len()).map(|i| evals[i].1 * coeffs[i]).sum();
let evals_combined_3 = (0..evals.len()).map(|i| evals[i].2 * coeffs[i]).sum();
let evals = vec![
evals_combined_0,
e - evals_combined_0,
evals_combined_2,
evals_combined_3,
];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
for (poly_A, poly_B) in poly_A_vec_par.iter_mut().zip(poly_B_vec_par.iter_mut()) {
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
}
poly_C_par.bound_poly_var_top(&r_j);
for (poly_A, poly_B, poly_C) in izip!(
poly_A_vec_seq.iter_mut(),
poly_B_vec_seq.iter_mut(),
poly_C_vec_seq.iter_mut()
) {
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
}
e = poly.evaluate(&r_j);
cubic_polys.push(poly.compress());
}
let poly_A_par_final = (0..poly_A_vec_par.len())
.map(|i| poly_A_vec_par[i][0])
.collect();
let poly_B_par_final = (0..poly_B_vec_par.len())
.map(|i| poly_B_vec_par[i][0])
.collect();
let claims_prod = (poly_A_par_final, poly_B_par_final, poly_C_par[0]);
let poly_A_seq_final = (0..poly_A_vec_seq.len())
.map(|i| poly_A_vec_seq[i][0])
.collect();
let poly_B_seq_final = (0..poly_B_vec_seq.len())
.map(|i| poly_B_vec_seq[i][0])
.collect();
let poly_C_seq_final = (0..poly_C_vec_seq.len())
.map(|i| poly_C_vec_seq[i][0])
.collect();
let claims_dotp = (poly_A_seq_final, poly_B_seq_final, poly_C_seq_final);
(
SumcheckInstanceProof::new(cubic_polys),
r,
claims_prod,
claims_dotp,
)
}
}
impl ZKSumcheckInstanceProof {
pub fn prove_quad<F>(
claim: &Scalar,
blind_claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
comb_func: F,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
where
F: Fn(&Scalar, &Scalar) -> Scalar,
{
let (blinds_poly, blinds_evals) = (
random_tape.challenge_vector(b"blinds_poly", num_rounds),
random_tape.challenge_vector(b"blinds_evals", num_rounds),
);
let mut claim_per_round = *claim;
let mut comm_claim_per_round = claim_per_round.commit(&blind_claim, &gens_1).compress();
let mut r: Vec<Scalar> = Vec::new();
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
let mut proofs: Vec<DotProductProof> = Vec::new();
for j in 0..num_rounds {
let (poly, comm_poly) = {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
eval_point_2 = &eval_point_2 + comb_func(&poly_A_bound_point, &poly_B_bound_point);
}
let evals = vec![eval_point_0, claim_per_round - eval_point_0, eval_point_2];
let poly = UniPoly::from_evals(&evals);
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
(poly, comm_poly)
};
// append the prover's message to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
comm_polys.push(comm_poly);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
// produce a proof of sum-check and of evaluation
let (proof, claim_next_round, comm_claim_next_round) = {
let eval = poly.evaluate(&r_j);
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
// we need to prove the following under homomorphic commitments:
// (1) poly(0) + poly(1) = claim_per_round
// (2) poly(r_j) = eval
// Our technique is to leverage dot product proofs:
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
// for efficiency we batch them using random weights
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let target = &w[0] * &claim_per_round + &w[1] * &eval;
let comm_target = GroupElement::vartime_multiscalar_mul(
w.iter(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect::<Vec<GroupElement>>(),
)
.compress();
let blind = {
let blind_sc = if j == 0 {
blind_claim
} else {
&blinds_evals[j - 1]
};
let blind_eval = &blinds_evals[j];
&w[0] * blind_sc + &w[1] * blind_eval
};
assert_eq!(target.commit(&blind, &gens_1).compress(), comm_target);
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
a[0] = a[0] + Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
for j in 1..a.len() {
a[j] = &a[j - 1] * &r_j;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
.collect::<Vec<Scalar>>()
};
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
gens_1,
gens_n,
transcript,
random_tape,
&poly.as_vec(),
&blinds_poly[j],
&a,
&target,
&blind,
);
(proof, eval, comm_eval)
};
claim_per_round = claim_next_round;
comm_claim_per_round = comm_claim_next_round;
proofs.push(proof);
r.push(r_j);
comm_evals.push(comm_claim_per_round);
}
(
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
r,
vec![poly_A[0], poly_B[0]],
blinds_evals[num_rounds - 1],
)
}
pub fn prove_cubic_with_additive_term<F>(
claim: &Scalar,
blind_claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
poly_C: &mut DensePolynomial,
poly_D: &mut DensePolynomial,
comb_func: F,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
where
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
{
let (blinds_poly, blinds_evals) = (
random_tape.challenge_vector(b"blinds_poly", num_rounds),
random_tape.challenge_vector(b"blinds_evals", num_rounds),
);
let mut claim_per_round = *claim;
let mut comm_claim_per_round = claim_per_round.commit(&blind_claim, &gens_1).compress();
let mut r: Vec<Scalar> = Vec::new();
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
let mut proofs: Vec<DotProductProof> = Vec::new();
for j in 0..num_rounds {
let (poly, comm_poly) = {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
let poly_D_bound_point = &poly_D[len + i] + &poly_D[len + i] - &poly_D[i];
eval_point_2 = &eval_point_2
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
let poly_D_bound_point = &poly_D_bound_point + &poly_D[len + i] - &poly_D[i];
eval_point_3 = &eval_point_3
+ comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
}
let evals = vec![
eval_point_0,
claim_per_round - eval_point_0,
eval_point_2,
eval_point_3,
];
let poly = UniPoly::from_evals(&evals);
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
(poly, comm_poly)
};
// append the prover's message to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
comm_polys.push(comm_poly);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
poly_D.bound_poly_var_top(&r_j);
// produce a proof of sum-check and of evaluation
let (proof, claim_next_round, comm_claim_next_round) = {
let eval = poly.evaluate(&r_j);
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
// we need to prove the following under homomorphic commitments:
// (1) poly(0) + poly(1) = claim_per_round
// (2) poly(r_j) = eval
// Our technique is to leverage dot product proofs:
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
// for efficiency we batch them using random weights
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let target = &w[0] * &claim_per_round + &w[1] * &eval;
let comm_target = GroupElement::vartime_multiscalar_mul(
w.iter(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect::<Vec<GroupElement>>(),
)
.compress();
let blind = {
let blind_sc = if j == 0 {
blind_claim
} else {
&blinds_evals[j - 1]
};
let blind_eval = &blinds_evals[j];
&w[0] * blind_sc + &w[1] * blind_eval
};
assert_eq!(target.commit(&blind, &gens_1).compress(), comm_target);
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
a[0] = a[0] + Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
for j in 1..a.len() {
a[j] = &a[j - 1] * &r_j;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
.collect::<Vec<Scalar>>()
};
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
gens_1,
gens_n,
transcript,
random_tape,
&poly.as_vec(),
&blinds_poly[j],
&a,
&target,
&blind,
);
(proof, eval, comm_eval)
};
proofs.push(proof);
claim_per_round = claim_next_round;
comm_claim_per_round = comm_claim_next_round;
r.push(r_j);
comm_evals.push(comm_claim_per_round);
}
(
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
r,
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
blinds_evals[num_rounds - 1],
)
}
}

83
src/timer.rs Normal file
View File

@@ -0,0 +1,83 @@
#[cfg(feature = "profile")]
use colored::Colorize;
#[cfg(feature = "profile")]
use std::sync::atomic::AtomicUsize;
#[cfg(feature = "profile")]
use std::{sync::atomic::Ordering, time::Instant};
#[cfg(feature = "profile")]
pub static CALL_DEPTH: AtomicUsize = AtomicUsize::new(0);
#[cfg(feature = "profile")]
pub struct Timer {
label: String,
timer: Instant,
}
#[cfg(feature = "profile")]
impl Timer {
#[inline(always)]
pub fn new(label: &str) -> Self {
let timer = Instant::now();
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
println!(
"{:indent$}{}{}",
"",
"* ",
label.yellow().bold(),
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
Self {
label: label.to_string(),
timer,
}
}
#[inline(always)]
pub fn stop(&self) {
let duration = self.timer.elapsed();
println!(
"{:indent$}{}{} {:?}",
"",
"* ",
self.label.blue().bold(),
duration,
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
}
#[inline(always)]
pub fn print(msg: &str) {
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
println!(
"{:indent$}{}{}",
"",
"* ",
msg.to_string().green().bold(),
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
}
}
#[cfg(not(feature = "profile"))]
pub struct Timer {
_label: String,
}
#[cfg(not(feature = "profile"))]
impl Timer {
#[inline(always)]
pub fn new(label: &str) -> Self {
Self {
_label: label.to_string(),
}
}
#[inline(always)]
pub fn stop(&self) {}
#[inline(always)]
pub fn print(_msg: &str) {}
}

63
src/transcript.rs Normal file
View File

@@ -0,0 +1,63 @@
use super::group::CompressedGroup;
use super::scalar::Scalar;
use merlin::Transcript;
pub trait ProofTranscript {
fn append_protocol_name(&mut self, protocol_name: &'static [u8]);
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar);
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup);
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar;
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar>;
}
impl ProofTranscript for Transcript {
fn append_protocol_name(&mut self, protocol_name: &'static [u8]) {
self.append_message(b"protocol-name", protocol_name);
}
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar) {
self.append_message(label, &scalar.to_bytes());
}
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup) {
self.append_message(label, point.as_bytes());
}
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar {
let mut buf = [0u8; 64];
self.challenge_bytes(label, &mut buf);
Scalar::from_bytes_wide(&buf)
}
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
(0..len)
.map(|_i| self.challenge_scalar(label))
.collect::<Vec<Scalar>>()
}
}
pub trait AppendToTranscript {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript);
}
impl AppendToTranscript for Scalar {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_scalar(label, self);
}
}
impl AppendToTranscript for Vec<Scalar> {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"begin_append_vector");
for i in 0..self.len() {
transcript.append_scalar(label, &self[i]);
}
transcript.append_message(label, b"end_append_vector");
}
}
impl AppendToTranscript for CompressedGroup {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_point(label, self);
}
}

184
src/unipoly.rs Normal file
View File

@@ -0,0 +1,184 @@
use super::commitments::{Commitments, MultiCommitGens};
use super::group::GroupElement;
use super::scalar::{Scalar, ScalarFromPrimitives};
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use serde::{Deserialize, Serialize};
// ax^2 + bx + c stored as vec![a,b,c]
// ax^3 + bx^2 + cx + d stored as vec![a,b,c,d]
#[derive(Debug)]
pub struct UniPoly {
coeffs: Vec<Scalar>,
}
// ax^2 + bx + c stored as vec![a,c]
// ax^3 + bx^2 + cx + d stored as vec![a,c,d]
#[derive(Serialize, Deserialize, Debug)]
pub struct CompressedUniPoly {
coeffs_except_linear_term: Vec<Scalar>,
}
impl UniPoly {
pub fn from_evals(evals: &Vec<Scalar>) -> Self {
// we only support degree-2 or degree-3 univariate polynomials
assert!(evals.len() == 3 || evals.len() == 4);
let coeffs = if evals.len() == 3 {
// ax^2 + bx + c
let two_inv = (2 as usize).to_scalar().invert().unwrap();
let c = evals[0];
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
let b = evals[1] - c - a;
vec![c, b, a]
} else {
// ax^3 + bx^2 + cx + d
let two_inv = (2 as usize).to_scalar().invert().unwrap();
let six_inv = (6 as usize).to_scalar().invert().unwrap();
let d = evals[0];
let a = six_inv
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]);
let b = two_inv
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
+ evals[2]
+ evals[2]
+ evals[2]
+ evals[2]
- evals[3]);
let c = evals[1] - d - a - b;
vec![d, c, b, a]
};
UniPoly { coeffs }
}
pub fn degree(&self) -> usize {
self.coeffs.len() - 1
}
pub fn as_vec(&self) -> Vec<Scalar> {
self.coeffs.clone()
}
pub fn eval_at_zero(&self) -> Scalar {
self.coeffs[0]
}
pub fn eval_at_one(&self) -> Scalar {
(0..self.coeffs.len()).map(|i| self.coeffs[i]).sum()
}
pub fn evaluate(&self, r: &Scalar) -> Scalar {
let mut eval = self.coeffs[0];
let mut power = *r;
for i in 1..self.coeffs.len() {
eval = &eval + &power * &self.coeffs[i];
power = &power * r;
}
eval
}
pub fn compress(&self) -> CompressedUniPoly {
let coeffs_except_linear_term = [&self.coeffs[0..1], &self.coeffs[2..]].concat();
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
CompressedUniPoly {
coeffs_except_linear_term,
}
}
pub fn commit(&self, gens: &MultiCommitGens, blind: &Scalar) -> GroupElement {
self.coeffs.commit(blind, gens)
}
}
impl CompressedUniPoly {
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
pub fn decompress(&self, hint: &Scalar) -> UniPoly {
let mut linear_term =
hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
for i in 1..self.coeffs_except_linear_term.len() {
linear_term = linear_term - self.coeffs_except_linear_term[i];
}
let mut coeffs: Vec<Scalar> = Vec::new();
coeffs.extend(vec![&self.coeffs_except_linear_term[0]]);
coeffs.extend(vec![&linear_term]);
coeffs.extend(self.coeffs_except_linear_term[1..].to_vec());
assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len());
UniPoly { coeffs }
}
}
impl AppendToTranscript for UniPoly {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"UniPoly_begin");
for i in 0..self.coeffs.len() {
transcript.append_scalar(b"coeff", &self.coeffs[i]);
}
transcript.append_message(label, b"UniPoly_end");
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_from_evals_quad() {
// polynomial is 2x^2 + 3x + 1
let e0 = Scalar::one();
let e1 = (6 as usize).to_scalar();
let e2 = (15 as usize).to_scalar();
let evals = vec![e0, e1, e2];
let poly = UniPoly::from_evals(&evals);
assert_eq!(poly.eval_at_zero(), e0);
assert_eq!(poly.eval_at_one(), e1);
assert_eq!(poly.coeffs.len(), 3);
assert_eq!(poly.coeffs[0], Scalar::one());
assert_eq!(poly.coeffs[1], (3 as usize).to_scalar());
assert_eq!(poly.coeffs[2], (2 as usize).to_scalar());
let hint = e0 + e1;
let compressed_poly = poly.compress();
let decompressed_poly = compressed_poly.decompress(&hint);
for i in 0..decompressed_poly.coeffs.len() {
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
}
let e3 = (28 as usize).to_scalar();
assert_eq!(poly.evaluate(&(3 as usize).to_scalar()), e3);
}
#[test]
fn test_from_evals_cubic() {
// polynomial is x^3 + 2x^2 + 3x + 1
let e0 = Scalar::one();
let e1 = (7 as usize).to_scalar();
let e2 = (23 as usize).to_scalar();
let e3 = (55 as usize).to_scalar();
let evals = vec![e0, e1, e2, e3];
let poly = UniPoly::from_evals(&evals);
assert_eq!(poly.eval_at_zero(), e0);
assert_eq!(poly.eval_at_one(), e1);
assert_eq!(poly.coeffs.len(), 4);
assert_eq!(poly.coeffs[0], Scalar::one());
assert_eq!(poly.coeffs[1], (3 as usize).to_scalar());
assert_eq!(poly.coeffs[2], (2 as usize).to_scalar());
assert_eq!(poly.coeffs[3], (1 as usize).to_scalar());
let hint = e0 + e1;
let compressed_poly = poly.compress();
let decompressed_poly = compressed_poly.decompress(&hint);
for i in 0..decompressed_poly.coeffs.len() {
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
}
let e4 = (109 as usize).to_scalar();
assert_eq!(poly.evaluate(&(4 as usize).to_scalar()), e4);
}
}